TRANSACTIONS

OF THE

HORTICULTURAL SOCIETY

OF

LONDON.

SECOND SERIES.

VOL. III.

MDCCCXLIII.-MDCCCXLVIII.

LON DON:

PRINTED, BY W. NICOL, 60, PALL-MALL.
PUBLISHED BY THE SOCIETY, AT THEIR HOUSE, 21, REGENT-StREET;
AND SOLD BY THE PRINCIPAL BOOKSELLERS IN ALL
PARTS OF THE KINGDOM.
1848.

ADVERTISEMENT.

The Committee appointed by the Horticultural Society to direct the publication of the Papers read before them, take this opportunity to inform the Public, that the grounds of their choice are, and will continue to be, the importance and singularity of the subjects, or the advantageous manner of treating them, without pretending to answer for the certainty of the facts, or the propriety of the reasonings, contained in the several Papers so published; which must still rest on the credit or judgment of their respective Authors.

It is likewise necessary, on this occasion, to remark, that it is an established rule of this Society, to which they will always adhere, never to give their opinion, as a body, upon any subject, either of Nature or Art, that comes before them. And, therefore, the thanks which are proposed from the Chair, to be given to the Authors of such Papers as are read at the General Meetings, or to the Persons who send fruits, or other vegetable productions, or exhibit Inventions of various kinds to the Society, are to be considered in no other light than as a matter of civility, in return for the respect shewn to the Society by these communications.

CONTENTS.

I. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswich, during the year 1841. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden. p. 1 II. On the Oxalis Deppei, and its Cultivation as a culinary plant. By Mr. Robert 'Ihompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden. p. 29 III. Experiments on the Inorganic Constituents of Plants. By Edward Solly, Esq., F. R. S., F. L. S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.
p. 35
IV. The Result of some Experiments in the Garden of the Society on the action of Fertilizing Agents upon the Lawn. p. 93 V. Notes made in the Garden of the Horticultural Society upon the rate of growth by plants at different periods of the day. By the Vice Secretary.
p. 103
VI. Notes of a Visit to Mexico, Guatemala, and Equatorial America, during the Years 1836 to 1843 in search of Plants and Seeds for the Horticultural Society of London. By Mr. Theodore Hartweg.
p. 115

DIRECTIONS TO THE BINDER.

| Meteorological Diagram | - | - | to face page 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Habrothamnus fasciculatus | - | - | $-\quad$. | |

Mean Height of the Barometer in 1841

Monthly depth of Rain in 1841.
I. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick during the year 1841. By Mr. Robert Thompson.

This Journal has been kept on the same plan as the preceding.

[2]

JANUARY.

Morning.						Noon.					Night.					
1841.	Barom.		grometer		Weather.	Barom.	Hyg	ometer		Weather.	Barom.	Hyg	rometer.		Weather.	
	29.942	40	40	-	Hazy	29.917	44	43		Fine	29.882	42	42	-	Cloudy \& fine	
	29.302	35	35	-	Cloudy	30.086 29.200	${ }^{43}$	38	-	Cloudy \& Do.		38	32		Snow	
	28.978	25	25	-	Sharp Frost	-. 057	33	33	-	Snowing	-. 185	31	31 31	-	Clear	
	29.316	31	31	-	Densely Overcast	-. 318	34	34	-	Ditto	-. 376	29	29	-	Ditto	
	-. 518	28	28	-	Hazy	-. 558	29	25	4	Frosty haze	-. 631	26	26	-	Overcast	
	-. 698	15	15		Severe Frost	-. 698	23	20	3	Sharp frost	$-.760$	15	15	-	Clear	
	-. 889	15	15	-	Very dense Fog	-.893	17	17	-	Frosty\& foggy	-. 866	14	14	-	Severe frost	
	-.738	11	11	-	Intense Fiost	-. 665	32	32	-	Cloudy	-. 441	27	23	4	Hazy	
	-2.247	33	33		Overcuist	-. 214	35	35	-	Slight haze	-. 089	33	33		Slight Rain	
	28.864	35	35 35	-	Cloudy	28.950	38	38	-	Clear	-. 064	32	32		Overcast	
	-. 563	29	35 29	-	Foggy	29.469 -399	39	34	5	Ditto	-. 578	32	32	-	Clear	
	-. ${ }^{86}$	36	36	-	Cold easterly haze	-. 296	38	38	-	Clear	-. 324	33	33		Overcast	
	-. 559	35	35	-	Clearing	-. 653	42	42	-	Rain	-. 687	33	3	二	Overcast	
	-. 631	36	36	-	Hazy	-. 533	50	50	-	Ditto	-. 365	51	51	-	Rain	
	-. 605	48	48		Slightly Overcast	-. 608	51	51	-	Overcast	-. 729	47	47	-	Clear	
	-.707	46	46		Rain	-. 685	48	48	-	Ditto	-.725	40	40	-	Rain	
	30.778	35 32	35 32		Cloudy \& Cold	-.826	37	37	-	Slight rain	-. 918	32	28	4	Overcast	
	-. 505	29	28	1	Frosty	30.077	38	27 36	7	Clear	30.182	32	32		Ditto	
	-. 303	31	31	-	Ditto	-. 277	40	36	4	Cloudy	-. 421	32	32 41 42	二	Fine	
	-. 055	34	34		Clear	-. 108	42	42	$\underline{4}$	Clear	-. 001	46 36	36	-	Cloudy \& fine	
	29.796	37	37	,	\|l		29.848	36	27	9	Ditto, cold \& dry	-. 161	31	30	1	Clear
	20.336	27	24		Hazy	30.301	37	32	5	Clear	-. 195	35	35	-	Overcast	
	30.915	47	47		Slightly Overcast	29.988	48	45	3	Overcast \& fine	- 00	46	46		Ditto	
	30.287	33	33	-	Cloudy	30.083	52 44 4	50 44	2	Very Fine	-225	34	34		ar	
	-. 176	34	34	-		-. 385	44	48	6	Fine but cool	-.250	35	35	-	Very Clear	
	-.251	38	38 39		$\begin{array}{\|l} \mathrm{Hazy} \\ \text { Foggy } \end{array}$	-. 235	40	40	-	Hazy	. 212	38	38			
	-. 182	39	39		Foggy	-. 165	42	42	-	Rain	-. 190	30	30	-	Overcast	
	29.773	33.13	33.00	0.13		29.773	38.58	37.16	1.42		29.770	33.87	33.58	0.2		

JANUARY.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	45	34	48	28	W	Little		The mean temperature was about 2° below the average for
2	45	32	45	31		Ditto	. 15	this month. On the nights of the 7 th and 8th the frost was in-
3	39	21	39	16	NW	Brisk	,	tense, the thermometer falling to within 5° of zero. The barom-
4	35	29	37	25		Little		eter was consid rably below the average; and the depth of rain
5	33	22	33	18	N	Brisk		was more than an inch above the usual quantity. A tremendous
7	30	12	31	6	SE	Little		thunder storm occurred on the 3 rd, about 7 A. M., accompanied
8	20	6	22	-1	NW	Ditto		at first with high wind, then hail and sleet; the flashes of light- ning being unusually large and vivid. Much rain and snow fell
9	33	27	34	23	S	Brisk		between the 10th and 15 th; a rapid thaw took place on the 16 th,
10	39	31	40	18	SE	Little	. 40	the water at the same time being prevented from sinking into
11	39	33	40	26	SW	Ditto	. 02	the earth by the frozen crust, which was from 8 to 12 inches in
12	39	22	40	17		Ditto		depth, where the ground was bare ; the consequences were great
13	38	32	48	31	E	Ditto	. 29	inundations throughout the country, with loss of life and pro-
14	36	32	40	31	NE	Ditto	. 80	perty.
15	39	31	40	25	SE	Ditto	. 15	
16	52	40	52	40	SW	Brisk	.16	\qquad Temperature Ditto $35^{\circ} .19$
178	52 47	45 33	52 47	44	W	Ditto	. 02	—— Dew Point Ditto ${ }^{\text {. }}$ 34.5 ${ }^{8}$
19	36	28	47 37	29 23	N	Little	. 24	- Degree of Dryness . . . Ditto 0.61
20	34	22	37	16		Brisk	. 02	\qquad Degree of Moisture . . Ditto 976 \qquad Force of Vapour Ditto 200 inch
21	38	25	41	20	NW	Ditto		Least observed degree of Moisture 200 inc
22	44	32	45	30	SW	Little	.10	Maximum Temperature in the Shade \ldots. ${ }^{\text {a }}$. 53°.
23	43	32	46	29	NW	Ditto	. 10	Minimum Temperature in ditto 56°.
24	38	26	40	22	N	Brisk	:02	Maximum Temperature in the Sun 56°.
25	40	32	44	30	W	Little	. 01	Minimum of Terrestrial Radiation -10.
26	49	43	51	41	SW	Ditto		Mean Temperature of external Air $34^{\circ} .25$
27 28	53	34	56	24	W	Ditto		
$\begin{array}{r}28 \\ 29 \\ \hline\end{array}$	44	28	44	23		Ditto		North. . . . 5 days ${ }^{\text {d. East. } 2 \text { days }}$
30	40	32 37	48	29	$\stackrel{N}{\mathbf{W}}$	Ditto	. 02	South 1 .. S. East 3 ..
31	42	28	42	26	E	Ditto	. 12	East. $2 .$. N. West 5 West.. . . 7. S. West. . . .
	39.90	28.61	41.11	24.35			2.60	Amount of Rain. . 31 days. 2.60 inches.

FEBRUARY.

[5]

FEBRUARY.

MARCH．

Morning．						Noon．					Night．				
1841.		Hygrometer．			Weather．	Barom．	Hygrometer．			Weather．	Barom	Hygrometer．			Weatlier．
M．	${ }^{1} 29.587$	38	38		Overcast	29.616	42	42	－－	Cloudy	29.693	35	35	－	Cloudy
W．	$2-$ 2． 685 $3-.315$	33	33	二	Do．\＆Frosty	－．609	44	44	－	Slight rain	－． 393	43	43	－	
Th．	4－． 904	4	4	－	Clear	－． 393	47	40	7	Cloudy	－． 665	41	45	－	Cloudy
F．	5－．857	36	36	－	Ditto \＆Damp	－．890	43	33	10	Fine	818	39	39		Rain
－S．	$6-.723$	41	41	－	Very Clear	－．852	47	47	7	Thickly Overcast	－． 299	48	48	－	Slight rain
\bigcirc－	730.047	51	51	－	Very Fine	30.096	60	53	7	Ditto		44	44		Fine
M．	8－． 362	50	50	－	Overcast	－． 369	62	55	7	Overcast \＆fine	30．255	45	45	－	tto
T．	9－392	42	42	－	Foggy	－．392	58	53	5	Very Fine	－．385	45	45		Clear \＆Ditto
Th．	110 － 426	38	38	－	Ditto	－． 426	59	50	9	Ditto	－． 462	37	37	－	Ditto
Th． 1	12－． 1266	37	37	－	Dense Fog	－． 424	58	52	6	Ditto	－．401	39	39	－	Clear
S． 1	$13-.331$	38	38		Slight Fog	－． 323		48	12	Ditto	－． 273	41	41	－	Ditto
S． 1	14 －． 351	$4{ }^{\circ}$	40	－	Foggy	二．337	55	50	5	Slight Haze	－． 376	39	39	－	Foggy
$\xrightarrow{\mathrm{M}} \mathrm{T}$.	15 －． 152	38	38	－	Ditto	－．101	60	55	5	Ditto	－．	39	39		Dense Fog
W．	1629.921 $17-603$	37	37		Ditto	29.832	63	41	22	Cloudless，fine	29.729	44	44		Clear
Th．	18－．404	50 50	50 50	二	Slight rain	－． 577	55	55	－	Cloudy \＆showery	－． 583	43	43		Ditto
F． 1	19－－．598	48	44	4	Overcast	－． 450	57	48	9	Cloudy	－． 525	43	43	－	Ditto
	20－． 647	47	47		Fine	－． 608	54	54		Showery	－． 713	43	43		Clear
S． 2	$21-.625$	47	47	－	Very Fine	－．636		$\begin{aligned} & 47 \\ & 47 \end{aligned}$		Stormy with rain Cloudy \＆Fine	－． 565	43	43		Slight Rain
M．	22－362	52	52			－． 391	56	50	8	Ditto ${ }^{\text {Cloudy }}$ Fine	－． 482	49	49		Ditto
W	23－．803	47	47	－	Fine	－．946	58	45	13	Fine	30.128	44	44		Clear
Th．${ }^{\text {F }}$	25－123	5	47	3	Very Fine	30.222	56	50	6	Cloudy	－． 192	40	40		Ditto
	2629.698	54	54		Ditto	－． 045	61	52	9	Very Fine	29.952	41	41		Ditto
S．	27 －． 721	49	49	－	Overcast	29．608		55	11	Ditto	－． 593	46	46	－	Cloudy \＆Fin
	28 －．914	39	39	－	Fine	－． 904			－	Showery	－． 86	40	40	－	Clear
D M ．	39－．922	50	50	－	Overcast	－．858	55	52	3	Ditto	－．．787	45	43	5	Ditto
	31－．638	45	45		Fine	－．915	55	40	15	Ditto \＆Fine	$-.836$	48	48		Cloudy \＆Fine
						－． 598	55	40	15	Fine butwindy	－． 497	45	45		Rain
	29.903	43.48	43.26	0.22		29.895	54.74	47．71	7.03		29.886	5	42.29		

MARCH.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	41	27	42	22	S	Little	. 10	This month was on the whole exceedingly fine for the period
2	49	37	53	34	SW	Ditto	. 30	of the season. Vegetation was in a very dormant state at the
3	50	29	53	22	W	Ditto	. 02	commencement ; for the three preceding months were of a se-
4	46	33	52	29	W	Little	. 08	vere character; but in the present the mean temperature was
5	50	36	50	32	S	Brisk	. 22	nearly 4° above the average, and by the end of the third week
6	52	41	60	38	NW	Little		Peach and Nectarine trees on walls were in blossom, and the
7	61	42	64	39	SW	Ditto		common Hawthorn partially in leaf. It was the warmest March
8	61	35	66	29		Ditto		since 1830. The thermometer was seldom below freezing and
9 10	60 63	30 27	66 69	25	S	Ditto		only once so low as 27°. The amount of rain was exactly the average quantity ; still however the barometer was lower than
11	64	30	70	24	SE	Ditto		usual. The wind was chiefly from the South and South West,
12	67	31	74	25	SW	Ditto		and not so boisterous as is generally the case in this month.
13	59	37	61	35	$\underset{\text { E }}{\text { E }}$	Ditto		
14	57	33	59	28	W	Ditto		Mean Pressure from the 3 daily observations 29.895 inches.
15	66	30	74	25	S	Ditto		\qquad Temperature \qquad Ditto \qquad $46^{\circ} .89$
16	65	35	71	30	S	Ditto		- Dew Point Ditto $44^{\circ} \cdot 42$
17	56	41	62	36		Ditto	. 01	—_ Degree of Dryness . . . Ditto ${ }^{2} \cdot 47$
18	56	40	61	35	SW	Strong		__ Fegree of Moisture . . Ditto 916 Ditto 295 inch
18 20	54	34	59	29	-	Ditto	. 01	Least Force of Vapour Ditto 295 inch.
20	57	39	60	35	S	Ditto	. 13	Least observed degree of Moisture $67^{\circ}{ }^{\circ}{ }^{546}$
21 22	54 58	48 36	59 62	47 36	SW	Brisk	. 12	Maximum Temperature in the Shade $677^{\circ} 7^{\circ}$.
23	59	43	64	40	W	Brisk		Maximum Temperature in the Sun 7 74 ${ }^{\circ}$.
24	58	30	64	24	SW	Ditto		Minimum of Terrestrial Radiation 22°.
25	61	32	65	27	S	Little		Mean Temperature of External Air $46^{\circ} .35$
26	65	39	70	34	SW	Ditto	. 02	Winds.
27	58	27	65	23	SW	Ditto	. 08	Northo day \mid N. East. o days
28	54	40	60	35	SW	Ditto		South 9 .. S. East. 1 .
28 30	58	40	64 60	36	SW	Ditto	. 10	East 1 .. N. West.... 1 . .
30 31	55 56	41 41	60 61	39 40	W	Sitto	. 08	West....... 6 .. ${ }^{\text {a }}$ S. West 13
	57.09	35.61	61.93	31.45			1.32	Amount of Rain. 1.32 inch.

APRIL.

APRIL.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	52	41	61	36	W	Little	. 05	
2	56	26	61	20	NW	Brisk		The mean pressure, temperature, and amount of rain were
3	57	26	63	21		Little		forward by the fine weather in March ; but it progressed very
4	55 56	39 35	60 62	41 30	SW	Brisk Little	11	slowly during the first three weeks of the present month, the
5	55	31	63	36 26	NE	Ditto	. 02	temperature being low, generally, and often below freezing at
7	52	37	62	34	SW	Ditto	. 03	night. In the last week, however, a fresh impulse was given to
8	53	34	60	30	W	Brisk		vegetation, in consequence of a rise of mean temperature to
9	55	37	62	31	N	Ditto	. 01	more than 5^{5} above the average, with a plentiful supply of moisture. The 24 th and 25 th were boisterous; the 27 th very
11	49	31 32 32	51	25 27	NE	Brisk	. 01	sultry, with lightning at night.
12	45	27	52	21	-	Ditto		
13	56	42	61	41	SW	Little	. 08	Mean Pressure from the 3 daily observations 29.839 inches.
14	57	32	62	28		Ditto	. 01	- Temperature Ditto ${ }^{48}{ }^{\circ}{ }^{\circ} .90$
15	58	26	64	21	NW	Ditto	. 05	——Dew Point \ldots Dre...... Ditto ${ }^{44} 4^{.32}$
17	57 60	31 39	64 66	24 34	NE	Ditto		-Degree of Moisture . . Ditto 84
18	61	41	65	38	W	Brisk	14	- Force of Vapour. Ditto 294 inch.
19	58	32	63	25	-	Ditto		Least observed degree of Moisture ${ }_{70^{0}}{ }^{.43^{2}}$
20	56	36	63	34		Ditto		Maximum Temperature in the Shade $\ldots \ldots .{ }^{76^{\circ}} 6^{\circ}$
21	53	40	59	36	NE	Ditto		
22	53	41	60	40		Ditto	$\cdot 32$	Minimum of Terrestrial Radiation $\ldots . . .2^{20^{\circ}}$.
23	48	28	55	25 36	NW	Little	.52 .15	Mean Temperature of External Air $47^{\circ} .09$
24	56	39	61	36 5 1	SW	Brisk	.15	Mean Temperature of External Air $47^{\circ} .09$
26	59	5	69	51	sw	Ditto		Wind
27	75	46	80	43		Little		North.... 1 days South..... $2 .$. N. East...... 9 9 days S. East...... ..
28	76	45	79 80	44 36	NE		. 07	East....... $1 . .$.
29 30	$\begin{aligned} & 71 \\ & 68 \end{aligned}$	42 41	80 81 1	36 35		Ditto		
	57.40	36.79	63.70	32.76			1.58	Amount of Rain....................... 1.58 inch,

MAY.

[11]

MAY.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	76	42	96	38	E	Little		
2	76	45	83	45	SW	Strong	.25	This month was genial for vegetation throughout. The
3	50	43	61	43	NE	Little	- 30	amount of rain was greater than usual by rather more than
4	69	50	82	49	S	Ditto	. 70	half an inch; but the temperature was also higher by $2^{\circ} .7$.
5	62	46	82	44	SW	Strong	. 15	Nor was the growth of vegetation hence induced unsubstantial like that produced by hear and a continually moist and sunless
6	65	43	73	39		Ditto	. 02	like that produced by heat and a continually moist and sunless
7	66	47	72	45	S	Brisk	. 10	atmosphere; for notwithstanding the more than usual quantity
8	62	44	65	41	SW	Ditto	.16	of rain, there were but few days on which a great amount of dryness was not detected by the hygrometer. The 27th was
9	65	50	76	49	-	Ditto		dryness was not detected by the hygrometer. The 27 th was hot and sultry ; at $\frac{1}{2}$ past 8 P. M, sheet lightning, with some
10	65	46	67	42	S	Ditto		hot and sultry; at $\frac{3}{4}$ past 8 P. M. sheet lightning, with some of the zig-zag kind, appeared almost continuous; thunder was
11	77	46	80	44	$\xrightarrow[\text { SE }]{\text { S }}$	Little	. 01	heard between 10 and 11 , and abrupt showers of rain fell in
12	62	39	82 80	33	NE	Ditto Ditto		heavy drops.
13	66	30	79	32 33		Ditto		
14	65	40	79	33		Ditto		Mean Pressure from the 3 daily observataions 29.858 inches
15	74	40	91	35	SW	Ditto		- TemperatureDitto...... . $60^{\circ} .06$
16	74	49	87	44	SW	Ditto	. 01	-_ Dew Point Ditto. 54 ${ }^{\circ} .59$
17	68	45	75	43		Brisk	. 01	- Degree of DrynessDitto. 5 $5^{\circ} .47$
18	66	46	70 65	44 45	S	Strong	. 02	- Degree of Moisture . . . Ditto 821
20	61	39	70	33	SW	Ditto	. 06	- Force of Vapour Ditto...... . 423 inch.
21	69	54	70	52	E	Little	16	Least observed degree of Moisture ${ }_{80} 0^{.410}$
22	68	43	78	39	S	Ditto	OI	Maximum Temperature in the Shade $82^{\circ}{ }^{\circ}$ Minimum Temperature in ditto 36°.
23	75	46	88	42	SE	Brisk		Maximum Temperature in the Sun 96°.
24	70	51	80	46	E	Little		Minimum of Terrestrial Radiation 32°.
25	73	54	88	54	NE	Brisk		Mean Temperature of External Air $5^{88^{\circ} .09}$
27	80	58	90	56		Ditto		
27	82	60	92	59	SW	Ditto	. 03	Wisids.
28	80	51	96	47	SW	Little		North...... 1 days ${ }^{\text {N. East . . . } 7 \text { days }}$
29	72	54	80	54	$\stackrel{\text { N }}{\text { N }}$	Ditto	-03	South...... 5 .. S. East 1 ..
30 31	74	49	80	46	NW	Ditto Ditto		East 3 .. N.West . . . 1
31	78	49	95	44	W	Ditto		West....... 2 .. ${ }^{\text {a }}$ S. West. . . 11
	69.35	46.83	79.13	43.87			2.16	$31 \text { days. }$ Amount of Rain \qquad

JUNE.

Morning.						Noon.					Night.				
1841.	Barom	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.
T.	30.122	65	60	5	Very Fine	30.137	71	56	15	Overcast \& fine	30.137	56	56		Clear
Th.	-. 177	63	58	5	Ditto	-. 167	70	59	11	Very Fine	-. 177	62	62	-	Cloudy \& Fine
Th.	-.173	63	50	13	Ditto \& dry	-. 157	70	42	28	Ditto \& Dry	-. 254	53	53	-	Clear
$\stackrel{1}{\text { F. }}$	-.357	59	47	12	Ditto cast	-. 329	67	45	22	Ditto	-. 300	55	55		Fine
S.	-.210	62	50	12	Slightly Over-	-. 128	70	50	20	Ditto	-. 004	51	51		Rain
M.	29.981 -.921	56	46	10	Fine	29.967	61	46	15	Ditto	29.923	49	49		Slight Rain
T.	-.965	52	44 48	8	Cloudy \& cold	-.936	55	55		Showery \& cold	-.956	48	48		Ditto
W.	-.947	50	48	4	Ditto	-.942	58	47 50	$\begin{array}{r}11 \\ 8 \\ \hline\end{array}$	Cloudy	-.974	49	49	-	${ }_{\text {Cloudy }}$
Th. ${ }^{1} 1$	-.815	54	50	4	Overcast	-. 762	65	54	11	Very Fine	-. 669	52	52	-	Ditto \& Fine
(${ }_{\text {c }}^{\text {S. }} 1$	-687	52	50	2	Do. \& Cold	- 712	56	50	6	Cloudy \& cold	-. 775	50	45	5	Cloudy \& Do.
- S. 1	- 3.807	5	50	2	Slight Rain	-.903	55	50	5	Overcast	-. 973	44	44		
M. 1	--047	57	50	7	Fine but cold	30.040 29.959	59 70	48	11	Very Fine	-.944	43	43		Ditto
	29895	56	56		Slight drizzle	-.946	64	52	12	Cloudy \& Do.	-.906	54	54		Overcast
Th. 1	30.208	58	$4+$	14	Fine, dry air	30.186	69	50	19	Very Fine	-. 111	47	47	-	Clear
F. ${ }^{\text {S. }}$	29.788		50	13	Cloudy, Do.	-. 044	68	50	18	Cloudy \& Do.	29.875	48	48	-	Ditto [ning
S.	-. 607	60	¢0	-	Cloudy	29716 -.613	80	58	22	Sultry	-. 605	60	60		Rain, light
	-. 759	62	58	4	Very Fine	-. 740	66	$\epsilon 6$	-	Slight Rain		52	52		${ }_{\text {Clea }}$
${ }_{7}{ }^{1} \cdot 1$	-.769	65	61	4	Fine	-854	66	66	-	Heavyshowers	-. 959	52	52		Showery
W. ${ }^{2}$	- 30.028	61		6	Very Fine	30.030	69	55	14	Cloudy	-. 994	54	54		Fine
Th.	29741	63	60	3	Do. Overcast	29.913	64	64	-	Heavy rain	-.812	54	54	-	Cloudy
$\stackrel{\text { F. }}{ }$	-. 514	59		-	Heavy Rain					Ditto	-. 639	58	58		Overcast
S.	-.toj	68	68		Cloudy	-. 498	6	65	5	Fine	-543	58	58		Ditto
	-.951	56	56	-	Showery	-. 979	68	68	4	Showery ${ }^{\text {do }}$	-774	54	54		Clear
	-. 981	56	56	-	Rain	-. 924	60	60		Ditto	29.773	5	52		Rain
	-. 966	62		${ }_{2}$	Cloudy Fine	二.743	66 64	62	4	Ditto	-817	54	54		Cloudy
						-.927	64	60	4	Fine	30.093	53	53	-	Fine
	29.931	58.56	53.93	4.63		29.919	65.23	55.47	9.76		29.917	52.13	51.9		

[13]

JUNE.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	72	47	91	42	NE	Little		
2	75	53	89	48	W	Ditto		
3	73	4	90	35		Ditto		In this month the supply of moisture was abundant; but heat
4	72	46	95	41	NW	Ditto		was deficient. The mean temperature, instead of progressing,
5	73	46	90	40	W	Brisk	. 03	fell 2° lower than that of the preceding month, and was 46. ${ }^{\circ}$
	59 57	$4{ }_{4}^{4}$	68	35 45	$\stackrel{N}{\text { N }}$	Brisk	. 02	and cold notherly winds were then prevalent. The last half of
8	56	46	60	44		Ditto		the month was generally cloudy and wet. On the 2 3rd nearly
9	57	39	68	32	NE	Ditto		half an inch of rain fell in less than an hour.
10	71	41	80	34	N	Little		
11	54	45	64 56	43 29	NE	$\xrightarrow{\text { Brisk }}$ Little	. 01	Mean Pressure from the 3 daily observations 29.922 inches.
13	${ }^{53}$	37	68	33	NW	Ditto		-Temperature Ditto $58^{\circ} .64$
14	72	53	77	50	-	Ditto		——Dew Point Ditto $53^{\circ} .79$
15 16	69	36	77	28 3		Brisk	. 01	—— Degree of Dryness ... Ditto $4^{\circ} .85$
16	72	$4{ }^{1}$	77	35	S	Little		—— Force of Vapour Ditto$_{.413}$ inch.
17 18	70 80 80	41 54	77 85	35 53	-	Ditto Ditto	. 24	Least observed degree of Moisture ${ }^{\text {a }}$. ${ }^{\text {a }}$
19	69	45	74	43	W	Ditto	.08	Maximum Temperature in the Shade. . . . 80°.
20	66	54	70	52	SW	Brisk	. 02	Minimum Temperature in ditto $3^{36}{ }^{\circ}$
21	71	47	76	43		Ditto	. 26	
22	73	46	77	41	W	Little	. 01	Mean Temperature of External Air ${ }^{\text {a }}$ ($6^{\circ} .23$
23	73	44	79	40	S	Ditto	. 40	Mean Temperature of External Air 56.23
	72	54	80	52	SW	Ditto Brisk	. 49	
26	67	54 52 5	74 71	50		Ditto	. 04	Winds.
27	70	52	72	48	W	Little	. 10	North.......4days ${ }^{\text {N. East......4 days }}$
28	62	50	73	48	S	Ditto	. 65	
29	69	48	73	45	SW	Ditto	. 07	East $\ldots \ldots \ldots .0$ West $\ldots \ldots .$. ..
30	67	52	72	51	NW	Ditto	. 01	
	67.30	45.16	$75 \cdot 43$	42.37			2.45	Amount of Rain............ 2.45 inches.

[14]

JULY.

JULY.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	63	59	66	59	SW	Little	. 05	
2	69	60	72	59	W	Ditto	.01	
3	79	55	84	52	SW	Ditto	.04	but it was still 2° below the average. The amount of rain was
4	69	53 57	72	52	NE	Brisk		
5	75	57	80	57	NE	Little	. 59	15 th was remarkable, being very little short of an inch and a half
7	72 67	52 53	77	48 50	SW	Brisk	. 03	and mostly as heavy thunder-showers. The morning was fine;
8	67	45	72	40	W	Little	. 01	but before noon the clouds, in dense dark masses, were observed
9	71	44	76	38	W	Ditto		to be in great commotion. The storm broke forth with great
10	71	49	76	49	SW	Ditto	.36	
11	70	43	68	48	NW	Ditto		but less violent occurrence of thunder and lightning.
12	64	44	68	41	W	Ditto	. 02	
13	68	42	74	36	SW	Brisk	. 02	Mean Pressure from the 3 daily observations 29.819 inches.
14	66	45	75	40	SW	Little	. 07	Mean Pressure from the 3 daily observations ${ }^{29.819}$ inches.
15	68	51	77	50	S	Ditto	1.46	- Dew Point Ditto...... $57^{\circ} .01$
16	72 75	44	76 80	41	N	Ditto	. 11	- Degree of Dryness . . . Ditto. $3^{\circ} .97$
17 18	75	49	80	46	$\stackrel{\text { SW }}{\text { NW }}$	Ditto		- Degree of Moisture. . . . Ditto....... . 872
19	75	48	84	45	W	Ditto		- Force of Vapour. Ditto....... .463 inch.
20	63	54	65	55	SW	Ditto	. 07	Least observed degree of Moisture....... $0^{.512}$
21	67	54	70	51	W	Ditto	. 10	
22	67	51	72	48	W	Brisk	. 22	Maximum Temperature in the Sun 84°.
23	64.	53	71	50	NW	Little	. 01	Minimum of Terrestrial Radiation 36°.
24	60	50	71	46	NE	Ditto		Mean Temperature of External Air...... $59^{\circ} \cdot 30$
25	68	51	77	48	SW	Ditto		Mean Temperature of Extmal Air....... S9.j0
26	72	53	78	49	SW	Ditto		Wixds.
27	70	49	78	52	NW	Ditto		North..... 1 days 1 N. East3 days
28	72	47	76	44	SW	Brisk		North....... 1 daysN. East $\ldots . .3$ days South
29	65	48	75	44	W	Strong	. 01	South2 .. S. East. 0 East N. West. . . 5 ..
30	63 62	48 44	75 66	44	NW	Little Brisk		
31	62	44	66	41	W	Brisk	. 11	
	68.61	50.00	74.06	$47 \cdot 58$			3.56	Amount of Rain 31 days. 56 inches.

AUGUST.

Morning.					Noon.					Night.				
1841. Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.
S. M. 29.790 $\mathbf{2}$ -.937	60	60		Slight Rain	29.833	64	64		Slight showers	29.923 -.765	55 57	55		Cloudy \& Fine Rain
	60	58 68			-.910 $-\quad .630$	61	58		Fine, Cloudy, mild	-.765 --.411	57	57	-	Ditto
W. $4{ }^{3}-. .985$	63	63 59		Hazy Rain	-. 613	73 70	63		Cloudy	$-.785$	57	57	-	Fine
Th. $5-.742$	65	61	4	Fine	-. 688	64	64	-	Slight Rain	$-.609$	57	57		Rain
F. 6-.663	59	59	-	Overcast	$-.777$	66	56	10	Fine	-.851	59	59	-	Ditto
S. $7-.893$	62	60	2	Light clouds	$-.873$	71	63	8	Ditto	-. 798	59	59	-	Overcast \& Fine
S. ${ }^{\text {8 }}$-. 716	61	61	-	Rain	$-.635$	70	65		Ditto, Clouds	-.619	58	56	2	Overcast
M. 9-. 596	5^{8}	55	3	Fine	-.611	67	56	11	Very Fine	-.684	52	52	-	ear
(T. $10-.797$	65	55	10	Ditto	-. 800	69	57		Ditto	-. 678	55	55	-	Rain
W. 11-463	62	62	-	Stormy \& Wer	-. 458	68	68	-	Cloudy	-.662	53	53	-	Ditto
Th. $12-.888$	59	54	5	Fine	$-.923$	62	50		Ditto	-.913	45	45	-	Clear
F. $13-.886$	58	58	-	Overcast	-. 848	68	58	10	Cloudy	-. 772	56	56	-	Overcast
S. $14-.599$	64	64	-	Rain	-. 637	70	70	-	Showery	-.719	55	55	-	Clear
S. $15-.709$	65	63	2	Fine	-.687	67	58		Cloudy \& Fine	-. 746	54	54	-	Ditto
- M. 16-.851	62	62	-	Slightly Overcast	-. 886	72	65		Ditto	-.921	57	57	-	Ditto
T. 1730.000	64	63	1	Overcast	-.969	74	67		Ditto	30.056	62	60	2	Overcast
W. 18-.140	62	61	1	Hazy	30.147	75	62		Ditto	-. 173	62	62	-	Do. \& Fine
Th. 19-.197	60	58	2	Very Fine	-. 166	72	60	12	Very Fine	-. 006	55	55	-	Clear
F. 2029.628	62	60	2	Overcast	29.681	71	52	19	Ditto	29.734	58	58	-	Fine
S. $21-903$	59	59	-	Fine	-. 850	69	63		Cloudy	-. 797	52	52		Clear
S. $22-800$	56	56	-	Cloudy	-. 870	65	65		Ditto	-. 874	59	59	-	Slight Rain
D M. 23-.797	57	57	-	Rain	$-.850$	68	55		Ditto \& Fine	-. 884	54	54	-	Overcast
T. 2430.048	54	54	-	Clear	30.094	56	56		Showers	30.089	54	54		Clear Overcast
W. 25-.079	59	59		Drizzly	-. 059	62	62		Drizzly	-. 079	60	60	-	Overcast
Th. $26-.18 \mathrm{I}$	61	61	-	Hazy \& Mild	-. 225	74	72		${ }^{\text {Very Fine }}$	-. 213	62	62	-	Do. \& Fine
F. $27-.244$	69	69	-	Heavy Dew	18	80	70		Cloudy \& Hot	-. 142	64	64	-	Ditto
S. $28-.189$	57	57	-	Foggy	-. 171	70	65		Very Fine	-. 125	58	58	-	Clear \& Fine
S. 29-. 159	65	63		Slight Fog	-. 0.50	78	70		Ditto	29.920				Ditto
M. 3029.998	61	61		Foggy [Fine	29.921	75	66		Ditto	-. 840	60	60	-	Ditto
T. 31-.732	64	64		Cloudy Very	-. 729	73	65	8	Overcast	-. 844	54	54	-	Overcast
29.858	61.03	59.87	1.16		29.864	69.16	62.26	6.90		29.859	56.80	56.67	O.	

AUGUST.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	66	49	72	43	SW	Little	. 02	The weather still continued moist; but in this month an average
2	70	58	75	58		Ditto	- 38	temperature was fully maintained, south and south-west winds
3	73	57	77	58		Brisk	-38	being prevalent. The mean height of the barometer was nearly
4	69	57	72	55	$\xrightarrow{\text { N }}$	Ditto		$\frac{1}{10}$ of an inch lower than usual. The temperature during the days
5	64	57	72	56	SW	Ditto	. 01	was below the average in the first half of the month; but the
6	67	57	72	56	W	Ditto	. 07	minimum at nights averaged higher than it generally does at this
7	74	58 52	78 70	56	S	Ditto	. 01	period of the season, which is to be accounted for in consequence of the clouded state of the atmosphere. A great change how-
8	67	52	70	50 43	W	Ditto	. 01	ever took place in the last week, the mornings being then foggy,
10	70 68	49	74	54	S	Brisk	. 36	and the days hot.
11	68	46	74	43	SW	Ditto	. 30	
12	65	41	74	36	NW	Little		Mean Pressure from the 3 daily observations 29.860 inches.
13	70	54	71	53	S	Ditto	- 30	- Temperature........ Ditto. $62{ }^{\text {d }}$. 33
14	72	54	77	50	SW	Brisk	. 04	-_Dew Point. Ditto $59^{\circ} .60$
15	70	50	77	46	S	Ditto		——Degree of Dryness....Ditto..... $2^{\circ} .73$
16	74	58	80	52	S	Little		__ Degree of Moisture...Ditto..... . 910
17	75	56	80	53	W	Ditto		- Force of Vapour Ditto..... . 507 inch.
18	76	56	81	53	SW	Ditto		Least observed degree of Moisture......$^{.520}$
19	77	47	82	42	SW	Ditto		Maximum Temperature in the Shade.... $81{ }^{\circ}$.
20	80	51	85	48	W	Brisk		Minimum Temperature in ditto....... 41°.
21	72	48	85	42	S	Little		Maximum Temperature in the Sun 102°.
22	68	54	85	52		Brisk	- 5^{8}	Minimum of Terrestrial Radiation 36°.
23	72	44	85	39	W	Little	. 01	Mean Temperature of External Air $62^{\circ} \cdot 4^{8}$
24	67	45	71	40	N	Ditto	$\cdot 13$	
25	67	60	70	56	SW	Ditto	.07	Winds.
26	79	62	83	60		Ditto		North 2 days N. East..... o days
27 28	81	51 52	86	48 48	W	Ditto		North 2 days N. East.... o days South 7 .. S. East. . .
29	81	51	101	50	SW	Ditto		East....... 0 . . N. West 2 ..
30	80	67	102	64	S	Ditto		West...... 8 . . S. West..... 12
31	74	45	95	41	NW	Ditto	. 02	
	72.03	52.93	79.61	49.84			2.69	Amount of Rain 2.69 inches.

SEPTEMBER.

Morning.							Noon.					Night.				
1841.		Barom.	Hyg	neter		Weather.	Barum.		mete		Weather.	Barom.		romet		Weather.
		30.076	57	52	5	Cloudy \& Fine	29.991	66	50	16	Very Fine	30.092	47	47	-	Clear
		29.843	55	55	-	Slight Fog	-. 757	69	62	7	Ditto	29.752	51	51	-	Do. \& mild
		-691		62	-	Very Fine	-.618	72	72	-	Showery	$-.439$	60	60	-	Rain
		. 444	51	51	-	Rain	-. 622	49	49	-	Stormy \& wet	$-.775$	44	44	-	Cloudy \& Cold
		-. 823	53	46	7	Cloudy \& fine	-. 785	53	53	-	Rain	-. 753	41	41	-	Foggy \& Do.
		-. 721	45	45	-	Dense Fog	$-.704$	60	50	10	Slight haze	-. 725	44	44	-	Ditto
		-. 734	55	55	-	Foggy	-. 670	56	56		Rain	-. 582	55	55	-	Cloudy
© W ${ }_{\text {W }}$		-.717	59	59	-	Fine	-. 798	68	66	2	Fine	-.951	54	54	-	Ditto
F.	10	29.985	58	58	-	Hazy	-.980	67	66	1	Overcast\&Do.	-.959	60	58	2	Do. and Fine
S.	11	30.052	54	54	-	Ditto	-.999	70	68	2	Very Fine	30.002	56	36		Clear \& Fine
S.	12	29.923	66	65	-	Very Fine	29.598	78	68	14	Ditto	29.976 -.820	62	62 61	-	Ditto Ditto Ditto
M.	13	-. 843	65	65	-	Slight haze	-.838	78	73	5	Hot	-.815	63	63	-	Ditto
- W	14	-. 803	64	62	2	Dry haze	-. 589	78	70	8	Ditto	$-.763$	64	64	-	Cloudy
		-. 886	63	63	-	Very Fine	-. 866	73	57	16	Very Fine	$-.847$	58	58	-	Rain
Th.		-.830	64	64	-	Ditto	-.820	66	60	6	Ditto	$-8 \% 6$	50	50	-	Clear
		-. 967	52	52	-	Clear	-954	65	50	15	Do., cloudless	-.913	47	47	-	Ditto
		-.903	49	49	-	Foggy	-. 892	68	58	10	Ditto	$-.897$	49	49	-	Ditto
	9	$-.996$	52	52	-	Ditro	-. 972	68	61	7	Ditio	30.037	59	59	-	Overcast
${ }^{\mathrm{T}} \mathrm{T}$.	21	30.109	62 60	62	-	Hazy \& mild	30.096	70	65	5	Dry Haze	-. 056	60	00	-	Ditto
${ }^{\text {D }}$ W		29.969 -.619	60	60		Hazy	29.849	66	65		Ditto	29.700	55	55	-	Clear and fine
		-.617	56	56	-	Ditto	-. 627	70	62	8	Very Fine	-.613	56	56	-	Cloudy
		-. 526	57	57		Cloudy	-.602	59	59		Heavy Rain	-. 578	51	51	-	Do. and Rain
S. 2		-. 398	55	53	-	Heavy showers	-. 435	62	62		Cloudy	-. 480	53	53	-	Rain
S. 2 S. 26	M.	-. 447	56	56		Cloudy	-.422	60	60		Ditto	-. 481	54	54	-	Overcast \& mild
		-.471	55	55	-	Overcast	-. 567	68	65	3	Fine	-. 512	53	53		Stormy with rain
		-.328	60	60		Rain	-. 310	64		-	Rain	$-.381$	65	65	-	Cloudy boisterous
	30	-. 1.177	59 58	59 58		Slight Rain	$-.267$	63	60	3	Boisterous	200	55	55	-	Clear \& Fine
		. 77	5		-	Slight Rain	-. 172	62			Do. with Rain	-.413	52	52	-	Ditto
29.73657 .3656 .860 .50							29.711	. 96	. 33	. 63		29.728	4.46	$4 \cdot 40$	0.06	

SEPTEMBER.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pis.	
1	72	36	90	32	S	Little		
2	73	48	91	42		Brisk		This month was warmer than usual and more moist. The
3	72	50	89	49	SW	Little	. 48	mean temperature was upwards of 2° above the average; and
4	55	41	90	39	W	Strong	. 32	the amount of rain was nearly an inch excess. The barome-
5	${ }_{6}^{56}$	36 37	62 72	31 36	${ }_{\text {E }}^{\text {E }}$	Little	. 04	ter was low throughout. During the first three weeks there
7	62	49	65	46		Ditto	.17	were however intervals of dry weather, favourable for the process of ripening ; but from the zist to the end of the month there
8	78	51	88	47	SW	Ditto	. 17	was not one wholly dry day. Upwards of $2 \frac{1}{2}$ inches of rain fell
9	68	56	72	54	S	Ditto		in the last 10 days. The 27th was stormy with heavy rain and
10	74 78 78	55	92 93	53	SW	Ditto		much lightning at night. The 28th and 29 th were boisterous.
12	84	56	$\begin{array}{r}93 \\ 104 \\ \hline\end{array}$	52 54	SE	Ditto		
13	79	59	98 98	54 56	E	Ditto		Mean Pressure from the 3 daily observations 29.725 inches.
14	78	55	96	50	SE	Ditto		三- Dew Perature Ditto $55^{59} .26$
15 16	66	55	97	52	S	Brisk	. 06	
17	71 69	41	9	36 36	w	Little	. 01	- - Degree of Moisture . . Ditto 934
18	72	40	90	33	S	Ditto		Least Force of Vapour Ditto 468
19 20	74	54	94	51	E	Ditto		Maximum Temperature in the Shade $84^{\circ} 0^{\circ}{ }^{\circ}$
20 21	71	60	89	58	SE	Ditto		Minimum Temperature in ditto $36^{0^{\circ}}$
21 22	70 70	56	87 90	54 50	E	Brisk Ditto	.10 .30	Maximum Temperature in the Sun 104°.
23	66	52 49	70	50 46		Ditto	. 30	Minimum of Terrestrial Radiation 31°.
24	ϵ_{4}	50	69	46	sw	Ditto	. 25	Mean Temperature of External Air $59^{\circ} .44$
25 26	65 64 6	50	77 69	48	s	Ditto	- 30	
27	67	54	83	48 52	W	Ditto	$\begin{array}{r}.27 \\ . \\ \hline\end{array}$	North...... o days ${ }^{\text {Wrinds. }}$ N. East days
28	64	56	65	53	S	Little	. 15	
29	65	54	79	50		Strong	. 35	East........4 4 .. N. West.....
30	65	44	66	40	SW	Ditto	11	West 3 .. ${ }^{\text {a }}$ S. West 6
	68.83	49.66	83.56	$46 \cdot 46$			$3 \cdot 71$	Amount of Rain 30 days.

OCTOBER.

OCTOBER.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	64	43	73	40	N	Little	. 20	This was an exceedingly wet month the amount of rain being
2	63	42	72	37	W	Ditto		upward of $4 \frac{1}{2}$ inches. There were only 4 days on which rain
3	63	51	79	49	NW	Ditto	.13	did not fall. The barometer was remarkably low on the 6th,
4	61	49	79	47	NE	Ditto	. 36	7 th and 24th; and its average height was lower than in any
5	62	43	59 68	43	$\underset{\text { S }}{\text { S }}$	Brisk	.22	month during the preceding 15 years at least. On the 18 th
6 7	61 61	41	70	37	SW	Ditto	. 04	the tide at Chiswick rose higher than it has done since the 28th
8	57	45	68	40		Ditto	. 03	December, 1821. The mean temperature was about a degree below the average. Frost at night occurred only twice; that
9	57	42	66	39	W	Little	.03	on the 21st was such as to destroy the Dahlia flowers. The
10	59	50	64	47	S	Ditto	.21	ground was so deluged as to be rendered totally unfit for being
11	63	45	68	43	SW	Brisk	. 34	properly worked; and for most garden operations the weather
12	57	42	58	40	W	Ditto	.24	was very unfavourable.
13	58	50	64	48	NW	Ditto	. 04	
14	64	53	68	50	SW	Ditto	. 02	Mean Pressure from the 3 daily observations 29.538 inches
15	60	41	75	37	NW	Brisk	. 50	- Temperature Vitto $49^{\circ} .98$
16	58	42	58	39	W	Ditto	. 04	- Dew Point Ditto $49^{\circ} .55$
17	63	48	64	47	-	Strong	. 01	- Degree of Dryness ... Ditto $1^{\circ} \cdot 43$
18	58	43	60	41	-	Brisk	. 42	- Degree of Moisture . . . Ditto 970
19	51	31	60	29	NW	Ditto		_- Force of Vapour Ditto 355 inch.
20	56	37	60	33	SW	Ditto	. 04	Least observed degree of Moisture $64^{.581}$
21	50	26	64	22	W	Little		Maximum Temperature in the Shade . . . $64^{\circ}{ }^{\circ}$
22	57	38	60	33	SE	Ditto	. 01	Minimum Temperature in ditto 266°.
23	57	45	59	42	S	Brisk	.21	Maximum Temperature in the Sun 79°.
24	56	31	59	27	SW	Ditto		Minimum of Terrestrial Radiation Mean Temperature of External Air
25	54	35	56	29	SW	Little	.01	Mean Temperature of External Air $49^{\circ} .86$
26	51	42	52	41	NE	Ditto	.11	Winds.
27	49	45	49	45	-	Brisk	-92	North. 1 days. ${ }^{\text {N }}$ N. East. 6 days.
28	48	43	48	40	-	Ditto	. 10	South...... 3 .. S. East 2 ..
29	50	45	50	44		Ditto	. 09	East........ . $0 .$. N. West 4 . ..
30	49	45	50	45		Ditto Ditto	. 06	
31	53	44	53	44	SE	Ditto	. 19	
	57.09	42.64	62.35	39.96			4.61	

NOVEMBER.

NOVEMBER.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sur.	Rad.	Direction.	Force.	In. Pts.	
'	52	45	60	44	W	Little	. 10	The weather was hazy up to the 1oth, but with little rain From this date to the end of the month there were only four dry
2	55	37	65	35	NE	Ditto		From this date to the end of the month there were onty four dry days, the amount of rain being nearly an inch higher than usual.
3	55	36	65	34	E	Ditto		The mean temperature was about a degree above the average.
4	48	40	49	36		Ditto		Westerly winds were prevalent. The 16th was clear and cold
5	50	44	50	41	SE	Ditto		with severe frost at night. The 14 th and 18 th were stormy with
	58	35	72	31		Ditto		rain and sleet. Much rain fell on the 28th and 29th; the 30th
7	53	37	69	33	SW	Ditto	. 01	was boisterous, the barometer at the same time falling very low.
9	50	45	52	43		Brisk		Many of the grounds adjoining the Thames were flooded to an musual extent in consequence of the state of the weather on
10	53	44	59	41	w	Ditto		these days and the previously saturated condition of the earth.
11	55	35	60	33		Little	$\cdot 40$	
12	63	32	66	29	-	Brisk	. 06	Mean Pressure from the 3 daily observations 29.746 inches
13	48	34	70	30		Ditto	.27	- Temperature Ditto. $43^{\circ} .93$
14	41	23	70	18	NW	Strong	. 04	- Dew Point........... Ditto...... $43^{\circ} .02$
15	37 35	25 15	39 50	22 10	SE	Little	. 04	——Degree of Dryness......Ditto....... ${ }^{\circ .91}$
17	39	32	41	29	SE	Ditto	12	- Force of Vapour. Ditto...... . 280 inch.
18	42	25	44	20	NE	Ditto	. 12	Least observed degree of Moisture. ${ }^{.594}$
19	47	27	46	24	SE	Ditto	.24	Maximum Temperature in the Shade...... 633°.
20	52	40	52	38	S	Ditto	. 18	Minimum Temperature in ditto.. 15°.
21	55	51	54	49		Strong	$\cdot 30$	Maximum Temperature in the Sun. $73^{\circ}{ }^{\circ}$.
22	58	31	62	26	SW	Brisk	.21	
23	47	26	52	24	SW	Ditto		Mean Temperature of External Air...... $4^{42^{\circ} .60}$
24	45	27	${ }_{5}^{52}$	24 20		Little		Winds.
25 26 26	44 47	23 37	62 48	20 35	E	Ditto	. 02	North........ 0 days N. East...... 2 days
27	51	42	51	40	SW	Ditto	.11	South 5 .. S. East.......3 ..
28	54	43	59	42		Brisk	. 60	East 3 .. ${ }^{\text {W. West } 3}$
29	58	49	60	47		Strong	. 54	
30	54	40	55	37		Ditto	. 05	days.
	49.90	35.30	56.90	32.43			3.41	Amount of Rain 3 3.41 inches.

DECEMBER.

DECEMBER.

'Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	54	43	61	41	SE	Little	. 08	
2	53	46	54	44	S	Ditto	. 12	the 2 ist it was generally frosty at night, and again wet every day
3	54	43	55	41	SW	Brisk	. 17	to the 29th. The mean temperature was 1° above the average.
4	49	40	50	37		Ditto	.13	The amount of rain was half an inch in excess. The mean height
5	50	37	56	33	W ${ }_{\text {W }}$	Little	. 14	of the barometer, as in every preceding month of the year, was
6	52	35	55	32 44	W	Brisk Little	.30 .15	below the average. Except in very few instances the air was found
8	54	47 33	55 58	44 28	W	Brisk	. 01	to be constantly saturated with moisture. West and SW. Winds
9	44	38	53	37	W	Little	.15	were prevalent. This has been the wettest season of any since 1826 at least, the
10	55	36	56	34	SW	Strong	. 07	time when these Journals were commenced.
11	47	37	48	33	W	Brisk	. 09	
12	52	47	52	47	SW	Ditto	.17	
13	52	40	52	38		Little	. 08	Mean Pressure from the 3 daily observations 29.679 inches.
14	42	27	43	22	N S	Brisk Ditto		
15	50 49	37	52 55	35 25	W	Ditto	. 10	- Dew Point Ditto....... Ditto. $_{0^{\circ} .43}$
17	39	17	43	12	,	Ditto		- Degree of Moisture Ditto. 984
18	35	16	36	9	NE	Ditto		- Force of Vapour....... Ditto...... . 255 inch.
19	37	27	37	22	-	Brisk		Least observed degree of Moisture 828
20	39	20	52	16	W	Little		Maximum Temperature in the Shade..... $55^{\circ} 0^{\circ}$
21	35	26	49	22	W	Brisk		Minimum Temperature in ditto......... $16^{\circ}{ }^{\circ}$
22	37	33	40	31		Ditto	. 02	Maximum Temperature in the Sun....... $61^{\circ}{ }^{\circ}$
23	46	27	48	24	SW	Little	. 06	Minimum of Terrestrial Radiation........ 9°.
24	50	42	50	41	-	Brisk	. 12	Mean Temperature of External Air...... $39^{\circ} \cdot 59$
25	49	22	52	19	-	Ditto	. 06	
26	39	24	42	23		Ditto	. 01	Winds.
27	36	25	37	22	W	Little	. 02	North.......... I days ${ }^{\text {N. East } 3 \text { days }}$
28	44	37	46	35	NW	Ditto	. 02	South 2 .. S. East 3 3 .
29	45	39	45	27	SE	Ditto	. 05	
31	40	33	41	31		Ditto		
	45.80	$33 \cdot 38$	48.87	30.07			2.12	Amount of Rain 2.12 inch.

[26]

Monthly Mean Pressure, Temperature, and Dew Point, \&c. of 1841 ; deduced from the Observations recorded in the preceding Journal.

1841 Months.	Pressure.								Temperature.											
	Max.		Med.	Range of Barom.	Mean at				In the Shade.			Mean at			Mean of the three Observ ${ }^{8}$	In Sun's Rays.		Terrestrial Radiation.		
					Murn.	Nuon.	Night.		Max.	Min.	Med.	Morn.	Noon.	Night.		Max.	Min.	Min.	Max.	
Jan.	30.5052	28.864	. 757	1.641	29.77	. 773	9.770	29.772	53	6	34.25	$33 \cdot 13$	8.58	33.87	35.19	56	22	44	1	32.73
Feb.	30.346	29.071	2.770	1.275	29.785	29.772	29.748	29.768	56	14	36.60	$35 \cdot 64$	40.39	$35 \cdot 64$	37.22	62	27	43	8	36.65
March	30.512	29.525	29.912	0.987	29.903	29.895	29.886	29.895	67	27	46.35	$43 \cdot 48$	54.74		46.89	74	42	47	22	6.60
April	30.171	29.371	29.838	0.800	29.8	29.834	29.842	29.839	76	26	47.09	$47 \cdot 23$	55.26		48.90	81	26	51	20	. 23
May .	30.364		9.860	1.111	29.8	29.851	29.869	29.858	82	36	5		67.19		60.06	96	62	59	32	. 50
June.	30.35	2	922	0.863	29.93	29.919	29.917	29.923	80	36	56.			52.13	4	95	56	53	28	. 90
July	30.133	29	9.820	0.867	29.8	81	816	29.819	79	42		60.99	66	55.16	60.98	84	65	59	36	60.82
Aug.	30.24	29.38	29.859	0.859	29.8	. 86	29.859	29.860	81	41		6	69.	5	62.33	102	70	64	36	72
Sept.	30.10	29.16	9.724	0.942	29.7	9.71	29.728	29.725	84	36	59	$57 \cdot 3$	65.	54.46	59.26	104	65	58	31	01
Oct.	30	28.808	29.537	1.354	29.531	. 54	29.545	29.538	64	26				48.38	49.98	79	48	50	22	. 15
Nov.	30.391	28.8	29.750	1.546	29.756	29.729			63		42.	41.9		42.06	43.93	73	39	49	10	49.66
Dec.	30.21	28.94	29.679	1.263	29.707	29.640	129.690	29.679	55	16	42.60 $39 \cdot 59$	39.25	43.71	39.93	43.93 40.96	61	36	47	9	39.47
Ave	30.29	2	85	1.12				29.785	70.			48.97		46	50.36	80	. 5	2.00	. 0	29

$18_{41} .$ Month.	Hygrometer indicating Dew Point.								Scale of the Winds.									Rain.
	Mean Dew Poiut at			Mean Dew Point.	Mean Force of Vapour.	Mean degree of Dryness.	Mean degree of Moisture.	Lenst degree of Moisture.	N.	N. E.	E.	S.E.	S.	S. W.	W.	N.W.	Days.	In. Pts.
	Morn.	Noon.	Night.															
Jan. .	33.00	37.16	33.58	34.58			976	708		2		3	1	6	7	5	31	2.60
Feb. .	34.75	37.21	35.21	35.72	$.213$	1.50	942	533	1	11	3	3	5	3	1	2	28	0.76
March	43.26	47.71	42.29	44.42	. 295	2.47	916	546	0	\bigcirc	3	1	9	13	6			1.32
April	44.90	44.03	44.03	44.32	. 294	4.58		546	0	\bigcirc	1	1	9	13	6	1	1	1.32
May				54.59	. 294	$4 \cdot 58$	847	432	1	9	1	0	2	7	5	5	30	58
		$55 \cdot 39$	53.13	. 59	. 423	5.47	821	410	1	7	3	1	5	11	2	1	31	2.16
June	53.93	55.47	51.97	53.79	. 413	4.85	842	373	4	4	-	0	5	5	7	5	30	2.45
July .	57.29	58.58	55.16	57.01	.463	3.97	872	512	1	3	-	-	5	5	7	5		56
Aug.	59.87	62.26	56.67	59.60	. 507	2.73	910	512	1	3	\bigcirc	-	2	10	10	5	31	. 56
Sept.	56.86	61.33				2.73	910	520	2	\bigcirc	\bigcirc	0	7	12	8	2	31	2.69
Oct.			. 40	57.53		1.73	934	571	\bigcirc	1	4	3	13	6	3	\bigcirc	30	3.71
	48.74	51.55	48.35	49.55	. 355	0.43	970	581	1	6	0	2	3	6	9	4	31	4.61
Nov.	41.17		41.93	43.02	. 280	0.91	966	594	\bigcirc	2	3	3	5	7	7	3	30	3.41
	38.9	43.2	39.38	40.53	. 255	0.43	984	828	1	3	0	3	2	10	10	2		2.13
Aver.	47.33	49.98	46.34	47.88	- 347	2.48	915	550										
							95	550	17	48	17	18	59	96	75	35	365	30.97

[27]

The preceding Table, as regards Temperature, and the Dew Point, is in terms of Fahrenheit's scale; the following are reductions of the same to those of the Centigrade and Reaumur's Thermometers.

Centigrade Thermometer.

1841.	Temperature.												Hygrometer indicating Dew Point.				
	In the Shade.			Mean at			Mean of the three Observa-tions tion	In Sun's Rays.		Terrestrial Radiation.		Med. ofSun and Radiation.	Mean Dew Point at			Mean Dew Point.	Mean degree of Dryness.
Months.	Max.	Min.	Med.	Morn.	Noon.	Night.		Max.	Min.	Max.	Min.		Morn.	Noon.	Night.		
Jan. .	11.66	14.44	1.25	0.62	3.65	1.03	1.77	13.33	-5.55	6.66	-18.33	0.40	0.55	2.86	0.87	1.43	
Feb. .	13.33	-10.00	2.55	2.02	4.66	2.02	2.90	16.66	-2.77	6.11	-13.33	2.38	1.52	2.89	1.78	2.06	0.83
March	19.44	-2.77	7.97	6.37	12.63	5.80	8.27	23.33	5.55	8.33	-5.55	8.16	6.25	8.72	$5 \cdot 71$	6.90	1.37
April	24.44	-3.33	8.38	8.46	12.92	6.77	9.38	27.22	-3.33	10.55	-6.66	9.01	7.16	6.68	6.68	6.84	2.54 3.03
May	27.77	2.22	14.49	15.41	19.55	11.81	15.58	35.55	16.66	15.00	0.00	16.38	12.92	12.94	11.73	12.55	3.03 2.69
June.	26.66	2.22	13.46	14.75	18.46	11.18	14.80	35.00	13.33	11.66	-2.22	14.94	12.18	13.03	11.09	12.10	2.69 2.20
July .	26.11	5.55	15.16	16.04	19.33	12.86	16.09	28.88	18.33	15.00	2.22	16.01	14.05	14.76	12.86	13.89 15.33	2.20 1.51
Aug.	27.22	5.00	16.93	16.12	20.64	13.77	16.85	38.88	21.11	17.77	2.22 -0.55	18.17	15.48	16.81 16.28	13.70 12.44	15.33 14.18	1.51 0.23
Sept.	28.88	2.22	15.21	14.08	18.87	12.47	15.14	40.00	18.33	14.44	-0.55	18.33	13.81	16.28	12.44 9.08	14.18 9.75	0.23 0.79
Oct.	17.77	-3.33	9.92	9.64	11.23	9.10	9.98	26.11	8.88	10.00	-5.55	10.63	9.30	10.86	9.08	9.75 6.12	0.79 0.50
Nov	17.22	-9.44	5.88	$5 \cdot 50$	8.79	5.58	6.62	22.77	3.88	9.44	-12.22	9.81	5.09	7.72 6.25	$5 \cdot 51$ 4.10	6.12 4.73	
Dec.	12.77	-8.88	4.21	4.02	6.50	$4 \cdot 40$	4.97	16.11	2.22	8.33	-12.77	4.15	3.86	6.25	$4 \cdot 10$	4.73	0.23
Aver.	21.11	-2.91	9.62	$9 \cdot 42$	13.10	8.06	11.19	26.98	8.06	. 11	-6.06	10.71	8.51	9.98	7.96	8.82	1. 3^{6}

Reaumur's Thermometer.

1841.	Temperature.												Hygrometer indicating Dew Point.				
	In the shade.			Mean at ${ }^{\text { }}$			Mean of Observations.	In Sun's Rays.		Terrestrial Radiation.		Med. of Sun and Radiation.	Mean Dew Point at				Mean degree ness.
Montlus.	Max.	Min.	Med.	Morn.	Noon.	Night.		Max.	Min	Max.	Min.		Morn.	Noon.	Night.		
Jan. .	$9 \cdot 33$	11.55	1.00	0.49	2.92	0.82	1.42	10.66	-4.44	$5 \cdot 33$	-14.66	0.32	0.44	2.29	0.70	1.14	
Feb.	10.66	-8.00	2.04	1.61	3.73	1.61	2.32	13.33	-2.22	4.88	-10.66	2.06	1.16	2.32	1.42	1.65	
March.	15.55	-2.22	6.38	5.10	10.11	4.64	6.62	18.66	4.44	6.66	-4.44	6.52	5.00	6.97	4.56	5.51	1.09 2.03
April.	19.55	-2.66	6.70	6.77	10.33	$5 \cdot 41$	7.51	21.77	-2.66	9.44	-5.33	7.21	5.72 10.33	5.35 10.39	5.34 9.38	5.47 10.03	2.03 2.43
May .	22.22	1.77	11.69	12.33	15.64	9.44	12.47	28.44	13.33	12.00	0.00	13.11	10.33 9.74	10.39 10.42	9.38 8.87	10.03	2.43 2.15
June.	21.33	1.77	10.76	11.80	14.77	8.94 10.28	11.84	28.00	10.66 14.66	9.33 12.00	-1.77	11.95 12.80	9.74 11.24	10.42 11.81	8.87 10.29	11.11	2.15 1.76
July Aug.	20.88	4.44	12.12	12.84	15.46 16.52	10.28	12.87 13.48	23.11 31.11	14.66	12.00 14.22	1.77 1.77	12.80 14.54	11.24 12.39	11.81 13.44	10.29	12.26	1.21
Aug.	21.77 23.11	4.00 1.88	13.55 12.16	12.89	16.52 15.10	11.01	13.48	31.11 32.00	16.88	14.22 11.55	1.77 -0.44	14.54 14.67	12.39 11.04	13.03	9.95	11.34	0.76
Oct.	23.17 14.22	1.88	12.16 7.94	11.26 7.72	15.10	10.22 7	7.98	20.88	7.11	8.00	-4.44	8.51	$7 \cdot 44$	8.69	7.26	$7 \cdot 79$	0. 19
Nov.	13.77	-7.55	4.71	4.40	7.04	4.71	5.29	18.22	3.11	7.55	-9.77	7.84	4.07	6.17	4.41	4.88	0.40
Dec.	10.22	-7.11	3.36	3.21	5.20	3.52	3.98	12.88	1.77	6.66	-10.22	3.31	3.09	5.00	3.27	3.78	0.19
Aver.	16.88	-2.33	7-70			6.45	8.16	28. 56	6.44	8.88	-4.84	8.57	6.80	7.99	6.37	7.05	1.09

> II. On the Oxalis Deppei, and its Cultivation as a culinary plant. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.

Read December 5, 1843.

An article on the Oxalis Deppei, by Professor Morren of Liège, having appeared in "the Gardener's Chronicle," vol. I. p. 68., attention was directed to its cultivation in the Garden of the Society; the mode of culture recommended by Professor Morren being adopted in the first instance. The results of this, and of other modes subsequently tried, leave no doubt respecting the facility with which this real accession to the list of culinary vegetables can be successfully cultivated, so as to furnish an abundant supply. It was necessary that this fact should be well ascertained, because another species of the same genus, Oxalis crenata, has not realized the expectations entertained respecting it.

Oxalis Deppei was first introduced into this country from Mexico in 1827; and was named by Messrs. Loddiges in their Botanical Cabinet, No. 1500. Subsequently M. Lejeune gave it the name of Oxalis zonata, "in order to express the black bands of the leaf;" and M. Henon published some information concerning it in the year 1838.*

The uses of this Oxalis in Belgium are enumerated by Professor Morren. He states " that if cut longitudinally the root is found to have a firm transparent rind, the tissue of which resembles that of Salep; like it, it becomes white in drying, is transparent, and consists of cells enclosing a very nutritious substance. The young leaves are dressed like sorrel, in soup or as a vegetable; they have

[^0]a fresh and agreeable acid, especially in spring. The flowers are excellent in salad, alone or mixed with corn salad, endive of both kinds, red cabbage, beet-root, and even with the petals of the Dahlia, which are delicious when thus employed. When served at table, the flowers with their pink corolla, green calyx, yellow stripes and little stamens produce a very pretty effect. The roots, after having been washed and slightly peeled, are gently boiled with salt and water. They are then eaten like asparagus in the Flemish fashion, with melted butter and the yolks of eggs. They are also served up like scorzonera and endive, with white sauce. They form, in whatever way they are dressed, a tender, succulent dish, easy to digest, and agreeing with the most delicate stomach. The analogy of the root with Salep indicates that its effects should be excellent upon all constitutions."

The plant consists of a tapering, white, semi-transparent tap-root of tender substance ; furnished, chiefly at and near the lower extremity, with hair-like fibres, a few of which also proceed from the sides. The centre is generally more or less hollow, with the medullary substance adhering in variously fissured portions. The roots in this case are not however in other respects unsound. Sometimes, from rapid absorption, clefts are formed externally; but this will probably be of rare occurrence under favourable circumstances of soil and climate.

On the top of the crown, a mass of scaly bulbs appears; their scales are lined and fringed with orange-brown silky hairs. By means of these buds the plants can be easily and abundantly multiplied. The leaf-stalks are from nine inches to a foot or more in length, supporting four inversely heart-shaped leaflets; each having a dark-coloured band across its centre; these bands are somewhat curved, so that when the four leaflets are arranged in a flat equidistant manner, a tolerably perfect dark circle is formed. The flowers are of a bright rose colour, and are supported on erect scapes above the leaves.

Roots and scaly bulbs of Oxalis Deppei, natural size.

Professor Morren states that Oxalis Deppei " will not thrive in loam, still less in calcareous earth; that it always suffers in heavy land, and often will not produce its tap-roots ; but in a sandy soil, light, and mixed with decayed vegetable matter, the plant acquires a large size. The aspect in which it is grown is immaterial, although a southern exposure is to be preferred when not dry." He plants the bulbs on the 15 th of April, when he no longer fears frost, an inch deep and five inches apart, in rows which are seven inches asunder. Three or four are put into the same hole, taking care to arrange them in quincunx. The beds are kept clean and in the month of May are watered with liquid cow-dung. As has been already observed, the above mode was adopted in the Society's Garden; but it has been found that the plants do better when the bulbs are planted, singly, six inches apart, in rows a foot asunder.

The soil in the Society's Garden is not naturally well adapted for the growth of some tap-rooted vegetables; the carrot in particular may be instanced as never producing very fine roots in the usual way of cultivation. This being the case, holes are sometimes made and filled with prepared soil for this crop, in order to encourage the tap-roots to extend downwards without subdivision. A similar plan was tried with the Oxalis, and found to answer better than where the whole bed was composed of prepared soil ; and the expense was of course comparatively little.*

The bulbs were planted about the middle of April, so shallow as to admit of their being just covered; for thus they occupy a position with regard to the surface similar to that in which they are produced, and this seems indispensable if fine sorts are to be obtained. They have been observed, indeed, to spring up from a considerable depth; but in this case tap-roots were not formed.

During summer the soil must be kept moist in dry weather;

[^1]otherwise, when rain falls abundantly, the sudden accession of water to the roots occasions their splitting. The plants should be allowed to grow as long as there is no danger from frost; but previously to this occurring, they should either be taken up or protected. If protected from frost, by frames, or otherwise, the roots will continue to increase in size till November. When taken up, the roots should be divested of the numerous bulbs formed on their crowns, and then stored up for use in a cool dry place, but secure from frost. A similar situation will be proper for the bulbs; or they may be kept in dry sand till the season of planting.

Mr. Cockburn, Gardener to the Earl of Mansfield, at Caen Wood, Hampstead, grows this plant in perfection with no particular preparation of soil; merely planting the bulbs in shallow drills, a foot apart, in borders dug and manured as for other kitchen-garden crops. He also plants it by the sides of walks in the woods, as an ornamental plant.

We have in our gardens another Oxalis, apparently the O. Jacquiniana, which also produces tap-roots like those of O. Deppei ; but they are much smaller, and inferior in quality. That species is readily known by its flowers being very small and of a pale lilac colour.

III. Experiments on the Inorganic Constituents of Plants. By Edward Solly, Esq., F. R. S., F. L. S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.

(Communicated by the Chemical Committee.*)

In pursuing, under the direction of the Chemical Committee, my enquiries into the office performed by the inorganic constituents of Plants, several subjects of investigation naturally presented themselves; amongst which are the following questions. Are the quantity and nature of the inorganic matters which exist in plants certain and invariable, or do they fluctuate and vary according to circumstances? If variable, what are the causes which influence their absorption, and how may it be augmented or diminished ? and thirdly, what connexion is there between the formation of any peculiar organic substance and the absorption of particular inorganic matters from the soil? Without pretending to attempt the solution of these questions, I shall proceed to describe briefly some of the experiments, which the consideration of them led to.

In order to trace, if possible, the connexion between the growth of plants and the absorption of particular substances, or their presence in the soil, several experiments were made on different plants, which were manured with various substances and subsequently examined, both mechanically, as to their size or increased developement, and chemically, to ascertain what influence the manure had

[^2]on the absorption of inorganic, and the formation of organic, matter. The first results obtained were wholly negative, principally from the fact that too small a quantity of the various manures employed, was taken; great inconvenience was also experienced in consequence of the very unequal nature of the soil of the gardens, which led to irregular and unexpected results.

Before describing any experiments, it will be proper to say a few words respecting the nature of the soil on which they were made. The soil of the Horticultural Gardens varies a good deal both in mechanical texture, and in chemical composition. The greater part of it may be termed loamy; but its exact nature of course differs considerably according to the treatment it has received, the mode in which it has been worked, and the nature and quantity of manure which has been applied to it. Generally speaking, it is rich in organic matter, both animal and vegetable, and consequently like all soils of that description, contains a notable quantity of Salts of Ammonia. From its uncertain nature it is far more difficult to define its chemical composition, than is the case with ordinary land; the following are average results, and may be taken as expressing pretty nearly the composition of the soil of the Gardens. A fair sample, freed from stones and well dried, being subjected to mechanical analysis, was found to consist of

Small stones				640
Sand				
Finely divided earthy matter				3470
Fibrous organic matter		\ddots		5190
Finely divided and soluble organic matter				180

The sand and small stones were chiefly of a siliceous nature; the chemical composition of the dry soil was

In expressing these results, as well as in all the following analyses, I have carefully avoided the use of fractions of any kind; in all the experiments described, the numbers given are
those which would have been obtained, had 10000 or 100000 parts of each substance been analysed. The composition of a substance can be expressed as well by whole numbers, as by decimals; whilst the use of the latter frequently leads to confusion.

The first large experiment was on Savoys. A square of young savoys was taken, the plants in which were as nearly as possible uniform in size, and growing under the same circumstances. They were manured with various saline and inorganic substances, applied as top dressings ; the quantity used increasing gradually from $\mathbf{1 0 0}$ to $\mathbf{2 0 0 0}$ grains to each plant. The substances taken were, Nitrate of Potash, Alum, Nitrate of Soda, Muriate of Ammonia, Sulphur, Sulphate of Iron, Phosphate of Soda, and Sulphate of Magnesia ; a number of plants being left without any manure, for the sake of comparison. The effects produced by these various substances, on the appearance of the plants were much less than had been anticipated; very slight differences could be observed and those differences which were apparent, were so irregular and uncertain, that it was hardly possible to say how much could fairly be attributed to the manures, and how much to local circumstances. A number of the plants were, however, examined chemically, but the result of their examination proved as irregular as the effect produced by the manures. The following table exhibits the proportion of water, organic matter, inorganic substances, and azotised matter which they contained.

Young white leaves or heart of Savoy; Composition of 10000 parts.

Manure used.	Water.	Organic matter.	Inorganic matter.	Inorg. matt. in 10000 parts dry.	Albumen in 10000 parts fresh.
Nitrate of Potash	9152	776	72	849	14
Alum	9360	571	69	1093	36
Ditto	9563	389	48	1119	13
Nitrate of Soda	9159	784	57	686	34
Muriate of Ammonia	9352	580	68	1057	26
Sulphur	9282	652	66	922	21
Ditto	9305	627	68	985	27
Ditto	9246	689	65	871	23
Sulphate of Iron	9307	630	63	913	16
Phosphate of Soda.	9492	446	62	1247	13
Sulphate of Magnesia	9498	446	56	1121	16
No manure	9260	660	80	1006	24
Ditto	9066	860	74	789	4

Green or outer leaves of Savoy; as before.

Manure used.	Water.	Organic matter.	Inorganic matter.	Inorg. matt. in 10000 parts dry.	Albumen in 10000 parts fresh.
Nitrate of Potash	8666	977	157	1392	48
Alum	8902	943	155	1430	51
Ditto	8625	1077	298	2174	24
Nitrate of Soda	8995	868	137	1371	58
Muriate of Ammonia	9272	602	116	1600	31
Sulphur	9038	801	161	1674	52
Ditto	8679	1214	107	813	31
Ditto	8926	929	145	1356	24
Sulphate of Iron	9137	742	121	1408	-
Ditto . .	8915	953	132	1223	35
Phosphate of Soda	9012	840	148	1502	42
Sulphate of Magnesia	9094	723	183	2027	34
No manure	9101	745	154	1619	54
Ditto	9038	828	134	1394	64

It is evident that no definite conclusions can be drawn from this series of experiments. All the plants included in the foregoing tables were manured with 1800 or 2000 grains of the substance applied, but as these manures were merely spread on the surface of the soil, and were much protected from rain by the leaves of the young plants, a portion remained on the surface of the soil to the last ; this in part accounts for the very trifling effect produced.

At the same time that these experiments were tried, some others were made with plants less able to bear large quantities of saline manures than savoys and most glaucous leaved plants are. A number of plants of common broad leaved Tobacco were manured with Nitrate of Soda, the quantity employed increasing from 3 oz . up to 2 lbs., to each plant. Tobacco was selected for experiment because it is one of those plants which most commonly contain salts of Nitric acid; it was hence reasonable to expect that a top dressing of the Nitrate of Soda would produce a beneficial effect and also that a comparatively large quantity of that salt might be applied without fear of injury. Those plants which had received $4,8,12$, and 16 oz . respectively of Nitrate of Soda were all rendered more vigorous in their growth and looked greener and far more flourishing than those not so manured ; their luxuriance being nearly in proportion to the quantity of the salt they
had received : that to which 16 oz . had been applied being decidedly the best in the row. Beyond one pound no benefit appeared to be produced by increased doses of the Nitrate, and a plant which received 2 lbs. was evidently injured; it soon began to look unhealthy ; the leaves became yellow and sickly, being covered with yellow and brown spots. The best plant, that which had received 1 lb . of the Nitrate, was then compared with another which had grown under precisely the same circumstances but had received no manure at all; their relative composition was

	Water.	Organic matter.	Inorganic matter.	Inorganic in 10000 pts. dry.
Common Tobacco leaves	8440	1330	230	1474
Nitrated Tobacco leaves	8320	1420	260	1547

The proportion of azotised matter in the two plants was for each 10000 parts

	Freeh plant.	Dry plant.
Common Tobacco	134	858
Nitrated Tobacco	221	1315

In the examination of these plants a very remarkable fact was observed, which at first was supposed to be an error of observation, until it was confirmed by repetitions, and subsequent experiments. The plants of Tobacco which had received no manure contained a considerable quantity of Nitric acid; those which had been manured with Nitrate of Soda, however, contained no appreciable quantity.

A corresponding experiment was made with Lettuces, another plant commonly found to contain Nitrates ; but the results obtained in this case were less marked, because the plants had all been previously manured with rotten dung in the usual manner. Some of the plants were manured with the Nitrate, and others with the Carbonate of Soda; the latter were very nearly as healthy in appearance, as those which had merely received dung; in fact there was very little visible effect produced by either salt. On examination they were found to contain

	Water.	Organic matter.	Inorganic matter.	Imorganic in I6000 pta. dry.
Kotten Dung alone	9350	562	88	1357
Ditto and Nitrate of Soda	9387	535	78	1248
Ditto and Carbonate of Soda	9375	544	81	1292

Carbonate of Soda was employed, in order to compare the effect
produced by the Nitrate of Soda on the formation of azotised matter with that produced by the use of another salt of the same alkali, not containing nitrogen. The following was the result.

| | Albumen fresh plant. | |
| :--- | :---: | :---: |\quad Albumen dry plant.

In the experiment with Tobacco just described, a considerable effect was produced by the Nitrate of Soda; a given quantity of leaves contained less water, and more organic and inorganic matter, than those which had not been manured with the nitrate; and it is evident that the nitrated plant had absorbed a larger quantity of inorganic matter, in proportion to its weight, than the other had, because on comparison it appears that the dry leaves of the former contained about a twentieth part more inorganic matter than the latter. In the case of the lettuces a very different effect was produced. In this, the plants manured with Carbonate and Nitrate of Soda, grew more rapidly than those manured with Rotten Dung alone; hence, they contained a larger proportion of water, and a smaller quantity of inorganic matter. This more vigorous growth was apparently not connected with any increased absorption of inorganic substances, because in both cases where the saline manure was applied, the dry plant contained nearly a twentieth less inorganic matter than that only manured with Dung.

A fourth experiment was made on a far more extended scale, with Potatoes. A number of tubers of the Bread-fruit potato were planted, each in the centre of a square yard of ground, and manured with various saline and other manures. The tubers taken, were as nearly as possible alike; they were planted on the 28th of April, the various manures being applied at the time the tubers were set. The stems or haulm were gathered, and the tubers taken up in October. The tubers were planted eight inches below the surface of the ground, each being placed in the centre of a square yard, the surface soil of which was removed to the depth of two inches; the manures were then spread, and the two inches of
soil replaced; the plants were subsequently earthed up in the ordinary manner. The nature of the manures applied, the quantity of produce obtained from each plant, and the composition of the tubers, \&c. are as follows : -

No. 1. Not manured at all, the produce was, large tubers 7 lbs . 3 oz ., small tubers 13 oz ., total 8 lbs . The dry straw or haulm weighed 3270 grains. The tubers and haulm contained

No. 2. Manured with Rotten Dung at the rate of five tons' per acre. The produce was, large tubers 11 lbs .2 oz ., small tubers 6 oz ., total 11 lbs .8 oz . The dry haulm weighed 2158 grains. The tubers and haulm contained

No. 3. Manured with Gypsum, at the rate of 2 cwt. 96 lbs. per acre. The produce was, large tubers 8 lbs., small tubers 4 oz , total 8 lbs. 4 oz . The dry haulm weighed 1013 grains. The tubers and haulm contained

Tubers and Haulm.				Tubers.		
	Water.	Organic matter.	Inorganic matter.	Starch		1079
Fresh Tubers	7722	2159	119	Starchy fibre		543
Dry Tubers		9458	542	Albumen		112
Dry Haulm	-	8609	1391	Mucilage, Resin	matter, \&c.	544
				Water	.	7722-10000

No 4. Manured with Nitrate of Soda at the rate of 1 cwt . 48 lbs . per acre. The produce was, large tubers $8 \mathrm{lbs} .11 \mathrm{oz} .$, small tubers 5 oz ., total 9 lbs. The dry haulm weighed 1869 grains. The tubers and haulm contained

No. 5. Manured with Salt Cake (Sulphate of Soda) at the rate vol iil. 2nd. series.
of 1 cwt. 48 lbs . per acre. The produce was, large tubers 13 lbs . $14 \mathrm{oz} .$, small tubers $1 \mathrm{lb} .2 \mathrm{oz} .$, total 15 lbs . The dry haulm weighed 3301 grains. The tubers and haulm contained

No. 6. Manured with Epsom Salts (Sulphate of Magnesia) at the rate of 1 cwt. 48 lbs . per acre. The produce was, large tubers 9 lbs .15 oz ., small tubers 8 oz ., total 10 lbs .7 oz . The dry haulm weighed 2099 grains. The tubers and haulm contained

No. 7. Manured with Nitrate of Soda at the rate of 2 cwt 96 lbs. per acre. The produce was, large tubers 6 lbs .12 oz ., small tubers 13 oz ., total 7 lbs .9 oz . The dry haulm weighed 1652 grains. The tubers and haulm contained

No. 8, Manured with Salt Cake at the rate of 2 cwt. 96 lbs. per acre. The produce was, large tubers 17 lbs .1 oz ., small tubers none, total 17 lbs .1 oz . The dry haulm weighed 2196 grains. The tubers and haulm contained

No. 9. Manured with Epsom Salts at the rate of 2 cwt. 96 lbs. per acre. The produce was, large tubers 9 lbs .5 oz ., small tubers 7 oz., total 9 lbs .12 oz . The dry haulm weighed 2006 grains. The tubers and haulm contained

No. 10. Manured with Sal Ammoniac (Muriate of Ammonia) at the rate of 1 cwt .48 lbs . per acre. The produce was, large tubers 10 lbs .13 oz. , small tubers 8 oz ., total 11 lbs .5 oz . The dry haulm weighed 2619 grains. The tubers and haulm contained

No. 11. Manured with Green Vitriol (Sulphate of Iron) at the rate of 1 cwt .48 lbs . per acre. The produce was, large tubers 7 lbs ., small 13 oz ., total 7 lbs .13 oz . The dry haulm weighed 1367 grains. The tubers and haulm contained

No. 12. Manured with a mixture of Nitrate of Soda and Salt Cake, containing equal parts of both, at the rate of 1 cwt .48 lbs . The produce was, large tubers 9 lbs .7 oz ., small tubers 6 oz ., total 9 lbs. 13 oz . The dry haulm weighed 2073 grains. The tubers and haulm contained

No. 13. Manured with Nitrate of Soda and Salt Cake, mixed in equal quantities, at the rate of 2 cwt .96 lbs . per acre. The produce was, large tubers 8 lbs .14 oz ., small tubers 5 oz ., total 9 lbs . 3 oz . The dry haulm weighed 1675 grains. The tubers and haulm contained

No. 14. Manured with putrid Urine at the rate of 800 gallons per acre. The produce was, large tubers 5 lbs. 6 oz ., small tubers 3 oz ., total 5 lbs. 9 oz . The dry haulm weighed 1324 grains. The tubers and haulm contained

No. 15. Manured with putrid Urine, fixed with Sulphate of Iron, at the rate of 800 gallons per acre. The produce was, large tubers 8 lbs. 3 oz ., small tubers 2 lbs .2 oz., total 10 lbs .5 oz . The dry haulm weighed 1995 grains. The tubers and haulm contained

No. 16. Manured with Daniell's Bristol Manure (the old sort) at the rate of 20 bushels per acre. The produce was, large tubers 9 lbs .15 oz ., small tubers 1 lb ., total 10 lbs .15 oz . The dry haulm weighed 2619 grains. The tubers and haulm contained

	Tubers and Haulm.		
	Water.	Organic matter.	Inorganic matter.
Fresh Tubers	$\mathbf{7 7 5 5}$	2151	94
Dry Tubers	-	9580	420
Dry Haulm	-	8912	1088

	Tubers.	
Starch	\bullet -	1155
Starehy fibre	- -	689
Albumen		- 97
Mucilage, Resin	matter, \&c.	304
Water		7755

No. 17. Manured with Daniell's Bristol Manure (new sort) at the rate of 20 bushels per acre. The produce was, large tubers 11 lbs .2 oz ., small tubers 7 oz ., total 11 lbs .9 oz . The dry haulm weighed 2515 grains. The tubers and haulm contained

	Tubers and Haulm.		
	Water.	Organic matter. Inorganic matter.	
Fresh Tubers	7725	2161	114
Dry Tubers		9495	505
Dry Haulm		9030	970

Tubers.	
Starch	1156
Starchy fibre	629
Albumen	107
Mucilage, Resin, Fatty matter, \&c.	383
Water	7725

No. 18. Manured with Guano at the rate of 16 cwt. 27 lbs. per acre. The produce was, large tubers 9 lbs .6 oz ., small tubers 13 oz ., total 10 lbs .3 oz . The dry haulm weighed 1802 grains. The tubers and haulm contained

No. 19. Manured with Bone Dust at the rate of 76 bushels per acre. The produce was, large tubers 10 lbs .5 oz ., small tubers 1 lb .5 oz , total 11 lbs .10 oz . The dry haulm weighed 2084 grains. The tubers and haulm contained

Tubers and Haulm.				Tubers.			
	Water.	Organic matter.	Inorganic matter.	Starch	-	*	1093
Fresh Tubers	7661	2225	114	Starchy fibre	。	- .	680
Dry Tubers		9510	490	Albumen			92
Dry Haulm	-	8887	1113	Mucilage, Res Water	Fat	matter, \&c.	474 7661

No. 20. Manured with Nightsoil at the rate of 5 tons per acre. The produce was, large tubers 10 lbs .14 oz ., small tubers 5 oz ., total, 11 lbs. 3 oz . The dry haulm weighed 2456 grains. The tubers and haulm contained

No. 21. Manured with Nightsoil disinfected with Bleachingpowder (Chloride of Lime) at the rate of 5 tons per acre. The produce was, large tubers 7 lbs .3 oz ., small tubers 2 oz ., total, 7 lbs. 5 oz . The dry haulm weighed 1152 grains. The tubers and haulm contained

No. 22. Manured with Nightsoil disinfected with Bleachingpowder and Sulphuric Acid at the rate of 5 tons per acre. The produce was, large tubers 9 lbs .5 oz ., small 15 oz ., total, 10 lbs .

4 oz . The dry haulm weighed 1968 grains. The tubers and haulm contained

No. 23. Manured with Nightsoil disinfected with Bleachingpowder and Sulphate of Iron at the rate of 5 tons per acre. The produce was, large tubers $7 \mathrm{lbs} .2 \mathrm{oz} .$, small tubers 13 oz , total, 7 lbs. 15 oz . The dry haulm weighed 1412 grains. The tubers and haulm contained

No. 24. Manured with Nightsoil disinfected with Sulphuric Acid, at the rate of 5 tons per acre. The produce was, large tubers 9 lbs. 14 oz ., small tubers none, total 9 lbs. 14 oz . The dry haulm weighed 2029 grains. The tubers and haulm contained

No. 25. Manured with Sulphur at the rate of 2 cwt. 78 lbs. per acre. The produce was, large tubers 9 lbs. 1 oz ., small tubers, none, total 9 lbs. 1 oz . The dry haulm weighed 2510 grains. The tubers and haulm contained

	Tubers and Haulm.			Tubers.				
	Water.	Organic matter.	Inorganic matter.	Starch		- -		1067
Fresh Tubers	7795	2116	99	Starchy fibre		- .		619
Dry Tubers		9550	450	Albumen		*		95
Dry Haulm		8797	1203	Mucilage, Resin	(1) Fat	matter, \&ce.		424
				Water .	.	.		7795-10000

No. 26. Manured with the Refuse Ammoniacal Water of the Gas Works, at the rate of 800 gallons per acre. The produce was, large tubers 5 lbs. 6 oz ., small tubers 12 oz ., total 6 lbs .2 oz .

The dry haulm weighed 1377 grains. The tubers and haulm contained

	Tubers and Haulm.			Tubers.				
	Water.	Organic matter.	Inorganic matter.	Starch	-	-		1130
Fresh Tubers	7745	2133	122	Starchy fibre	-	- ${ }^{\text {c }}$		620
Dry Tubers	-	9455	545	Albumen		-	.	117
Dry Haulm		8854	1146	Mucilage, Res Water	n, Fatty	matter, \&c.		$\begin{aligned} & 388 \\ & 7745-10000 \end{aligned}$

No. 27. Manured with Gas Water fixed with Sulphuric Acid, at the rate of 800 gallons per acre. The produce was, large tubers 8 lbs. 12 oz ., small tubers 11 oz ., total, 9 lbs .7 oz . The dry haulm weighed 2029 grains. The tubers and haulm contained

No. 28. Manured with Gas Water fixed with Phosphoric Acid, at the rate of 800 gallons per acre. The produce was, large tubers 4 lbs. 13 oz., small tubers 8 oz., total, 5 lbs. 5 oz. 'The dry haulm weighed 965 grains. The tubers and haulm contained

	Tubers and Haulm.		
	Water.	Organic matter.	Inorganic matter.
Fresh Tubers	7858	2031	111
Dry Tubers	-	9480	520
Dry Haulm	-	8664	1336

No. 29. Manured with Gas Water fixed with Muriatic Acid, at the rate of 800 gallons per acre. The produce was, large tubers 8 lbs. 5 oz ., small tubers 2 oz., total 8 lbs. 7 oz . The dry haulm weighed 1636 grains. The tubers and haulm contained

No. 30. Manured with Ammoniacal Gas Water fixed with Nitric Acid, at the rate of 800 gallons per acre. The produce was, large tubers 5 lbs .6 oz ., small tubers 12 oz ., total 6 lbs .2 oz . The dry haulm weighed 1332 grains. The tubers and haulm contained

On comparing together the result of this series of Experiments, it is evident that there are several discrepancies, which are probably occasioned by local peculiarities in the plants which formed the subject of experiment; and that the trial was conducted on too small a scale. The analyses have therefore not been carried out to that degree of nicety which had been originally intended, as it was determined to repeat the experiment on a larger scale, and with a smaller number of simple saline manures. Several points, however, of considerable interest, are learnt, even by this experiment, as to the relation which exists between the weight of the stems, the proportion of earthy matter which they contain, the weight of the tubers, and the proportions of their azotised and inorganic constituents. In the following Table some of these results are exhibited, plants being arranged in the order of the weight of the stems.

Manure applied.	Weight of Haulm in Grains.	Inorganic matter in 10000 pts., Haulm.	Weight of Tubers, Ounces.	Inorganic matter in 10000 pts. Tubers.	$\begin{aligned} & \text { Albumen } \\ & \text { in } \\ & 10000 \text { pts., } \\ & \text { Tubers. } \end{aligned}$
28. Gas liquor and Phosphoric acid	965	1336	85	520	127
3. Gypsum	1013	1391	132	542	112
21. Nightsoil and Bleaching powder	1152	1458	117	562	112
14. Putrid urine .	1324	1057	89	530	107
30. Gas liquor and Nitric acid	1332	1201	98	535	105
11. Sulphate of iron	1367	1119	125	532	111
26. Gas liquor *	1377	1146	98	545	117
23. Nightsoil with Bleaching-powder and Sulphate of iron	1412	1126	127	515	93
29. Gas liquor and Muriatic acid . .	1636	1057	135	520	103
7. Nitrate of Soda (2.96)*	1652	1065	121	575	119
13. Nitrate of soda and Salt cake (2.96)	1675	1008	147	565	110
18. Guano - .	1802	1067	163	542	95
4. Nitrate of Soda (1.48) -	1869	1241	144	488	115
24. Nightsoil and Sulphuric acid .	1968	1016	164	497	100
15. Putrid urine and Sulphate of iron	1995	974	165	455	85
9. Epsom salts (2.96) -	2006	1106	156	515	109
27. Gas liquor and Sulphuric acid . .	2029	1158	151	520	97
22. Nightsoil with Bleaching powder and Sulphuric acid	2029	980	158	500	97
12. Nitrate of soda and salt cake (1.48)	2073	1043	157	520	90
19. Bone dust	2084	1113	186	490	92
6. Epsom salts (1.48)	2099	1076	167	575	104
2. Rotten dung 5. Salt cake (1.48)	2158	1019	184	532	102
20. Nightsoil	2196	1165	273	481	84
25. Sulphur	24510	1205	179	530 450	99
17. Daniell's manure (new sort)	2515	970	185	505	107
10. Sal-ammoniac	2619	1030	181	570	100
16. Daniell's manure (old sort)	2619	1088	175	420	97
1. No manure - .	3270	1128	128	501	87
8. Salt cake (2.36) -	3301	1030	240	495	97

[^3]It must be borne in mind that these experiments were made on garden ground, the composition and nature of which is very variable and uncertain, and far too rich to enable positive deductions to be formed of the relative value of the different substances employed as manure. The general inference furnished by the above table is, that those plants having the largest and most vigorous tops, produced the largest quantity of tubers; but that the tubers of these plants were the poorest in azotised matters. It is also worthy of remark, that those tubers which are richest in azotised matters, are also those which contain the greatest relative proportion of inorganic matter. Thus selecting from the foregoing table the three tubers richest, and the three poorest in azotised matter, we have

Richest.			Poorest.		
Albumen.	Inorganic matter.	Weight of Havlm.	Albumen.	Inorganic matter.	Weight of Haulm.
127	520	965	84	481	2196
119	575	1652	85	455	1995
117	545	1377	87	501	3270
Mean. 121	546	1331	85	478	2487

The earthy ingredients of the haulm and tubers, were for the reason above adverted to, not examined in detail; but a general analysis of the whole series was made, the results of which sutficiently show, that the nature of the earthy ingredients both of the haulm and of the tubers, but more particularly of the former, varied very greatly. The following tables exhibit the proximate composition of these inorganic matters, divided into Alkaline salts, earthy salts, and siliceous matter : the first head including Carbonate, Phosphate, Sulphate, and Muriate of Potash and Soda; the second, soluble as well as insoluble Salts of Lime and Magnesia, together with Oxides of Iron and Manganese. Both tables are arranged in the order of the quantity of Alkaline matter which the substances contained.

Inorganic Constituents of Experimental Potato Haulm.

	Alkaline.	Earthy.	Siliceous.
1. No manure	4667	4079	1253
29. Gas liquor and Muriatic acid	3697	4703	1597
5. Salt Cake (1.48)	3371	5233	1394
2. Rotten Dung	3221	5510	1269
16. Daniell's manure (old sort)	3124	5113	1763
10. Sal ammoniac .	3061	5602	1337
6. Epsom salts (1.48)	2900	5400	1700
9. Epsom salts (2.96)	2789	5915	1306
17. Daniell's manure (new sort)	2473	6087	1438
12. Nitrate of Soda and Salt cake (1.48)	2320	5836	1844
8. Salt cake (2.96)	2263	5517	2220
20. Night soil	2243	6142	1615
19. Bone dust	2223	5573	2181
18. Guano -	2203	6207	1590
11. Sulphate of Iron	2121	6027	1851
7. Nitrate of Soda (2.96)	2098	5865	2037
13. Nitrate of Soda and Salt cake (2.96)	1953	6316	1731
4. Nitrate of Soda (1.48) .	1886	6143	1971
24. Night soil and Sulphuric acid	1712	6652	1636
3. Gypsum . .	1694	5609	2695
27. Gas liquor and Sulphuric acid . .	1419	6699	1882
22. Night soil with bleaching powder and Sulphuric acid	1327	6852	1821
25. Sulphur	1138	5785	3177
14. Putrid urine	1064	5100	3836
21. Night soil and bleaching powder	964	4957	4078
23. Night soil with bleaching powder and Sulphate of iron	954	6628	2418
30. Gas liquor and Nitric acid	814	5212	3974
15. Putrid urine and Sulphate of iron	568	7255	2177
26. Gas liquor - .	521	7008	2471
28. Gas liquor and Phosphoric acid	315	7121	2564

Inorganic Constituents of Experimental Potato Tubers.

	Alkaline.	Earthy.	Siliceous.
24. Night soil and Sulphuric acid	8927	997	76
19. Bone dust	8915	1041	44
3. Gypsum	8874	1068	58
18. Guano	8866	1076	58
25. Sulphur	8865	1028	107
4. Nitrate of Soda (1.48)	8840	1094	66
20. Night soil	8790	1191	19
5. Salt cake (1.48)	8753	1167	80
8. Salt cake (2.96) .	8739 8733	1168	92
22. Night soil with bleaching powder and Sulphuric acid	8722	1237	41
23. Night soil with bleaching powder and Sulphate of iron	8711	1202	87
12. Nitrate of Soda and Salt cake (1.48)	8686	1239	75
28. Gpsom salts (iquor and Phosphoric acid	8670	1242	88
28. Gas liquor and Phosphoric acid 7. Nitrate of Soda (2.96)	8668	1292	40
27. Gas liquor and Sulphuric acid	8666	1245	87
30. Gas liquor and Nitric acid	8592	1336	72
1. No manure	8575	1354	71
16. Sal ammoniac	8557	1227	216
26. Gas liquor - 2. Rotten dung	8484	1448	68
21. Notten dung soil and bleaching powder	8475	1408	117
11. Night soil and bleaching powder	8341	1625	34
14. Putrid urine	8326	1595	79
6. Epsom salts (1.48)	8309	1640	51
16. Daniell's manure (old sort)	8219	1682	99
17. Daniell's manure (new sort)	8211	1691	98
29. Gas liquor and Muriatic Acid	8063	1803	134
15. Putrid urine and Sulphate of Iron	7293	$\begin{aligned} & 1907 \\ & 2559 \end{aligned}$	56 148

It is almost impossible to draw certain conclusions from these results, in consequence of the small scale on which the experiment was made, it is however worthy of remark that generally speaking, those stems which contained the greatest quantity of inorganic matter, contained relatively a larger proportion of alkaline salts, than those stems in which a less quantity of inorganic matter was found.

Particular attention was paid, during the examination of these plants, to the existence of Nitric Acid in them; none of the tubers were found to contain any; some of the stems did, whilst the greater number did not contain any Nitric Acid, the following table shews these differences :-

Stems which contained Nitric Acid.

Manured with nothing.	
do.	Rotten Dung.
do.	Nitrate of Soda. (1.48.)
do.	Salt Cake. (1.48.)
do.	Epsom Salts. (1.48.)
do.	Nitrate of Soda. (2.96.)
do.	Sal Ammoniac.
do.	Nitrate of Soda and Salt Cake. (1.48.)
do.	Putrid Urine.
do.	Gas Liquor and Sulphuric Acid.
do.	Gas Liquor and Muriatic Acid.
do.	Gas Liquor and Nitric Acid.

Stems which contained no Nitric Acid.

3.	Manured with Gypsum.	
8.	do.	Salt Cake. (2.96.)
9.	do.	Epsom Salts. (2.96.)
11.	do.	Sulphate of Iron. 13. do.
Nitrate of Soda and Salt Cake.		

The fact that some of these plants contained salts of Nitric Acid, whilst others did not, is very remarkable, and of especial interest in connexion with the action of the Nitrates as manure. Professor Liebig says, in his "Chemistry in its applications to Agriculture," etc. (3rd edit. p. 233.) "The presence of a Nitrate in plants permits only one conclusion - that the nitrogen of Nitric Acid is not employed in their organism for the formation of compounds containing that element, because, if it were, at a certain period of the life of the plant, it would disappear on account of this conversion." The existence of Nitrates in a plant cannot, as it appears to me, be
considered as any evidence that the Nitrate does not supply Nitrogen to the plant. It might in the same way be argued, that Ammonia does not supply nitrogen to plants, because it is very constantly found in them. With regard to the disappearance of the Nitric Acid at a certain period of the life of the plant, it is desirable to have experimental evidence ; I have found in several cases that the proportion of Nitric Acid in plants was great when they were young and gradually diminished as they grew older. I have already adverted to the curious fact that when plants were manured with Nitrates they grew very vigorously, but were not found on examination to contain any Nitric Acid; in the experiments on potatoes just described, it appears, that those manured with Salt Cake and Nitrate of Soda (No. 13), contained no Nitric acid, whilst those manured with Salt Cake alone (No. 5), did contain Nitrates. In the course of an extensive series of experiments on plants, presently to be described, Nitric acid was found in the following:-

Potato - tubers, stems, leaves.
Yellow Stem Beet - leaves, stems and roots. Bassano Beet - root.
Whyte's Dark Red Beet - root.
Chappel's Brocoli - stems.
Victoria Brocoli - stems.
Spinach, Flanders, Lettuce-leaved and Summer-
leaves and stalks.
Fennel - leaves.
Mustard - whole plants.
Shallots - bulbs.
Tobacco - whole plants.
Rhubarb, Rbeum crispum - bad scales.
Chervil, Scandix odorata - leaf-stalks.
Turnips - roots and leaves.
Radishes - roots and leaves.
Cucumber - fruit.

Clary, Salvia Sclarea - stalks.
Green Sage - leaves.
Chenopodium Bonus Henricus or English Mercury stalks.
Chaumontel Pear - young and small unripe fruit.
Marjoram - whole plant.
Spear Mint - leaves and stalks.
Borage - leaves and stalks.
Lettuce - whole plant.
Carrots - whole plants.
Solomon's Seal - roots.
Mangel Wurzel - roots, leaves and leaf-stalks.
Savory, Summer - whole plants.
Scarlet Runners-unripe pods.
Brussels Sprouts - whole plants.
Tomato - leaves and stems.

As considerable facilities are afforded for experiments on the absorption of earthy matters, by Parasitical plants and Epiphytes several experiments were made with these curious plants. Setting out with the known fact, that all plants contain certain inorganic matters, it became interesting to enquire whence those plants which grow on or derive their nourishment from other plants, obtain their earthy matters. It follows, that if parasites derive the earthy matters necessary to their growth, from the plants on which
they feed, that the growth of the former, must, to some extent, be dependent on the quantity of inorganic matter contained by the latter. This conclusion, if born out by experiment, would lead to a subject of considerable practical interest, namely, the influence which the earthy matters in wood may have on the growth of fungi, and decay of timber.

The Mistletoe (Viscum album) derives a large proportion of earthy matters from the trees on which it grows. On examining a plant, I found in the leaves 820 , in the branches 462 , and on the stem 282 parts of inorganic matter ; whilst the apple tree on which it grew contained only $\mathbf{2 3 3}$ parts, in $\mathbf{1 0 0 0 0}$ parts of the dry plants. On examining other parasitic plants and fungi, it was found that in all cases they contained a large proportion of earthy matters, and very commonly far more than the plants on which they grew. Whether the whole of these inorganic substances was derived from the trees on which they grew is questionable, it is by no means impossible that some of it may have been derived from the air. Several fungi contain it is well known a notable quantity of copper, I have in particular found it in the large brown Boletus which grows upon Elm Trees, but I was unable to detect any in the wood or bark of the tree on which it grew.

The inorganic constituents of Epiphytes were next examined. As many of these curious plants, which grow on the stems and branches of trees, derive nourishment chiefly from the air, and seem to flourish equally well, whether their roots enter the soil, or hang freely in the air ; it was interesting to ascertain what proportion of earthy matters they contained, and whether it varied under different circumstances. It appeared probable that the quantity of inorganic matter which they contained would be smaller, than that in most plants, and that the quantity present in those which grew only in air would be less than in those whose roots entered the soil. It was found however that the leaves of Orchidaceous plants contain
about as much inorganic matter as those of cabbages and other similar plants and that there was but a trifling difference evident, whether the plants had their roots in the soil, or in the air. The proportion of earthy matter in a plant of Catasetum grown in soil and a plant of Bletia, grown wholly suspended in the air, were

	Water.	organic matter.	Inorganic matter.	Inorganic in $\mathbf{1 0 0 0 0}$ parts dry.
Catasetum bulbs	8669	1269	62	465
Bletia bulbs	8309	1609	82	488
Catasetum leaves	8055	1791	154	794
Bletia leaves	8200	1658	142	793

Though the whole quantity of earthy matter present in the plant, as shewn by the proportion contained in the dry leaves and bulbs was nearly similar, very considerable difference was found in the nature of these substances; a proximate analysis gave

	Catasetum bulbs.	Bletia bulbs.
Alkaline Salts	3752	3792
Earthy Phosphates	183	222
Carbonate of Lime	4281	2850
Carbonate of Magnesia	1315	579
Siliceous matter	428	2596
	10000	10000

The examination of good and bad Timber, with a view to trace out any connection between its qualities and the inorganic substances it contains, is a subject requiring many experiments, and necessarily occupying a very long time. The following experiments, however, are complete in themselves, and possess considerable interest in connection with the present subject. In following out the general scheme of inquiry, a large collection of samples of wood from different localities, grown in various situations, and under various conditions has been made; amongst these, was a series of specimens of oak wood, for which I am indebted to Sir William Symonds, and which, in addition to their being from different parts of the world, were all of known quality, each sample being marked with a note of its quality deduced from actual experience. It is to be regretted that the majority of them were bad or inferior, even those from localities whence the very best wood is usually imported, hence, of course, they cannot be regarded as
average samples but rather as exceptions. The proportion of earthy matter which they contained, together with their locality, and relative goodness, is contained in the following Table.

Oak Wood from	Quality.	Organic matter.	Water.	Inorganic matter.	Inorganic in 10000 parts dry.
America (white)	bad	9188	773	39	42
Ditto (live oak) .	good	9306	621	73	78
Ditto ditto " Gibraltar"	good	8615	1111	274	308
Crimea	tolerable	8909	1026	65	73
Canada	bad	8845	1132	23	27
Circassian	indifferent	9125	841	34	37
Danzig - .	tolerable for plank	8939	1037	24	27
England (mean of 10.)	various .	8888	1097	15	18
East Prussia .	indifferent	9143	832	25	28
French .	bad	8892	1092	16	19
Farnia (Tuscany)	bad	9234	722	44	52
Hainault	bad	8728	1258	14	16
Istria	bad	9011	923	66	73
Poland	indifferent	9059	924	17	18
Podolia	bad	8950	1019	31	35
Russia	bad	9013	977	10	11
Styria	indifferent and light	8985	997	18	20
Sardinia	good . .	8969	1003	28	32
Tuscany	good	8899	917	184	202
Ischia	good for plank	9025	957	18	20

The larger proportion of earthy matters in the oak of southern countries is remarkable, as contrasted with the smaller quantity found in English oak, and the oak of northern countries generally. Still from this table no general conclusion can be drawn as to the relation between the inorganic substances and the quality of the wood.

To the kindness of Sir W. Symonds, I am also indebted for samples of English oak and Danzig fir in the first stages of dry rot. In both of these, the proportion of inorganic matter is very large ; the result of the examination of these samples, together with that of two good samples of sound Memel and Danzig fir, is given in the following Table.

	Organic matter.	Water.	Inorganic matter.	Inorganic in 10000 parts dry.	
Oak Timber beginning to decay	6738	3230	32	47	
Oak Plank ditto ditto	7273	2682	35	49	
Fir Timber ditto ditto	6046	3756	198	318	
Fir Timber, Memel, sound	8778	1201	21	24	
Fir Timber, Danzig, sound	9084	899	17	19	

Generally speaking the young parts of plants contain far more Inorganic matter than the older parts; after a certain time, and particularly when woody fibre is formed, the organic part of the
plant continues to increase far more rapidly than the inorganic matters do : hence the real proportion of the latter appears to decrease. In the experiment however, on Savoys, first described, it would seem that the young leaves contained in reality less earthy matter, than the older leaves; and that in them the proportion of inorganic to organic matter, was smaller than in the older leaves. On comparison it was found that a very marked difference existed in the composition of these inorganic matters; a proximate analysis gave

The young leaves of the Savoy are so completely protected from air and light that they can hardly be well compared with the young leaves of ordinary plants, which as soon as they emerge from the bud are to a greater or less degree exposed to the light. In order to ascertain what influence Light has on the absorption of inorganic matters, a number of hyacinths were grown, some in light and some in darkness; the following were the results. The bulbs selected were as nearly as possible similar in size and weight; half were planted in dark and half in light, some in water only, others in rich artificial soil, and the rest in sand. Four of the roots being dried thoroughly and burnt, their composition was found to be very nearly uniform ; they consisted of 6435 water, 3442 organic matter, and 123 parts of inorganic matter. After growing and flowering the plants were examined; in some instances those grown in the dark contained the greatest proportion of inorganic matters, whilst in other cases they were found to contain less, than those grown in light. The average of the whole series was

The differences in the quantity of inorganic matter between those grown in light, and those grown in darkness, were comparatively small; it is evident however that there was no great deficiency of inorganic matter in the plants which grew in the dark; and this was the result arrived at from numerous experiments on other plants. In many cases it was found that the plants which grew in the dark, contained the greatest quantity of inorganic matter ; but this was not always the case; and the general conclusion appeared to be that light does not exert any decided influence on the absorption of these substances. In the experiment on Hyacinths just described, some remarkable effects were observed, which though not altogether new, are worthy of record. The plants which grew in the dark were much the largest and much the most succulent, the leaves and stems were perfectly white, but the flowers were in all cases quite as brilliant in colour as those which grew in light; they were however nearly devoid of scent. The colour of those which grew in the dark appeared to be more permanent than the others, for, on drying, they retained their colour perfectly; whilst those which grew in light, faded, and soon became dingy.

A number of experiments were also made to determine what influence the Salts of Ammonia had on the absorption of earthy matters, and their result was more definite; it appeared that salts of Ammonia almost always caused an increased absorption of inorganic substances, and more especially influenced the absorption of Potash from the soil, and the formation of Nitre. It had been anticipated from previous experiments, that salts of Ammonia would, by causing plants to grow more vigorously, enable them to take more potash \&c. from the soil, so that the whole quantity of inorganic matter which each plant contained, would be incteased, but that the relation which existed between it, and the organic matter would be unaltered. The result of a number of
experiments however shewed, that the proportion of inorganic to organic matter, was increased in a greater proportion by salts of Ammonia than by salts of the fixed Alkalies. The following are a few examples of their effects.

Perfectly similar plants of broad leaved summer Spinach were manured, some with Sulphate of Ammonia, and others with Nitrate of Potash ; the salts being applied in tolerably large quantity, as a top dressing. Both manures produced a remarkable effect, increasing the size of the leaves very greatly, and causing the plants to grow with the utmost vigour. On examination they were found to consist of

				Water.	Organic matter.	Inorganic matter.	Inorganic matter in 10000 pts . dry.
Manured with Sulphate of Ammonia	leaves		-	9229	589	182	2370
Do. do. do.	stems	-	.	9601	288	111	2791
Manured with Nitrate of Potash	leaves		.	9098	717	185	2057
Do. do. do.	stems	-	-	9586	310	104	2516

By the last column it appears, that a considerably larger quantity of inorganic matter was taken up, by the plants manured with sulphate of Ammonia, than by those treated with Nitrate of Potash; the former also were the most succulent, but in size and appearance when growing, there was no perceptible difference.

A similar experiment was made with Shallots. The colour of the plants was much darkened, and their size was increased, but not to the same extent as with the Spinach. The Shallots contained

	Water.	Organic mater.	Inorganie matter.	Inorganic matter in 10000 pts. dry.	
Manured with Sulphate of Ammonia	-	8686	1221	93	717
Manured with Nitrate of Soda	\cdot	8455	1450	95	619

A third experiment on Tobacco also gave a similar result; in this case Phosphate of Ammonia was compared with Nitrate of Potash. The plants were examined after flowering, and were much older than those described in a previous experiment, (p.39.) The composition of the leaves and stalks was

Manured with	Phosphate of Ammonia do. do.	leaves stalks	Water. 8315 7948	Organie matter 1340	$\begin{gathered} \text { Inorganic } \\ \text { matter. } \end{gathered}$$345$	Inorganic matter in 10000 pts . dry.
						2047
				1930	122	596
Manured with	Nitrate of Potash	leaves	8370	1300	330	2006
Do.	do. do.	stalks	7838	2040	122	566

In order to facilitate subsequent experiments, and to supply data for any calculations, which might be required, it appears desirable to ascertain by careful experiments, the exact quantity of inorganic matter taken up from the soil by the more ordinary plants when growing in full vigour. Accordingly, a series of the most important vegetables, herbs, and fruits, in the Gardens of the Society, has been submitted to this kind of investigation, and a portion of the results is embodied in the following Table; which shews the proportion of water, organic and inorganic matter contained in the various plants examined, together with the proportion which the inorganic bore to the organic part of the dry plant. The plants were all carefully selected, none but clean healthy specimens being taken; they were dried in a stove at a temperature of about 200° Fahr. ; and were considered dry when several hours exposure to that temperature occasioned no further reduction in weight. The dry plants were burnt to coal on porcelain, or polished iron plates heated by gas lamps, and the coals incinerated at the lowest possible temperature in platinum basins.

	Water.	Organic matter	Inorganic matter.	Inorganic matter in Dry Plant.
1. Artichoke, Globe . . heads	8598	1309	93	665
2. Do. . . . leaves	8944	943	113	1073
3. Jerusalem . tubers large	7852	2028	120	558
4. Do. . tubers small	7566	2298	136	562
5. Asparagus, heads : . large	9210	735	55	705
6. . middling	9239	708	53	700
7. $\because *$ small	9132	802	66	767
8. Beans, French, forced pods	9317	619	64	945
9. Haricot, noire de Belge . pods	9223	727	60	762
10. Scarlet-runners pods	9451	483	66	1213
11. Broad Windsor . plants in blossom	8998	891	111	1111
12. Do. without shells	8560	1363	77	538
13. Do. shells alone	9042	889	69 365	2995
14. Kidney . . leaves	8781	854	365	2995
15. Early Mazagan plants	9110	1151	123	1390 870
16. Beet, Bassano . . roots	8730	1151	1191	1433
17. Do. . . . leaves	8700	1109	109	1729
18. - Castelnaudary roots	8501	1390	156	1396
19. - Do. . . . leaves	8877	967 1198	112	885
20. White sugar . . roots	8690	1198	112	1335
21. Do. . . . leaves	8905	849	146	1335
22. Whyte's Dark red i. roots	8962	909	129	- 1245
23. Red-stalked Leaf , roots	8258	1628	189	1578
24. Do. . \quad D leaves	8799	1012	189	725
25. Yellow-stalked Leaf . roots	8269	1605	126	1125
26. Do. . . . leaves	8782	1081	115	581
27. White-stalked Leaf roots	7994	1891 1039	115	1454
28. - Do. . . leaves	8785	1039	176	

			Water.	Organic matter	Inorganic matter.	Inorganic matter in Dry Plant.
164.	Horseradish	leaves	8496	1300	204	1348
165.	- . . .	roots	6879	2945	176	564
166.	Lovage	leaves	8612	1211	177	1275
167.	促	stalks	9359	534	107	1764
168.	Lavender	plant	7615	2224	161	676
169.		flowers	7550	2232	218	892
170.	Mustard . . y	young plants	9462	436	102	1910
171.	Marsh Mallow	plant	8420	1356	224	1421
172.	Marjoram	plant	8815	1001	184	1558
173.	-_ knotted	plant	7949	1749	302	1476
174. P	Parsley, curled	leaves	8430	1299	271	1728
175.	Patience (Rumex Patientia)	leaves	8800	1088	112	1101
176.	-	stalks	9197	729	74	924
177.	Peppermint	plant	8077	1650	237	1420
178.	- . . .	leaves	8724	1147	129	1012
179.	Rosemary	plant	5239	4527	234	491
180.	Rue	plant	7791	2042	167	257
181.	Sorrel	leaves	9207	702	91	1152
182.	-	flowers	8480	1432	88	582
183.	-- French	leaves	9354	564	78	1225
184.	Southernwood	leaves	7787	2034	179	808
185.		stalks	5631	4257	112	255
186.	Sage, purple	leaves	7515	2240	245	988
187.	- Do.	stalks	5332	4476	192	411
188.	- green	leaves	8416	1369	215	1361
189.	- Do.	stalks	5333	4416	251	539
190.	Spearmint	plant	8867	988	145	1285
191.	Savory, Summer	plant	8252	1553	195	1119
192.	--Winter	plant	6899	2936	165	534
193.	Solomon's Seal	roots	7522	2406	72	293
194.	Thyme	plant	5953	3787	260	644
195.	Tansy, curled	- leaves	8465	1372	163	1067
196.	Tobacco, broad leaved Virginian	young plants	8917	843	240	2215
197.	Watercress	plant	9260	633	107	1450
198.	Wormwood, Common	plant	8193	1597	210	1165
	- Roman	plant	7689	2097	214	927
	Apple	blossoms	8424	1478	98	627
201.	——Dutch Mignonne,	small unripe	8972	978	50	487
202.	—— Do. ${ }^{*}$.	ripe	8559	1420	21	151
203.	- Court of Wick,	small unripe	8839	1114	47	411
204.	- Do. ${ }^{\text {- }}$	ripe	8525	1438	37	252
205.	-_ Nonpareil	ripe	8012	1961	27	140
206.	-_ Ribstone Pippin	ripe	7905	2051	44	214
207.	- Golden Pippin,	seedling	8024	1929	47	241
208.	-Wellington	- ripe	8376	1595	29	184
209.	- Blenheim Pippin	ripe	8486	1491	23	157
211.	- Golden Reinette	- ripe	7825	2140	35	162
212.	-_Canada Reinette	. ripe	8489	1481	30	198
213.	Currants, White Dutch	ripe	8742	1191	67	533
214.	- Knigbt's Sweet Red,	- unripe	8959	986	55	532
215.	- Do.	ripe	8593	1355	52	373
	- Black	blossoms	8625	1255	120	872
	$\square{ }^{-}$Do. ${ }^{\text {+ }}$	leaves	7404	2342	254	980
	\square Black Naples	unripe	8578	1317	105	741
	Cherry, Bigarreau	ripe	8023	1879	98	498
	Cherry, Digarreau	unripe	8792	1157	51	422
	$=\mathrm{Do}_{0}$	larger	8503	1447	50	336
223.	Kentish	ripe	8237	1715	48	272
224.	- Do.	unripe	8682	1270	48	364
225.	Gooseberries	young green	8482	1476	42	309
226.	- Woodward's Whites	esmith ripe	8765	1188	44	440
	- Dark Red Rough	- ripe	8572	1373	45	384
	\longrightarrow Red Champagne	ripe	8447	1516	37	141
	- White Crystal	ripe	8605	1345	50	412
	- White Walnut	- ripe	8799	1151	50	416

By Edward Solly, Esq.

In order to carry out more fully the objects contemplated in the experiments on Savoys and Potatoes already described, a series of experiments were made the succeeding year, on a much larger scale, but with a more limited number of manures. Four plants were selected for the purpose, namely Wheat, Potatoes, Peas and Mangel Wurzel. These experiments are now so far concluded, that the practical effects produced by the different manures, are known; the variations in the chemical composition of the crops, obtained by the manures, is at present being investigated. All the experiments made at the gardens, were under the care of Mr. Robert Thompson. The following is a description of the mode in which the experiments were conducted, the manures employed, and the produce obtained; the chemical enquiries which these experiments give
rise to, and the conclusions which may be drawn from them, will form the subject of a future communication.

A piece of ground divided into twenty-four beds, was sown with Talavera Spring Wheat, drilled in rows, six inches apart on the 21st of March. The ground was tolerably uniform and had not received any manure for some years, having previously been used for the cultivation of garden annuals. It was however in good condition; in fact as the results of the experiments shewed, in rather too good condition for the purpose. On the 19th of April, the plants being fairly up, and from two to four inches in height, the manures were applied, being sown broadcast across the drills. Twenty-two of the squares were manured, two and two, with eleven different substances, whilst the remaining two were left without any manure. On the 1st of June, the plants being then about a foot and a half high, twelve of the squares, eleven of them having different saline manures, and the twelfth being one of those left without any manure, received in addition an equal quantity of silicate of Potash; thus the first square had a saline manure alone, the next had the same saline manure and in addition a quantity of silicate of Potash ; the next had a second saline manure, the fourth had the same saline manure, with the addition of silicate of Potash, and so on; one square alone being left without any manure whatever as a standard of comparison. Towards the end of July, the Wheat came into blossom, it was cut at the end of August, and threshed out early in September. During the growth of the plants and ripening of the grain, very marked distinctions were perceptible ; these are described in the following details.

1. Phosphate of Ammonia. The quantity of this salt taken was rather more than 2 lbs . per rod or 3 cwt . per acre. The value of the salt can hardly be fairly compared with other saline manures, as, the demand for it being very small, it has not yet been made on a scale of any magnitude, and hence it is difficult to state
at what price it might be prepared. The salt employed in this experiment was pure ; for practical use of course a commoner and cheaper salt might be employed. The experimental squares were rather less than a rod each, the results are however all calculated for a rod and likewise for the acre.

	lbs.	oz.	ton.	cwt.	lbs.
Whole crop	per rod 58	$\mathbf{1 4}$	per acre $\mathbf{4}$	$\mathbf{4}$	18
Grain	10	10		15	21
Straw	42	8	3	0	80
Chaff	5	12		8	29

The proportion of corn to the whole produce therefore was as 1804 to 10000 . The average weight of the seeds was ascertained by weighing a known number, generally from 1500 to 2000. One thousand seeds weighed 653 grains. The density of the wheat was found by weighing a given bulk; a brass measure holding exactly the hundredth part of a bushel was used; twelve weighings were made of each sample; and the mean of the whole twelve taken as representing the average specific gravity of the wheat. The average weight of the standard measure full was 4167 grains, hence the bushel would weigh $59 \frac{1}{2} \mathrm{lbs}$.

It is necessary to observe that the quantity of corn, its density, and the weight of a thousand grains, as given in the following pages, is throughout deduced from the undressed corn. It was not dressed or screened in any way, but the whole corn, just as it was threshed out, was taken; hence some of the samples appear extremely light and cannot be fairly compared with dressed samples; the weights are merely comparative, but cannot be taken as expressing the real goodness of the corn.

The effect produced on the growth of the young plants by this salt was very marked, in about a week after applying it the plants looked rather poor, a few of them being killed or the leaves turned brown; in three weeks a decided improvement was visible, the blades were larger and greener than those in the squares numbered 3, 4,5 and 6, and in fact looked very flourishing. The dark
colour of the blades and the superior height of the plants increased, and remained very marked until the wheat came into ear.
2. Phosphate of Ammonia and Silicate of Potash. The same quantity of Phosphate of Ammonia was used in this, as in the preceding experiment. The plants received in addition a quantity of pure silicate of Potash, corresponding to a hundred weight and a half per acre. The silicate employed was very pure, having been made by slowly fusing together white quartz sand, previously well boiled in nitro-muriatic acid and thoroughly washed, with pure carbonate of Potash. It was white, perfectly transparent, and entirely soluble in water. The silicate was applied to the plants in solution, a weak solution being poured between the rows, taking care not to wet the blades. The produce was

	lbs.	oz.	ton.	cwt.	lbs.
Whole crop	per rod 58	0	per acre 4	2	109
Grain	6	8		9	40
Straw	45	7	3	4	105
Chaff	6	1		8	76

The proportion of corn to the whole crop was therefore as 1137 to 10000 . One thousand seeds weighed 584 grains. The standard measure full weighed 4070 grains, hence the bushel would weigh $58 \frac{1}{4} \mathrm{lbs}$. The remarks just made with respect to No. 1 , Phosphate of Ammonia alone, may be equally applied to this square, which like No. 1 might until the plants came into ear be easily distinguished at a distance from the four following squares by the superior height and darker green colour of the blades. The quantity of corn produced both in Nos. 1 and 2 was less than had been expected from the appearance of the plants and the size and quantity of the ears formed; it is probable that a considerable portion of the corn was carried away from both these squares, but more particularly from No. 2, by the birds; it being more exposed than the other squares to their depredations.
3. Sulphate of Soda. The substance taken in this experiment was not a pure sulphate of Soda, but the impure salt, called Salt
cake, a substance manufactured on a very large scale by acting on common salt by sulphuric acid, for the purpose of being subsequently converted into carbonate of Soda or "Soda." Its value is about £3. $10 s$. per ton, hence the quantity applied would cost $10 s .6 d$. per acre. The produce was

	lbs.	oz.	ton.	cwt.	lbs.
	per rod 37	13	per acre 2	13	14
Whole crop	8	2		11	70
Grain	25	3	1	15	10
Straw	4	8		6	46

The proportion of corn to the whole crop was therefore as 2188 to 10000 . One thousand seeds weighed 610 grains. The brass standard measure full weighed 4114 grains, consequently the bushel would weigh $58 \frac{3}{4} \mathrm{lbs}$. The plants in this as well as those in the succeeding square, No. 4, had throughout but a sickly appearance, they looked weak, and were a good deal laid by the wind, much more so than the two preceding squares, Nos. 1 and 2, although the latter plants were larger and taller than those in 3 and 4.
4. Sulphate of Soda and Silicate of Potash. The plants in the fourth square received these substances, at the rate of 3 cwt. of the former and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	lbs.	oz.		ton.	cwt.	lbs.
	per rod	47	13	per acre 3	9	46
Whole crop	8	3		12	58	
Grain	8	10		2	13	62
Straw	36	10		4	38	

The proportion of corn to the whole crop was therefore as 1803 to 10000 . One thousand seeds weighed 566 grains. The standard measure full weighed 3987 grains, consequently the bushel would weigh 57 lbs .
5. Salt. Common Salt was applied to this square at the rate of 3 cwt. per acre. This, reckoning salt at £1. 15s. per ton, would cost $4 s .6 d$. per acre. The produce was

	lbs.	oz.	ton.	cwt.	lbs.	
	per rod	56	3	per acre 3	19	72
Whole crop	13	8		18	71	
Grain	37	13		2	14	0
Straw	4	14		7	1	

The proportion of corn to the whole crop was therefore as

2339 to 10000 . One thousand seeds weighed 731 grains. The standard measure full, weighed 4228 grains, consequently the bushel would weigh $60 \frac{1}{2}$ lbs. The plants in this and the succeeding square, No. 6, looked throughout rather better than those in the two preceding squares Nos. 3 and 4; they were not, however, so much better as to have rendered it probable that the crop would be so much larger than Nos. 3 and 4, as the result proved it to be.
6. Common Salt and Silicate of Potash. Manured with these substances at the rate of 3 cwt . of the former, and $1 \frac{1}{2} \mathrm{cwt}$. of the latter, per acre, the produce was

	lbs.	oz.	ton.	cwt.	lbs.
	per rod	$\mathbf{4 7}$	13	per acre	3
8	8	44			
Whole crop	8	3		11	81
Grain	36	10	2	12	37
Straw	3	0			4
Chaff				38	

The proportion of corn to the whole crop was therefore as 1721 to 10000 . One thousand seeds weighed 654 grains. The standard measure full weighed 4124 grains, consequently the bushel would weigh 59 lbs.
7. Muriate of Ammonia. Manured with this salt at the rate of 3 cwt. per acre, which, reckoning the salt worth £2. 2 s. per cwt., would cost £6. 6s. per acre. In almost all the experiments made at the Horticultural Gardens with the salts of Ammonia, Muriate of Ammonia has produced a greater effect than the Sulphate or even the Phosphate. It is probable that this salt would for many soils be a very valuable manure. The price just quoted, which is that ordinarily stated, is however very high ; and it becomes a question of some interest, whether it could not be obtained at a much lower cost. The common Muriate of Ammonia or Sal Ammoniac, is prepared chiefly from the Sulphate of Ammonia and Common Salt, which are mixed and then heated in a subliming apparatus. It is evident that for the purpose of manure, a more impure salt than that prepared by sublimation might be used. Perhaps the best process for preparing it would be to mix together Muriate of

Lime, a substance which can be procured at a very low cost, with Sulphate of Ammonia; when water is present these salts instantly decompose each other. The result of such a mixture would be Muriate of Ammonia and Sulphate of Lime, and would, probably, form an excellent manure. It might also be worth while to form Muriate of Ammonia by mixing Muriate of Lime and the crude Ammoniacal Gas liquor, in which case Muriate of Ammonia and Carbonate of Lime would result. The tarry matter always present in Ammoniacal liquor would perhaps be objectionable, hence the mixture of Sulphate of Ammonia and Muriate of Lime appears preferable. The produce was

	lbs.	oz.	ton.	cwt.	lbs.
	per rod 57	13	per acre	4	2
72					
Whole crop	12	9	17	111	
Grain	37	10		2	13
Straw	7	10		10	99
Chaff					

The proportion of corn to the whole crop therefore was as 2176 to 10000 . One thousand seeds weighed 700 grains. The standard measure full weighed 4173 grains, hence the bushel would weigh $59 \frac{\mathrm{I}}{2} \mathrm{lbs}$. In about three weeks from the time of applying the Salt, an evident alteration in the appearance of the wheat became visible; the plants were of a dark green colour, like those which had been manured with Phosphate of Ammonia, but even yet darker. They grew rapidly, the blades were large, and the plants very flourishing; they could readily be distinguished from the plants in $3,4,5$ and 6 , by their superior size and deep green colour. In consequence of the rankness of the plants, they were a good deal laid.
8. Muriate of Ammonia and Silicate of Potash. Manured with these substances at the rate of 3 cwt . of the former and $1 \frac{1}{2}$ of the latter per acre. The produce was

	lbs.	oz.		ton.	cwt.	lbs.
Whole crop	per rod 70	3	per acre 5	14	65	
Grain	10	8		15	0	
Straw	67	15		4	17	12
Chaff	1	12			2	53

The proportion of grain to the whole crop therefore was as 1309
to $\mathbf{1 0 0 0 0}$. One thousand seeds weighed $\mathbf{6 1 0}$ grains. The standard measure full weighed 4023 grains; hence the bushel would weigh $57 \frac{1}{2}$ lbs. The plants in this, like those in the preceding square, were remarkable for their size and the deep green colour of their blades. They were rather stiffer and therefore less laid than those in No. 7.
9. Phosphate of Lime. The Phosphate employed was nearly pure, it was prepared from the super-phosphate of Lime formed by acting on Bone-ash by Sulphuric Acid. The ground was manured with it at the rate of $4 \frac{1}{2}$ cwt. per acre. The produce was

	lbs.	ox.	ton.		cwt.
	lbs.				
Whole crop	per rod 52	15	per acre 3	15	72
Grain	11	4		16	7
Straw	35	5	2	10	52
Chaff	6	6		9	13

The proportion of grain to the whole crop therefore was as 2123 to 10000 . One thousand seeds weighed 628 grains. The standard measure full weighed 4166, hence the bushel would weigh $59 \frac{1}{2} \mathrm{lbs}$. The plants in this and the following square were rather poor, and somewhat paler in colour than those in the standard square 13.
10. Phosphate of Lime and Silicate of Potash. Manured with these substances at the rate of $4 \frac{\mathrm{I}}{2} \mathrm{cwt}$. of the former, and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	lbs.	oz.		cwt.	lbs.
Whole crop	per rod 55	7	per acre	19	9
Grain	11	9		16	37
Straw	39	2		15	105
Chaff	4	12		6	91

The proportion of grain to the whole crop therefore was as 2076 to 10000 . One thousand seeds weighed 585 grains. The standard measure full weighed 4015 grains, hence the bushel would weigh $57 \frac{1}{4}$ lbs.
11. Muriate of Potash. This Salt was applied at the rate of 3 cwt. per acre; it was nearly pure, and cost $18 s$. per cwt. There is however an impure Muriate of Potash known in trade under the
name of Petre salt, and costing about $4 s$. per cwt. The produce was

	lbs.	oz.		ton.	cwt.	lbs.
Whole crop	per rod	58	10	per aere 4	3	70
Grain	13	10		19	25	
Straw	39	10	2	16	75	
Chaff	5	6		7	82	

The proportion of grain to the whole crop therefore was as 2272 to 10000 . One thousand seeds weighed 712 grains. The standard measure full, weighed 4233 grains; hence the bushel would weigh $60 \frac{3}{4}$ lbs.

During the first few weeks after the application of this Salt, no effect whatever was perceptible; the plants looked poor, they grew up thin, and the blades were small, but they were stiff and the straw strong. When the wheat came into ear it looked far better than it had previously done, and the stiffness of the straw became more evident, for when those which had received Ammoniacal manures were all laid, the plants in this square were not laid at all. During the filling of the grain, a very remarkable effect was observed; the straw ripened and became of a bright yellow colour some time before that in most of the surrounding squares began to change. This effect which was very distinct and marked was perceived only in those squares which had been manured with Muriate and Sulphate of Potash, viz. 11, 12, 21 and 22, but in the two latter cases the appearance was less distinct than in those to which the Muriate of Potash had been applied.
12. Muriate of Potash and Silicate of Potash. These substances were applied at the rate of 3 cwt . of the former and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	lbs.	on.		ton.	cwt.	lhe.
	per rod	61	5	per acre 4	7	1
Whole crop	10	7		14	24	
Grain	47	7		3	7	94
Straw	3	7			4	107

The proportion of grain to the whole crop therefore was as 1633 to 10000 . One thousand seeds weighed 619 grains. The
standard measure full, weighed 4081 grains; hence the bushel full would weigh $58 \frac{1}{2} \mathrm{lbs}$.
13. No Manure. This square, which was reserved as a standard of comparison with the other squares, received no manure whatever. The produce was

	lbs.	oz.	ton.	cwt.	lbs.
Whole crop	per rod 40	6	per acre 2	17	77
Grain	7	10		10	98
Straw	30	2	2	3	7
Chaff	2	10		3	84

The proportion of grain to the whole crop therefore was as 1885 to 10000 . One thousand seeds weighed 596 grains. The standard measure full weighed 4107 grains; hence the bushel would weigh $58 \frac{3}{4}$ lbs.

In the early part of the experiment, shortly after the application of the manures, the plants in this square looked, if anything, rather better than any of the others; they seemed larger and fuller, and consequently this square appeared greener than those around it. After a few weeks however many of the squares, and more particularly those which had been treated with ammoniacal manures, far surpassed this in the size and colour of the plants. It was evident, as the wheat came into ear, that the straw was far weaker than that in the neighbouring squares; it was far more easily laid and recovered itself less rapidly than the wheat in other squares, even though the latter were larger and taller plants. On comparing the produce of this square with that of the others, it will be perceived that the quantity of grain is less than in any of the others, with the exception of that manured with Phosphate of Ammonia and Silicate of Potash in No. 2. It is probable, as has already been stated, that a considerable portion of the grain in that square was destroyed by birds.
14. Silicate of Potash. This square was manured with Silicate of Potash, at the rate of $1 \frac{1}{2}$ cwt. per acre. The produce was

	Lbs.	ox.		ton.	cwt.	lbs.
Whole crop	per rod 48	6	per acre 3	9	11	
Grain	9	3		13	12	
Straw	34		2	8	62	
Chaff	5	3		7	49	

The proportion of grain to the whole crop therefore was as 1905 to 10000 . One thousand seeds weighed 553 grains. The standard measure full weighed 3942 grains; hence the bushel would weigh $56 \frac{1}{4} \mathrm{lbs}$. There was a decided improvement in the appearance of this wheat, over that of the standard square; the plants were larger, the ears finer, and the straw stiffer.
15. Sulphate of Lime or Gypsum. Applied at the rate of $4 \frac{1}{2}$ cwt. per acre; it was finely powdered and spread over the ground as uniformly as possible. The price of Gypsum varies a good deal ; reckoning it at 35 s. per ton, the above quantity would cost 7s. $10 \frac{1}{2} d$. per acre. The produce was

	lbs.	oz.		ton.	cwt.	lbs.
	per rod	60	11	per acre	4	6

The proportion of grain to the whole crop therefore was, as 2310 to 10000 . One thousand seeds weighed 639 grains. The standard measure full weighed 4204 grains, hence the bushel would weigh 60 lbs . Within a short time from the application of the Gypsum, the wheat exhibited an improved appearance, the blades were longer, and more healthy looking, though paler in colour than those of the standard. This superiority was evident during the whole time of their growth, but the difference was not so great as to make it probable that there would be so great a difference in the produce as there proved to be.
16. Sulphate of Lime and Silicate of Potash. These substances were applied at the rate of $4 \frac{1}{2} \mathrm{cwt}$. of the former, and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	Jbs.	oz.	ton.	owt.	lbw	
	per rod 71	9	per acre	5	2	38
Whole crop	11	5	1	0	37	
Grain	14	12	3	13	107	
Straw	51	12		8	6	

The proportion of grain to the whole crop therefore was as 1986 to 10000 . One thousand seeds weighed 645 grains. The standard measure full weighed 4077 grains, hence the bushel
would weigh $58 \frac{1}{4}$ lbs. The same observations made to Gypsum alone 15 may be applied to this square, the plants in it were rather finer than in No. 16.
17. Sulphate of Ammonia. This salt was applied at the rate of 3 cwt. per acre. Sulphate of Ammonia is now made on a large scale from the refuse ammoniacal liquor of the gas works, either by the addition of Sulphuric Acid, or by a cheap sulphate, such as the Sulphate of Iron. The price of Sulphate of Ammonia is about 16s. per cwt.; the abovementioned quantity therefore would cost £2. 8s. per acre. The produce was

	lbs.	oz.	ton.			cwt.
	lbs.					
Whole crop	per rod 60	3	per acre 4	6	9	
Grain	12	6		17	82	
Straw	41	7	2	19	26	
Chaff	6	6			9	13

The proportion of grain to the whole crop therefore was as 2061 to 10000 . One thousand seeds weighed 651 grains. The standard measure full weighed 4166 grains, hence the bushel would weigh $59 \frac{1}{2}$ lbs. The plants in this and the following square 18 began to show a marked difference in about three weeks after the application of the salt; the plants grew very vigorously, and had the same deep green which distinguished those manured with Muriate of Ammonia, 7 and 8. If there was any visible difference between the effects produced by the Muriate and Sulphate, it was in favour of the former; the plants manured with that salt were perhaps a little more luxuriant than those treated with the Sulphate. The plants in this and the following square were rather less laid than those manured with the Muriate 7 and 8.
18. Sulphate of Ammonia and Silicate of Potash. These substances were applied at the rate of 3 cwt. of the former and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	lbs.	er.		ton.	cwt.	lbs.
Whole crop	per rod 50	6	per acre	4	6	41
Grain	11	11			16	85
Straw	46	2		3	5	100
Chafi	2	9			3	80

The proportion of grain to the whole produce therefore was as 1940 to 10000 . One thousand seeds weighed 619 grains. The standard measure full weighed 4096 grains, hence the bushel would weigh $58 \frac{1}{2}$ lbs.
19. Sulphate of Magnesia, Epsom Salts. This salt was applied at the rate of 3 cwt . per acre. Its value is about £12. per ton, hence the quantity used would cost $£ 1.16 s$. per acre. The produce was

	lbs.	oz.	ton.	cwt.	lbs.	
	Whole crop	per rod 56	7	per acre 4	0	76
Grain	12	0		17	17	
Straw	37	11	2	13	100	
Chaff	6	12		9	71	

The proportion of grain to the whole crop therefore was as 2125 to $\mathbf{1 0 0 0 0}$. One thousand seeds weighed 671 grains. The standard measure full weighed 4170 grains, hence the bushel would weigh $59 \frac{1}{2}$ lbs. The effect produced by this salt on the growth of the wheat appeared to be small, the plants looked very little better than those in the standard square ; the straw appeared to be rather stronger.
20. Sulphate of Magnesia and Silicate of Potash. These substances were applied at the rate of 3 cwt . of the former and $1 \frac{1}{2} \mathrm{cwt}$. of the latter per acre. The produce was

	lbs.	oz.		ton.	ewt.	lbs.
	per	rod 58	13	per acre 4	4	6
Whole crop	12	5		17	65	
Grain	12	5	3	2	15	
Straw	43	8			4	38

The proportion of grain to the whole crop therefore was as 2091 to 10000 . One thousand seeds weighed 624 grains. The standard measure full weighed 4106 grains, hence the bushel would weigh $58 \frac{3}{4}$ lbs.
21. Sulphate of Potash. This salt was applied at the rate of 3 cwt. per acre. Sulphate of Potash is the residue of the ordinary process for the manufacture of Nitric Acid, in which Nitrate of Potash is decomposed by Sulphuric Acid. The price of the Sulphate varies, in part depending on the price of the Nitrate, its
average value is about $£ 14$ per ton, hence the above quantity would cost £2. 28 . per acre. The produce was

	lbs.	oz.		ton.	cwt.	lbs.
Whole crop	per rod 47	7	per acre 3	7	87	
Grain	10	11		15	34	
Straw	30	13		2	3	107
Chaff	5	15		8	58	

The proportion of grain to the whole crop therefore was as 2257 to 10000. One thousand seeds weighed 651 grains. The standard measure full weighed 4195 grains, hence the bushel would weigh 60 lbs.

This salt decidedly produced a beneficial effect on the wheat; the plants were large and flourishing, the straw appeared stiffer than most of the others, and when the wheat had come into ear and the grains were ripening, the remarkable change in colour adverted to when describing the effect produced by Muriate of Potash, was observed.
22. Sulphate of Potash and Silicate of Potash. These substances were applied at the rate of 3 cwt . of the former and $1 \frac{1}{2}$ cwt. of the latter, the produce was

	lbs.	oz.	ton.	ewt.	lbs.	
Whole crop	per rod 72	0	per acre 5	4	66	
Grain	12	0		19	23	
Straw	55	4	3	18	64	
Chaff		4	12		6	91

The proportion of grain to the whole crop was therefore as 1836 to 10000 . One thousand seeds weighed 610 grains. The standard measure full weighed 4069 grains. Hence the bushel would weigh $58 \frac{1}{4}$ lbs. The plants in this square were very large and healthy, the straw was remarkably stiff, and the ears were larger and full. On comparing together all the squares manured with Silicate of Potash, the plants in this square appeared the finest.
23. Nitrate of Soda. This salt was applied at the rate of $\mathbf{3} \mathbf{c w t}$. per acre. At the present price of $£ 17$. per ton, this quantity would cost £2.11s. The produce was

	lus.	os.		ton.	cwt.	lls,
Whole crop	per rod 59	6	per acce	4	4	109
Grain	11	10		16	72	
Straw	41	11		2	19	70
Chafl	6	1		8	79	

The proportion of grain to the whole crop therefore was as 1958 to 10000 . One thousand seeds weighed 651 grains. The standard measure full weighed 4242 grains. Hence the bushel would weigh $60 \frac{1}{2}$ lbs. The Nitrate of Soda in this and the following square produced a very luxuriant growth, closely resembling that caused by the salts of Ammonia; the plants appeared to be weaker than those manured with ammoniacal compounds, for though no larger, they were more laid than the others were.
24. Nitrate of Soda and Silicate of Potash. These substances were applied at the rate of 3 cwt . of the former, and $1 \frac{1}{2}$ of the latter. The produce was

	lbs.	ot.		ton.	ewt.	lbs.
	per rod 56	15		per acre 4	1	46
Whole crop	9	8			13	63
Grain	42	4		3	0	46
Straw	5	3			7	49

The proportion of grain to the whole crop therefore was as 1666 to 10000 . One thousand seeds weighed 562 grains. The standard measure full weighed 3952 grains. Hence the bushel would weigh $56 \frac{1}{2}$ lbs.

From the comparatively small scale on which these experiments were made, it is evident that the results cannot be considered as giving exactly the relative effects produced by the different manures employed, the experiments were however carefully made, and possess considerable interest in themselves, even independent of the chemical enquiries to which they will hereafter lead.

Perhaps the fairest mode of judging of the effect produced by these manures, was to compare the growing crops together, previous to their coming into ear, the differences were then very marked, it was evident that by far the greatest effect was throughout produced by the salts of Ammonia and the Nitrate of Soda. The most remarkable effect of all was produced by Muriate of Ammonia; the plants manured with this salt were distinguished not only by the luxuriance of their growth, but likewise by the very deep blue green colour of the foliage, those manured with Sulphate of

Ammonia were not quite so rank, whilst those manured with Phosphate of Ammonia and Nitrate of Soda, though as large and flourishing as those treated with Muriate of Ammonia, were not quite so dark in colour. Next in size and appearance were the plants manured with Sulphate of Potash, then those manured with Sulphate of Lime and Sulphate of Magnesia. The Muriate of Potash appeared to exert but little influence until the wheat came into ear. The other salts did not in any material way affect the appearance of the wheat. A slight beneficial effect was throughout produced by the Silicate of Potash, each square to which it had been applied, in conjunction with a saline manure, looked better than the corresponding square to which the Silicate had not been applied.

The crops were attentively watched from time to time to ascertain whether any of them were more liable to blight or diseases than the others, but no such effect was observed, a few smutty ears were found in most of the squares, and in a few places red rust appeared, but it did not seem that there was any connexion between those diseases and the manures employed.

A number of grains of wheat selected from each square, was sown in similar soil, and exposed to the same circumstances, to ascertain whether there was any difference in the time required for germination. In the first trial, considerable differences appeared to exist in the rapidity of germination; the seeds from those squares which had been manured with Silicate of Potash, all came up first ; this was however probably due to some accidental circumstance, for on repeating the experiment with greater care no appreciable difference was perceptible.

For the convenience of reference some of the numerical results of the preceding experiment are arranged in the following tables.
I. Table shewing the whole quantity of grain, and also the increased produce with each manure, calculated for the acre.

2. Phosphate of Ammonia and Silicate of Potash	Whole grain.	Increase.
	ton. cwt. lbs.	cwt. lbs.
	$9 \quad 40$	
13. No Manure	1089	
3. Sulphate of Soda	1170	84
6. Common Salt and Silicate of Potash	1181	95
4. Sulphate of Soda and Silicate of Potash	1258	172
14. Silicate of Potash	1312	234
24. Nitrate of Soda and Silicate of Potash	1363	277
12. Muriate of Potash and Silicate of Potash	1424	338
8. Muriate of Ammonia and Silicate of Potash	150	414
1. Phosphate of Ammonia	$15 \quad 21$	425
21. Sulphate of Potash	$15 \quad 34$	448
9. Phosphate of Lime	167	$5 \quad 21$
10. Phosphate of Lime and Silicate of Potash	$16 \quad 37$	$5 \quad 51$
23. Nitrate of Soda	1672	586
18. Sulphate of Ammonia and Silicate of Potash	1685	$5 \quad 99$
19. Sulphate of Magnesia	$17 \quad 17$	631
20. Sulphate of Magnesia and Silicate of Potash	$17 \quad 65$	$6 \quad 79$
17. Sulphate of Ammonia	1782	$6 \quad 66$
7. Muriate of Ammonia	17111	713
5. Common Salt	1871	785
22. Sulphate of Potash and Silicate of Potash	1923	$8 \quad 36$
11. Muriate of Potash	1935	$8 \quad 39$
15. Sulphate of Lime	06	$9 \quad 20$
16. Sulphate of Lime and Silicate of Potash	037	951

II. Table shewing the whole crop of wheat, and also the increase of produce caused by each manure, calculated for the acre.

3. Sulphate of Soda	Whole crop.		Increase.		
	ton. cwt.	lbs.		cwt.	lbs.
	213	4			
3. No Manure	$2 \quad 17$	77			
21. Sulphate of Potash	37	87		10	10
6. Common Salt and Silicate of Potash	38	44		10	79
4. Sulphate of Soda and Silicate of Potash	39	46		11	81
4. Silicate of Potash	39	11		11	44
9. Phosphate of Lime	315	72		17	107
0. Phosphate of Lime and Silicate of Potash	319	9	1	1	44
5. Common Salt	319	72	1	1	107
9. Sulphate of Magnesia	40	76	1	2	111
4. Nitrate of Soda and Silicate of Potash	41	46	1	3	81
2. Phosphate of Ammonia and Silicate of Potash	42	109	1	5	32
7. Muriate of Ammonia . .	42	72	1	4	107
1. Muriate of Potash	43	70	1	5	105
0. Sulphate of Magnesia and Silicate of Potash	44	6	1	6	41
1. Phosphate of Ammonia . .	44	18	1	6	53
3. Nitrate of Soda .	44	109	1	7	32
5. Sulphate of Lime	46	90	1	9	13
7. Sulphate of Ammonia	46	9	1	9	44
8. Sulphate of Ammonia and Silicate of Potash	46	41	1	8	76
2. Muriate of Potash and Silicate of Potash	47	,	1	9	36
6. Sulphate of Lime and Silicate of Potash	52	38	2	4	73
2. Sulphate of Potash and Silicate of Potash	54	66	2	6	101
8. Muriate of Ammonia and Silicate of Potash	511	64	2	16	99

III. Table shewing the Average Weight of 1000 grains, the Average Weight of the One hundredth part of a Bushel, the Average Weight of a Bushel, calculated from the same, and the Average Number of Seeds in the One hundredth part of a Bushel.

	A verage Weight of 1000 Seeds.	Average Weight of the Standard Measure.	$\begin{aligned} & \text { Average Weight } \\ & \text { in lbs. } \\ & \text { per Bushel. } \end{aligned}$	Average Number of Seeds in the Standard Measure
	grains.	grains.	lbs.	seeds.
14. Silicate of Potash - .	553	3942	56.	7128
24. Nitrate of Soda and Silicate of Potash	562	3952	$56 \frac{1}{2}$	7032
4. Sulphate of Soda and Silicate of Potash	566	3987	57	7040
2. Phosphate of Ammonia and Silicate of Potash	584	4070	$58 \frac{1}{1}$	6969
10. Phosphate of Lime and Silicate of Potash	585	4015	$57{ }^{4}$	6859
13. Nothing ${ }^{\text {a }}$	596	4107	58 娄	6890
3. Sulphate of Soda ${ }^{\circ}$ - ${ }^{\text {a }}$	610	4114	58 3	6744
8. Muriate of Ammonia and Silicate of Potash	610	4023	$57 \frac{1}{2}$	6595
22. Sulphate of Potash and Silicate of Potash - 12. Muriate of Potash and Silicate of Potash	610	4069	$58 \frac{1}{4}$	6654
12. Muriate of Potash and Silicate of Potash	619	4081	58ㄴ․	6592
20. Sulphate of Magnesia and Silicate of Potash	619	4096	$58 \frac{1}{3}$	6616
9. Phosphate of Lime . . .	628	4166	589	${ }^{6583}$
15. Sulphate of Lime .	639	4204	60	6579
16. Sulphate of Lime and Silicate of Potash	645	4077	581	6326
17. Sulphate of Ammonia	651	4166	$59 \frac{1}{3}$	6399
21. Sulphate of Potash 23. Nitrate of Soda	651	4195	60	6443
1. Phosphate of Ammonia	651	4242	601 ${ }^{\frac{1}{3}}$	6516
6. Salt and Silicate of Potash	653	4167	$59 \frac{1}{2}$	6381
19. Sulphate of Magnesia	654	4124	59	6305
7. Muriate of Ammonia	671	4170	591	6065
11. Muriate of Potash	712	4173	591	5961
5. Common Salt	731	4233	603	5945

IV. Table shewing the relative Value of the different Experimental Crops, as determined by an Eminent Corn Factor, to whom a series of Undressed Samples were submitted, November 1843.

V. Table of the produce of Straw, shewing the increase produced by certain Manures.
3.
21. Sulphate of Soda
14. Sulphate of Potash

Whole straw.			Increase.		
ton.	cwt.	lbs.		n. ewt.	lbs.
1	15	10			
2	3	107			
2	8	62			
2	10	52			
2	12	37			
2	13	62			
2	13	86			
2	13	100			
2	14	100			
2	15	105			
	16	75			
2	19	8			
2	19	26			
2	19	70			
3	0	46			
3	0	80			
3	2	15			
3	3	7			
3	4	105		1	98
3	5	100		2	93
3	7	94		4	87
3	13	107		10	100
3	18	64		15	57
4	17	12	1	14	5

A series of experiments with similar saline manures was also made with Potatoes. Twelve squares were planted with Bread fruit Potatoe on the 20th of March. The cuttings were as nearly as possible of the same size, and came up tolerably regularly. On the 12th of May, when most of the young plants were from two to four inches above ground, the manures were applied ; they were not sown broadcast over the whole bed, but sprinkled as uniformly as possible on each side of the row of young plants, to a distance of about six inches. The salts used were the same as those applied to the wheat, with the exception of the Silicate of Potash, namely, the Phosphate, Muriate, and Sulphate of Ammonia, Sulphate, Muriate, and Nitrate of Soda, Sulphate and Muriate of Potash, Sulphate and Phosphate of Lime, and Sulphate of Magnesia, whilst the twelfth square was left without any manure as a standard of comparison. In about three weeks after applying the manure, it was evident that four of the squares, namely, those to which the Salts of Ammonia and Nitrate of Soda, had been applied, were distinguished from the others by more vigorous growth, and rather
darker foliage. About five weeks after applying the salts, the standard square and that treated with Sulphate of Lime, were the poorest, those which had Muriate of Potash and Phosphate of Lime, were rather finer; those manured with Sulphates of Soda, Magnesia, and Potash, still better ; that which had been manured with common Salt, resembled in size and appearance those which had been treated with the sulphate, but the foliage was remarkably pale in colour ; whilst those manured with Ammoniacal Salts and Nitrate of Soda, were distinguished from all the others, by the plants being several inches higher, having much thicker stems, and a rich dark green foliage. One of the rows in the bed manured with Muriate of Ammonia had from some cause failed, at least the plants had not come up at the time of applying the manures, within a very short time afterwards, however, they came up, and grew with such vigour and luxuriance that in a few weeks it was impossible to distinguish them from the other plants similarly manured. The plants continued to grow until the end of August, and the same general distinctions already mentioned, were evident to the last. The ammoniacal manures and the Nitrate of Soda produced the finest plants, but the differences between the squares though evident, were far less marked at the end of August, than they had been at the end of June, and through the whole of July. It appeared as if the four manures just referred to, produced a powerful effect on the plants for the first six weeks, and caused them to grow with great vigour, so that they soon came to their full size, after which they ceased to grow ; whilst the plants in the other squares never made any rapid growth, but continued to grow slowly and steadily until the tops began to die off. In the middle of September, as the greater part of the tops were either dead or dying, they were gathered, and the potatoes taken up. The different manures were all applied at the rate of three hundred weight per acre, excepting the Phosphate and Sulphate of Lime, both of which were used at the rate of four and a half hundred weight per acre.

The quantity of Potatoes yielded by each square was as follows: the quantity of large or marketable Potatoes being distinguished from the small ones.

No. 1. Manured with Phosphate of Ammonia at the rate of 3 cwt. per acre. The produce was

Large tubers Small tubers	per rod 1		$\begin{gathered} \text { lbs. } \\ 53 \\ 17 \end{gathered}$	ton.	$\begin{aligned} & \text { cwt. } \\ & 16 \end{aligned}$	lbs.	
			per acre 11	78			
				1	13	40	
	Total	1		72	13	2	6
Dry haulm			61		9	0	

No. 2. Manured with Sulphate of Soda at the rate of 3 cwt. per acre. The produce was

Large tubers	per rod 1		$\begin{gathered} \text { lbs. } \\ 59 \\ 15 \end{gathered}$	per acre 12	$\begin{gathered} \text { cwt. } \\ 4 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{lbs} . \\ & 74 \\ & 27 \end{aligned}$
	Total	1	74	13	6	101
Dry haulm			5		8	4

No. 3. Manured with Common Salt at the rate of 3 cwt . per acre. The produce was

Large tubers Small tubers		t.	lbs.	ton.	wt.	$\begin{gathered} \text { lbs. } \\ 2 \end{gathered}$
	per		82	per acre 13	18	
			17	- 1	4	70
	Total	1	99	15	2	72
Dry haulm			8		11	35

No. 4. Manured with Muriate of Ammonia at the rate of $\mathbf{3}$ cwt. per acre. The produce was

No. 5. Manured with Phosphate of Lime at the rate of $4 \frac{1}{2}$ cwt. per acre. The produce was

No. 6. Manured with Muriate of Potash at the rate of $\mathbf{3} \mathrm{cwt}$. per acre. The produce was

No. 7. Not manured at all. The produce was

Large tubers Small tubers			lbs.	ton.	ewt.	lbs.
	per		31	per acre 10	4	105
			16	1	3	4
	Total	1	47	11	7	109
Dry haulm			$4 \frac{1}{2}$		6	39

No. 8. Manured with Sulphate of Lime at the rate of $4 \frac{1}{2} \mathrm{cwt}$. per acre. The produce was

Large tubers Small tubers		wt.	b	ton.	cwt.	rbs.
	per rod 1		32	per acre 10	6	59
			17	1	5	47
	Total	I	49	11	11	103
Dry haulm			4		5	96

No. 9. Manured with Sulphate of Ammonia, at the rate of $\mathbf{3} \mathbf{c w t}$. per acre. The produce was

No. 10. Manured with Sulphate of Magnesia at the rate of 3 cwt. per acre. The produce was

Large tubers Small tubers	cwt.		1bs.	ton.	ewt.	1bs.
	per		70	per acre 13	0	61
			13		19	33
	Total	1	83	13	19	94
Dry haulm			6		8	71

No. 11. Manured with Sulphate of Potash at the rate of $\mathbf{3}$ cwt. per acre. The produce was

Large tubers Small tubers	$\begin{array}{ll} & \text { cwt. } \\ \text { s } & \text { per rod } 1 \end{array}$		lbs.	$\begin{array}{r} \text { ton. } \\ \text { per acre } 11 \\ 1 \end{array}$	$\begin{gathered} \text { cwt. } \\ 0 \\ 0 \end{gathered}$	1649873
			42			
			14			
	Total	1	56	12	1	53
Dry haulm			$3 \frac{1}{2}$		4	96

No. 12. Manured with Nitrate of Soda at the rate of 3 cwt. per acre. The produce was

Large tubers Small tubers	$\begin{array}{r} \text { cwt. } \\ \text { per rod } 1 \end{array}$		1bs.	ton.	ewt.	Mhs.
			84	per acre 14	1	22
			20	,	8	67
	Total	1	104	15	9	88
Dry haulm			74		10	36

The proportion of tubers is by no means what might have been expected from the apparent size of the plants; there was very little difference perceptible between the plants manured with the three salts of Ammonia, the plants were equally healthy and no difference
could be seen in their size or appearance, yet the produce varied greatly, for on comparing the effect produced, it appears that the sulphate produced about twice the effect of the phosphate; and the muriate about twice as much as the sulphate. The following table exhibits the relative effect produced by each manure, on the tubers as well as on the haulm, the weight of the green haulm may readily be calculated by reckoning 100 lbs . of the green for every 11 lbs. of the dry plant.

Shortly after this experiment was commenced, three other squares of bread fruit Potato, in another part of the garden, were manured with Carbonate of Ammonia, Nitrate of Ammonia, and Muriate of Lime. The soil where these substances were applied, was richer, than where the above described experiments were made; and the fact that the salts were applied rather late, renders it impossible to compare the produce of the two experiments. The Nitrate and Carbonate of Ammonia, produced far less effect either on the haulm or tubers, than the other salts of Ammonia, which were applied to the plants in a younger state. The Muriate of Lime did not exert much influence on the growth of the tops, but it increased the yield of tubers nearly one fourth.

A third series of experiments was made with Peas. Twelve squares were sown with Blue Prussian Peas, on the 20th of March and on the 19 th of April the plants being about 3 inches high, they were manured with the same series of manures as had been
applied to the Potatoes，namely，Phosphate，Muriate and Sulphate of Ammonia，Sulphate of Soda，Nitrate of Soda，Common Salt， Phosphate and Sulphate of Lime，Sulphate and Muriate of Potash and Sulphate of Magnesia，the twelfth square being left untouched for comparison．The effects produced by these manures were far less marked than had been anticipated，the plants in all the squares grew well，and no luxuriant growth or darker coloured foliage indicated the ammoniacal manure，as had been the case with the Potatoes and Wheat．The only squares in which any difference could be perceived were those to which Common Salt and Nitrate of Soda had been applied，but even in these the superiority above the others was so very slight that it could not be perceived without a careful comparison．About the middle of Au－ gust the plants ceased to produce pods and began to wither up， they were therefore gathered and the seed threshed out．The following table shews the produce in seed and the weight of dry straw，produced by each square．

	Rod．				Acre．			
	seed．		straw．		Seed．		Straw．	
	lbs．		lbs．	oz．	ton．cwt．	lbs．	cwt．	lbs．
Nitrate of Soda			9	7	16	54	13.	57
Phosphate of Ammonia		12	8	143	18	31	12	80
Salt		6		9	17	76	15	11
Sulphate of Soda		0	9	$7 \frac{1}{2}$	18	64	13	57
Sulphate of Lime	13	1	9	11 量	18	75	13	101
Sulphate of Magnesia		31	10	0	18	97	14.	34
Sulphate of Potash	13	6	8	14를	19	19	12	80
Sulphate of Ammonia	13	10	10	$4{ }^{\frac{3}{4}}$	19	52	14	79
Muriate of Potash	15	012	10	$4{ }^{4}$	11	51	14	79
Phosphate of Lime	15	31	9	11量	1	84	13	101
Nothing	15	5 䨟	9	7	1	104	16	54
Muriate of Ammonia		123	12	8	12	61	17	98

A fourth series of experiments was made with Mangel Wurzel． Sixteen squares sown with Red Mangel Wurzel on the 12th of May，were manured on the 26th of June；the various substances being applied as a top dressing，sprinkled round the young plants， as was done with the Potatoes，to a distance of about 6 inches on either side of the rows．The plants were 12 inches apart and the distance between the rows was 24 inches．The roots were taken
up on the 23 rd of November and weighed. The following were the manures employed and the produce they yielded.

No. 1. Manured with Muriate of Lime at the rate of $\mathbf{6} \mathrm{cwt}$. per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	OZ.	cwt.	lbs.	ton.	cwt.	1bs.
Roots	4	13	5	98	46	19	88
Tops		113		100	7	4	7
Total	15	83	6	86	54	3	85

No. 2. Manured with Phosphate of Ammonia at the rate of 6 cwt. per acre. The produce was

No. 3. Manured with Sulphate of Potash at the rate of 6 cwt . per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	cwt.	lbs.	ton.	cwt.	lbs.
Roots	3	14	4	80	37	14	55
Tops		$8 \frac{1}{3}$		72	5	2	93
Total	14	$6 \frac{1}{3}$	5	40	42	17	36

No. 4. Manured with Muriate of Ammonia at the rate of 6 cwt . per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	Oz.	cwt.	lbs.	ton.	cwt.	lbs.
Roots	3	6	4	13	32	18	101
'Iops		10		85	6	1	49
	al 4	0	4	98	39	0	38

No. 5. Manured with Nitrate of Potash, at the rate of $\mathbf{6 w t}$. per acre. The produce was

	Average weight.		Rod.		Acre.		
	Ibs.	ox.	ewt.	1bs.	ton.	cwt.	lbs.
Roots	8	12	4	67	36	16	53
Tops		81	*	69	4	18	80
	4	44	5	24	41	15	21

No. 6. Manured with Common Salt, at the rate of 6 cwt . per acre. The produce was

No. 7. Manured with nothing, left as a standard of comparison. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	cwt.		ton.	cwt.	lbs.
Roots	3	2	3	96	30	17	43
Tops		61		53	3	16	11
Total	l 3	$8 \frac{1}{4}$	4	37	34	13	54

No. 8. Manured with Muriate of Potash, at the rate of 6 cwt . per acre. The produce was

	Average weight		Rod.		Acre.		
	lbs.	oz.	cwt.	lbs.	ton.	cwt.	lbs.
Roots	3	-	4	40	34	16	10?
Tops		73		68	4	15	77
Total	4	03	4	108	39	12	66

No. 9. Manured with Nitrate of Soda, at the rate of 6 cwt . per acre. The produce was

Average weight.			Rod.		Acre.		
	lbs.	ox.	ewt.	lbs.	ton.	cwt.	lbs.
Roots	3	8	4	29	34	2	2
Tops		$8 \frac{1}{2}$		71	5	2	5
Total	4	04	4	99	39	4	7

No. 10. Manured with Sulphate of Magnesia, at the rate of 6 cwt . per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	ewt.	1bs.	ton.	cwt.	1 bs .
Roots	3	3	3	103	31	7	108
Tops		63		58	4	3	6
Total] 3	93	4	49	35	11	2

No. 11. Manured with Sulphate of Soda, at the rate of 6 cwt. per acre. The produce was

No. 12. Manured with "Superphosphate of Lime," at the rate of 6 cwt . per acre. The produce was

No. 13. Manured with Carbonate of Soda, at the rate of 6 cwt . per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	cwt.	lbs.	ton.	cwt.	1bs.
Roots	3	5	3	103	32	13	47
Tops		63		57	4	1	30
Total	3	113	4	48	36	14	77

No. 14. Manured with Sulphate of Ammonia, at the rate of 6 cwt. per acre. The produce was

	Average weight		Rod.		Acre.		
	1 bs .	oz.	cwt.	lbs.	ton.	cwt.	lbs.
Roots	2	5	2	96	22	17	62
Tops		6		51	3	13	72
Total	12	11	3	35	26	11	22

No. 15. Manured with Phosphate of Soda, at the rate of 6 cwt . per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	cwt.	Ibs,	ton.	cwt.	lbs.
Roots	2	10	3	23	25	13	19
Tops		$5 \frac{1}{2}$		48	3	8	62
Total	2	151	3	71	29	1	81

No. 16. Manured with Rotten Dung, at the rate of 65 cubic yards per acre. The produce was

	Average weight.		Rod.		Acre.		
	lbs.	oz.	ewt.	1bs.	ton.	cwt.	lbs
Roots	3	7	4	26	33	16	101
Tops		8		68	4	15	65
Total	3	15	4	94	38	12	54

The following table shews the increase of produce caused by each manure, calculated per acre.

	Roota:					Tops.							Roots and Tops.					
	Whole:		Increase.			Whole.			Increase.				Whole.			Increase.		
Sulphate of Ammonia	ton.	cwt. lbs.	ton.	cwt.	lbs.		. cw	Ibe.		on.	cwt.	Iba.		,	Ibu.	ton	cwt	lbs.
	22	1762	.			3	13	72			-	-	26	11	22	-		
Phosphate of Soda	25	1319		*	-	3	8	62			.	-	29	1	81	-	-.	
Superphosphate of Lime	26	1090		.		3	8	18			.	-	29	18	108	.	.	
No Manure . .	30	$17 \quad 43$	-.	.		3	16	11					34	13	54	-		
Sulphate of Magnesia	31	7108		10	65	4	3	6			6	107	35	11	2	-	17	60
Sulphate of Soda	32	717	1	9	86	3	10	57			-	\cdots	35	17	74	1	4	20
Carbonate of Soda	32	$13 \quad 47$	1	16	4	4	1	30			4		36	14	77	2	0	23
Muriate of Ammonia	32	18101	2	1	58	6	1	49			5	38	39	0	38	4	6	96
Rotten Dung	33	16101	2	19	58	4	15	65			19	54	38	12	54	3	19	0
Nitrate of Soda	34	16 2	3	4	71	5	2	5			5	105	39	4	7	4	10	65
Muriate of Potash	34	16101	3	19	58	4	15	77			19	66	39	12	66	4	19	12
Phosphate of Ammonia	35	1579	4	18	36	4	5	1			8	102	40	0	80	5	7	26
Nitrate of Potash.	36	$16 \quad 53$	5	19	10	4	18	80			2	69	41	15	21	7		79
Sulphate of Potash	37	1455	6	17	12	5	2	93		1	6	82	42	17	36	7	3	94
Common Salt	36	1497	7	18	54	5	2	93		1	6	82	43	17	78	9	5	24
Muriate of Lime		1988		2	45	7	4	7			7	108	54	3	85	19	10	41

VOL. III. 2ND SERIES.

There are several points worthy of notice in these experiments, amongst which is the effect of Muriate of Lime. In nearly all the experiments which have been made at the Gardens, marked effects have been produced by manures containing Muriatic acid; hence it was reasonable to conclude beforehand that the Muriate of Lime would prove a good manure. Other considerations gave it a still higher interest ; from previous experiments it had been ascertained that a very small quantity of Muriate of Lime in a soil, exerted, in consequence of its hygrometric properties, powerful influence on the retentive power of the soil for moisture. It was, however, apprehended that the presence of any quantity of the salt, even though small, might prove injurious to vegetation. The experiments above described shew that this is not the case; the quantity employed was considerable, and so far from doing any harm, it on the contrary produced a very excellent effect.

The experiments on the hygrometric powers of soils, just referred to, were part of an extensive series, undertaken with a view of ascertaining what influence saline manures exert on the retention of moisture. Weighed quantities of natural and artificial soils of various natures were moistened, some with pure water, and others with water holding in solution minute quantities of different saline substances; the soils were carefully weighed from day to day, and the daily loss of water, subtracted from the original quantity of moisture which the soils contained, shewed the relative retentive power of the soil under examination. The following short table shews the result of one of those experiments in which twenty-five portions of fine siliceous sand weighing 2000 grains each, were each moistened with 500 grains of pure water, and weighed every day. To the first five portions nothing but the water was added, the next five received in addition one grain of Muriate of Lime, the next five two grains of that salt, the next five, five grains, and the remainder ten grains of the Muriate.

The mean of each five weighings, alone is given; the numbers shew the weight of water retained by each portion during the experiment.

In the experiment on Mangel Wurzel, it is remarkable that no effect appeared to be produced by the Sulphate of Ammonia, or by the Super-phosphate of Lime; two manures which had been expected to produce the most marked effects. When the manures were applied, it was observed that the squares Nos. 12 and 14, looked rather poorer than the others; the young plants were smaller, and less flourishing; it was for this reason that the two manures supposed to be the most powerful were applied to them, but the plants did not improve, and remained inferior in size and appearance to the last. It is proper to state this, or otherwise the experiment might appear unfavourable to the use of those manures, which would certainly be an incorrect conclusion.*

[^4]As has already been stated, the series of practical experiments in these crops were undertaken with a chemical object in view ; it is almost unnecessary to observe, that the relative quantity of produce obtained by each manure, was a matter of comparatively secondary importance; the main object was to connect changes in chemical composition, or quality, with the action and absorption of inorganic manures. In attaining these objects, the richness or variable composition of the soil, exerts little influence, though in judging of the relative practical effects of the manures employed, it causes such irregularities and discrepancies, as to take from the results all pretensions to rigid accuracy in that respect. Very marked differences were produced in the plants experimented on, by the salts applied; and it now remains to investigate the quality and nature of the substances absorbed by the different crops thus manured. The result of that investigation will be the subject of a future communication to the Society.

38, Bedford Row,

Jan. 10, 1844.

[93]

IV. The result of some Experiments in the Garden of the Society on the action of Fertilizing Agents upon the Lawn.
(Communicated by the Garden Committee.)

LIike all places, which have been long cultivated, the Garden of the Horticultural Society is by no means well suited to experiments with manures. Nevertheless it has appeared desirable to employ it for such ends, quantum valet, and accordingly, among other things, attempts have been made to ascertain the effects of various manuring agents upon the grass of lawns. The results of these experiments are now detailed.
The lawn in the Society's Garden was the scene of operations, and the experiments were necessarily brought to a close in the beginning of May, before the grass could run up into hay ; so that the results about to be mentioned do not express the quantity of produce per acre with reference to a hay crop, but merely the relative productiveness of the ground under equal circumstances.

The notes upon them were made at four different times during the season, first in November, shortly after the application of the manures; secondly, in the beginning of February ; thirdly, in the beginning of April, and fourthly, on the day when the grass was cut and weighed. The printed remarks are the substance of all such notes, but more particularly of those made at the time when it was cut.

Each experiment occupied one rod of ground, and great care was taken that the soil and lawn should be as nearly as possible the same in each experiment. A part of the trials was made in the months of October and November 1842, the remainder in March 1843, with a view to a determination of the difference which season makes in the application of such substances. The following table shews with what success.

No.	Date of Application.	Date of cutting the grass.	Substances used.	Quantity per acre.	Produce per acre green.	Produce per acre dry.	Remarks.
1	$\begin{aligned} & 1842 . \\ & \text { Oct. } 21 . \end{aligned}$	1843. May 4.	Woolwich Humus.	2 tons.	$\begin{gathered} \text { T. Cwt. lbs. } \\ 2 \quad 1864 \end{gathered}$	$\begin{gathered} \text { T. Cwt. lbs. } \\ 0 \quad 864 \end{gathered}$	No perceptible difference between this square and the ordinary grass.
2	Ditto.	Ditto.	Soot.	2 cwt .	21864	0864	Slightly greener than the ordinary grass.
3	Ditto.	Ditto.	Nitrate of Soda.	1 cwt .	3864	01148	Rather greener and longer, but no very perceptible difference.
4	Ditto.	Ditto.	Ditto.	2 cwt .	31716	01580	Like the last, but slightly greener.
5	Ditto.	Ditto.	Nitrate of Potash.	1 cwt .	3864	01150	Very slightly greener than the common grass.
6	Ditto.	Ditto.	Ditto.	2 cwt .	41296	01580	Greener and much stronger than the last.
7	Ditto.	Ditto.	Sulphate of Soda.	2 cwt .	31148	01150	No perceptible difference between this and the ordinary grass in colour, but rather thicker and longer.
8	Ditto.	Ditto.	Gas water.	320 gall.	6864	1150	Quite burnt and brown in 48 hours after application and to all appearance dead, but the grass began to recover in 10 days, and in a month became quite green. The white clover was destroyed.
9	Ditto.	Ditto.	Ditto.	640 gall.	6718	1434	Much burnt like the last, and in less time, the square began to recover in about 14 days, but part of the grass was quite killed. That which recovered grew much stronger than any in the preceding square, the clover was entirely destroyed.
10	Ditto.	Ditto.	Gas Lime.	1 ton.	4864	01580	Slightly greener than the common grass but rather thicker.
11	Ditto.	Ditto.	Ditto.	2 tons.	3432	01298	Like the last; slightly greener but rather slenderer than the common grass.
12	Ditto.	Ditto.	Sulphate of Iron.	25 lbs.	200	0716	No difference in colour, but rather slenderer and thinner than the ordinary grass.
13	Ditto.	Ditto.	Ditto.	50 lbs.	200	0864	Like the preceding in colour, but stiffer in appearance.
14	Ditto.	Ditto.	Ditto.	100 lbs.	21296	01296	Like the preceding in colour, but rather stronger and a little longer.
15	Ditto.	Ditto.	Muriate of Lime.	2 cwt .	2100	0716	Rather injurious at first, afterwards no visible difference between this and the ordinary grass.
16	Ditto.	Ditto.	Charcoal dust.	2 cwt .	300	0716	No perceptible difference between this and the ordinary grass.

No.	Date of Application.	Date of cutting the grass	Substances used.	Quantity per acre.	Produce per acre green.	Produce pe acre dry.	Remarks.
17	1842. Oct. 21.	1843. May 4.	Chloride of Lime.	1 cwt .	$\begin{aligned} & \text { T. Cwt. Ibs. } \\ & 41432 \end{aligned}$	T. Cwt. lbs $0 \quad 14 \quad 32$	Partially burnt in a week after application, and the burning seemed to injure the roots as well as the tops. After the grass recovered, there was no perceptible difference between it and the common grass, but the clover grew remarkably strong in this square the following spring.
18	Ditto.	Ditto.	Ditto.	2 cwt .	31148	086	More burnt than the last, and the grass much injured. Clover strong and abundant in the spring.
19	Ditto.	Ditto.	Sulphate of Copper.	25 lbs.	2148	0580	No perceptible effect on the grass, no annuals or weeds left alive, but the moss not injured.
20	Ditto.	Ditto.	Ditto.	50 lbs .	$2 \begin{array}{lll}2 & 1 & 80\end{array}$	$0 \quad 580$	Like the last.
21	Ditto.	Ditto.	Ditto.	100 lbs .	2100	0716	Like the last.
22	Ditto.	Ditto.	Daniel's Manure.	$\left\|\begin{array}{r} 2 \text { cwt. } 37 \\ \text { 1bs. or } 80 \\ \text { gallons. } \end{array}\right\|$	2580	$0 \quad 718$	No effect.
23	Ditto.	Ditto.	Gypsum.	320 lbs .	2716	0716	No effect.
24	Ditto.	Ditto.	Nothing.		21432	0864	
25	Ditto.	Ditto.	Gypsum.	640 lbs.	2296	0	No perceptible difference in colour but the grass appeared slenderer than in either of the two preceding squares.
26	Ditto.	Ditto.	$\begin{aligned} & \text { Gypsum } \\ & \text { and } \\ & \text { Gas water. } \end{aligned}$	$\begin{aligned} & 320 \mathrm{lbs} . \\ & 160 \text { gall. } \end{aligned}$	21716	0110	Very much burnt in 48 hours after application; began to recover in 10 days, became very green and long. but not so strong or so fine as the next square.
27	Ditto.	Ditto.	Ditto.	640 lbs. mixed with 320 gallons.	51432	1296	Like the preceding very much burnt ; much longer in recovering; it afterwards grew very strong and green. Some of the grass in this square was killed, but the remainder soon covered the place of that which was destroyed.
28	Ditto.	Ditto.	Guano.	2 cwt .	$2 \quad 148$	0864	Very slightly but perceptibly greener than the ordinary grass.
29	Oct. 25.	May 9.	Gas water fixed with Sulphuric acid.	$\left\lvert\, \begin{gathered} 320 \mathrm{gall} \\ 20 \mathrm{lbs} . \end{gathered}\right.$	$6 \quad 298$	1432	This only slightly marked the grass, and did not destroy the top. It became very green in a much shorter time, and stronger. Daisies and all annual weeds and moss were destroyed, and the clover became weak and thin.
30	Ditto.	Ditto.	Gas water fixed with Sulphate of Iron.	320 gall. 20 lbs	5866	100	Like the preceding in colour and other respects, except that it is not quite so atrong ; little or no clover appeared in this square.
31	Ditto.	Ditto.	Gas water and sulphate of copper.	320 gall. 20 lbs.	5864	01864	Not nearly so fine as the two preceding squares, but very green, with a large quantity of clover: but no weeds.

No.	Date of Application.	Date of cutting the grass	Substances used.	Quantity per acre.	Produce per acre green.	Produce per acre dry.	Remarks.
32	$\begin{aligned} & 1842 . \\ & \text { Oct. } 25 . \end{aligned}$	$\begin{aligned} & 1843 . \\ & \text { May } 9 . \end{aligned}$	Gas water and Chloride of Lime.	$\begin{gathered} 320 \text { gall. } \\ 80 \mathrm{lbs} . \end{gathered}$	$\begin{gathered} \text { T. Cwt. lbs. } \\ 5 \quad 296 \end{gathered}$	$\begin{array}{ccc} \text { T. Cwt. } \\ 1 & 0 . & 0 \end{array}$	Stronger and thicker than the last, but not so long; in other respects the same; no clover.
33	Ditto.	Ditto.	Corrosive Sublimate.	20 gall. of the saturated solution.	2434	$0 \quad 716$	No difference between this and the ordinary grass; certainly not injurious; worms abundant in this square.
34	Ditto.	Ditto.	Wood Ashes	4 cwt .	11716	$0 \quad 432$	Grass very thin.
35	Ditto.	Ditto.	Gypsum.	2 cwt .	1432	$0 \quad 298$	Grass very thin.
36	Ditto.	Ditto.	Ditto.	4 cwt .	11864	$0 \quad 432$	The grass a little longer, but nearly as in the preceding square; rather yellow.
37	Nov. 7.	Ditto.	Sulphur.	cwt. lbs. 296	11432	$0 \quad 432$	Rather yellow and stunted.
38	Ditto.	Ditto.	Gas liquor. Water.	240 gall. 240 gall.	31432	01298	Very green and fine with a little weak clover.
39	Ditto.	Ditto.	Gas liquor. Water.	200 gall. 280 gall.	2582	0864	Less robust and green than the preceding.
40	Ditto.	Ditto.	Gas liquor. Water.	$160 \text { gall. }$	2296	$0 \quad 716$	Less strong and green than the last.
41	Ditto.	Ditto.	Gas liquor. Water.	120 gall. 360 gall.	2117	070	Like the last.
42	Ditto.	Ditto.	Gas liquor. Water.	$\begin{aligned} & 80 \text { gall. } \\ & 400 \text { gall. } \end{aligned}$	11716	0434	Very slight difference between this and the ordinary grass; a little greener.
43	Ditto.	Ditto.	Gas liquor. Water.	$\begin{gathered} 40 \text { gall. } \\ 440 \text { gall. } \end{gathered}$	1296	$0 \quad 298$	Hardly any difference between this and the ordinary grass; slightly greener.
44	Ditto.	Ditto.	Bone ash.	$7 \quad 16$	1580	$0 \quad 298$	
45	Ditto.	Ditto.	Ditto.	364	102	$0 \quad 296$	\} these and the ordinary grass. The
46	Ditto.	Ditto.	Sulphuret of Potash.	148	1298	0298	\int grass appeared tough when cut.
47	Nov. 9.	Ditto.	Strong nitric acid.	10 gall.	$3 \quad 296$	0864	Much greener and longer than the ordinary grass.
48	Ditto.	Ditto.	Strong muriatic acid.	10 gall.	300	0864	Longer but not greener than the ordinary grass.
49	Ditto.	Ditto.	Nitro-muriatic acid.	10 gall.	21432	0716	No visible difference.
50	Ditto.	Ditto.	Pearlash.	$3 \mathrm{ct}$.4 lb .	1176	0434	Rather injurious; burnt the grass at first.
51	Ditto.	Ditto.	Grass cuttings rotted with gas water.	4 tons.	1864	$0 \quad 298$	Strong and green in January; no perceptible difference in April. Probably checked by the cold spring.
52	Ditto.	Ditto.	Urate.	1 ton.	11716	$0 \quad 432$	No difference between this and the common grass.
53	Ditto.	Ditto.	Chatwin's artificial manure No. 3.	- 1 ton.	11580	0434	Very green and strong in January, but no difference between it and the ordinary grass in April. See No. 51.
34	Ditto.	Ditto.	Woolwich Humus. Lance's	1 ton.	2100	0718	Slightly greener in January and thicker but in April hardly different in colour from the ordinary grass. See [when cut. No. 51 .
55	Ditto.	Ditto,	Carbon.	1 ton.	11580	0432	No effect. The grass appeared tough

It is no doubt true that these, like all other single experiments, are open to objection; and that the conclusions to which they seem to point cannot be regarded as entirely satisfactory. Nevertheless they are by no means undeserving consideration.

In every case the manures in which Ammonia is a principal ingredient proved by far the most effectual. For example while unmanured ground produced of dry grass per acre, 8 cwt .64 lbs ., and Nitrate of soda, and Nitrate of Potash, at 2 cwt. per acre yielded only 15 cwt. 80 lbs ., Ammoniacal manures gave as follows: Gas water fixed with Sulphate of iron, 1 ton; the same mixed with Bleaching powder, 1 ton ; Gas water alone, (320 gallons per acre), 1 ton 1 cwt .50 lbs .; Gas water fixed with Gypsum, 1 ton 2 cwt. 96 lbs. ; the same fixed with Sulphuric acid, 1 ton 4 cwt. 32 lbs.; the same alone (640 gallons per acre), 1 ton 4 cwt. 34 lbs.

It also appeared that Bleaching powder (Chloride of lime) produces effects nearly equal to those of Nitrate of soda. For 2 cwt. of soda yielded per acre, 15 cwt. 80 lbs ., while 1 cwt. Bleaching powder, produced 14 cwt .32 lbs . This, however, was only when the Bleaching powder did not exceed 1 cwt. an acre; when the quantity was doubled the produce sank to 8 cwt . per acre; and as the grass was burnt by even the smaller quantity, it is not improbable (and certainly merits enquiry) that half a cwt. per acre would have produced a still better effect.

It was also found that 160 gallons of Gas water and 160 lbs. of Gypsum produced, under exactly equal circumstances, as much dry grass as 640 lbs . of pure sulphate of Ammonia ; viz., 1 ton and 2 lbs. in both cases; a circumstance of some importance when it is borne in mind that the gas water and gypsum cost scarcely a quarter so much as pure sulphate of Ammonia.

At the suggestion of Mr. Edward Solly, the effect upon grass of certain reputed Poisons was made the subject of enquiry ; when it was found that the following substances had rather a beneficial action, viz., strong Nitric acid, at the rate of 10 gallons per acre, strong Muriatic acid at the same rate; and that Corrosive Subli-
mate, at the rate of 20 gallons of the saturated solution per acre, and Nitromuriatic acid, at the rate of 10 gallons per acre, only lowered the produce to the extent of 1 cwt .48 lbs . per acre.

It has been found that the appearance of the grass when growing, and its quantity when first cut, are no guides to the actual value of a given manure; for it appears that in some instances the quantity of mere water contained in the grass is very considerably greater than in others. For example the dried produce obtained from grass treated with Muriate of lime was only $1-7$ of the original weight ; but Sulphate of soda, Nitrate of potash, Nitrate of soda, in small quantity, and Gas water alone, furnished 1-6; and Nitrate of potash, Nitrate of soda, in larger quantity, Gas water mixed with Sulphuric acid, or with Sulphate of iron, or with bleaching powder, gave 1-5; while the lime used in purifying gas by the moist way yielded 1-3. So that while 1 ton of fresh grass produced by means of gas lime would yield $d r y 6 \mathrm{cwt} .74 \mathrm{lbs} ., 1$ ton from Nitrate of potash, Nitrate of soda, in large quantities, Gas water mixed with Sulphuric acid, or with Sulphate of iron, or with Bleaching powder, give but 4 cwt ; 1 ton from Sulphate of Soda, Nitrate of potash, Nitrate of soda in small quantities and Gas water alone, give only 3 cwt. 37 lbs .; while 1 ton from Muriate of lime yields so little as 2 cwt. 96 lbs . or considerably less than half as much as the first.

Among the manures which produced no effect on this occasion was Woolwich Humus, a substance consisting of ancient decayed vegetable remains found in excavating some docks at Woolwich, Soot, Sulphate of iron, Guano; while Poittevin's manure, Dutch manure, Clarke's Aimatic compost, Lance's Carbon, and Chatwin's artificial manure all diminished the quantity of dry grass more or less. It does not however follow that they are prejudicial, or even useless; because Woolwich humus, which in these experiments was of no value, was found in the Kitchen garden a very useful substance. It is possible that the manner of application, a top dressing, or the season, autumn, were unfavourable to their action.

Note by Mr. E. Solly.

It is, I think necessary to observe, that, notwithstanding all the care that was taken in selecting the ground, the turf which formed the subject of the preceding experiments, varied greatly in quality : each experiment was made it is true on a small space of ground, but as the number of experiments was considerable, the space over which the whole series extended was necessarily large ; and included a considerable variety of turf, hence it is impossible to compare the produce of the different squares with the ordinary unmanured grass of the Lawn, as the quantity of the latter is very variable. The produce of the standard square No. 24, was 8 cwt . 64 lbs. dry hay, whilst that of No. 44 which had been manured with 7 cwt. of Bone ash, was only 2 cwt. 98 lbs. dry hay, which is about the quantity which would have been given by a similar square without any manure at this part of the lawn. In the same way, it may be remarked that the superior produce of the strong mineral acids, Nos. 47, 48 and 49 over that of Bone ash, Nos. 44 and 45 , is in part due to the difference naturally existing between the soil and turf where the experiment was made.

The experiments with ammoniacal compounds are amongst the most satisfactory, and in those the increase of produce is so large as to be quite independent of variations in the soil, \&c. It is rather unfortunate that the strength of Gas liquor varies very greatly, so that the same quantity at one season of the year frequently contains much more ammonia than at others. The Gas liquor used in these experiments was very strong; every gallon required about 4670 grains of the strongest Sulphuric acid to neutralise the ammonia, and on evaporation left nearly 20 oz . of crystallised Sulphate of ammonia. The Gas liquor commonly employed is much weaker; some used in the garden the preceding year, required only about 1600 grains of acid per gallon, and gave 7 oz . of the crystallised salt. The object which I had in the experiments 38 to 43 , was to ascertain what quantity of Gas liquor produced the maximum effect
which could be advantageously obtained, or rather what was the largest quantity which could be profitably employed as manure. It is evident that this experiment was not carried out quite far enough as the maximum of produce was not obtained. No. 38 to which 240 gallons of Gas liquor, equal to 300 lbs . of Sulphate of ammonia, was applied, produced a far better crop than No. 39 which received 200 gallons or 250 lbs. of the salt: the increase of grass being in a much greater proportion than the increased quantity and cost of the manure. There appears to be little doubt that in situations where Gas liquor can be had readily, and applied without difficulty, it is preferable to Sulphate of ammonia; but on the other hand, the latter, though rather more expensive, can be spread more easily, and is far less costly in carriage.
V. Notes made in the Garden of the Horticultural Society upon the rate of growth by plants at different periods of the day. By the Vice Secretary.
(Communicated by the Garden Cominttee.)

THE great differences that occur in nature between the relation of plants to the atmosphere, at different periods of the day, do not appear to have often suggested the necessity of observing the degree in which vegetation is affected by such circumstances in their rate of growth. And yet we must suppose that the developement of a plant under the influence of a bright sun, or in a damp and clouded atmosphere, in a cool night, or in a chilly morning before sunrise, will be materially dissimilar. It is in very few cases, however, that physiologists have turned their attention to such variations. For this reason, and more especially because the operations of the forcing gardener are very much connected with the enquiry, a series of observations upon the subject was made four times daily, in the Garden of the Society, by Mr. James Donald, during the months of March and April 1843.

The plants selected for Experiment were a Sweet willow (Salix pentandra), a Fig, the Onyx Passionflower, (Passiflora onychina), and a Vine. The place in which the observations were made was a damp curvilinear stove, used for the cultivation of tropical plants; its average temperature being 69°; that is 73° by day and 65° by night. The plants were fastened as they grew, to a lath, on which the amount of lengthening was marked off four times a day, viz. at 6 A.M.; Noon ; 6 P.M. ; and 11 P.M.

1. Observations on the elongation of the Sweet Willow (Salix pentandra) at different periods of the day and night, in a curvilinear stove-average temperature $69^{\circ} . \quad(t=$ above $40 .-=$ below .05.)

2. Observations on the elongation of the Fig at different periods of the day and night, in a curvilinear stove-average temperature 69°.
$(+=$ above $.15-$ below .05)
 average temperature $69^{\circ} .(+=$ above $.70-=$ below ．10）

1843.	兑		External Tempera－ ture and Remarks．	总	¢ ¢ E	External Tempera－ tare and Remarks．	范	E E E	External Tempera－ ture and Remarks．	$\stackrel{\oplus ゙}{E}$		External Tempera－ ture and Remarks．	－	
Mar． 1							6 P	0.15	$40^{\circ} \text { Clear }$	11 P．M．	0.13	33° Clear	0.40	
2							6 P．	0.18			018		0.68	
3							－	0.23	42° Clear	－	0.31	27° Ditto	1.13	
4							－	0.60	41° Ditto	－	－0．05	27° Ditto	0.96	
0							－	0.20		－	0.47	34° Ditto		
6							－	0.22	44° Clear	－	0.21	33° Clear	$\begin{aligned} & 0.84 \\ & 0.77 \end{aligned}$	
7							0.14	46° Foggy	－	0.21	32° Foggy	$\begin{array}{ll} 1.00 \\ 10.83 \end{array}$		
8							－	0.35	45° Clear	－	0.17		31° Clear	
9							－	0.16	38° Cloudy	－	0.45	30° Cloudy	$\left[\begin{array}{l} 0.87 \\ 1.15 \end{array}\right.$	
10							－	0.33	44° Ditto	－	0.19	38° Ditto	1.15	
11							—	0.41		－		41° Very dark		
12							0.49	50° Ditto	0.40		47° Dark	1.06		
13							-	0.50	52° Ditto	—	0.55	45° Very dark	1.68	
14							－	0.31	56° Ditto	－				
1.8							－		57° Ditto	－	0.26	48° Overcast 49° Dark（rain）	1.48 11.54	
16							－	0.63	57° Fine	－	0.13		$\begin{aligned} & 1.54 \\ & 1.72 \end{aligned}$	
17							－	0.31	64° Ditto	－	0.52	41° Cloudy ditto	$\begin{aligned} & 1.72 \\ & 1.08 \end{aligned}$	
18							－	0.14		－	0.59	40° Clear 46° Ditto	－0．99	
19							0.53	55° Foggy	－	－0．09	46° Ditto 44° Very dark			
20							－	0.53	55° Foggy	－	－0．09	${ }^{4 .} 0^{\circ}$ Cery ${ }^{\circ}$	1.35	
21								0.48	63° Cloudy		0.48	51° Ditto ditto）	1.45	
22							－	0.46	59° Ditto		0.30	52° Cloudy	151	
23 24							－	+0.76 0.29	60° Ditto		0.33 0.29	47° Clear	1.43	
24 25							－	0.50	64° Ditto		0.35	49° Ditto	1.3	
26							＿	0.32	55° Ditto		－0．08	44° Cloudy	1.03	
27							－	0.11	51° Flying clouds	－	0.12	40° Dark	0 W	
28							－	0.28	46° Fine	－	0.21	38° Ditto	0.14	
29							－	0.55	51° Ditto	－	024	33° Ditto	1.00	
30							－	0.25	56° Ditto	－	0.25	39° Clear	0，88	
31							－	＋0．79	54° Ditto	－	0.34	51° Dark（rain）	1.85	
Apr． 1	－	059	46° Ditto	－	0.47	55° Cloudy		－	0.32	58° Clear	－	0.27	49 Cloudy	1.55
2	－	0.31	50° Ditto			55° Ditto（rain）	－	0.31	59° Cloudy	－	0.33	52° Ditto	1.08	
3	－	0.63	$48^{\prime \prime}$ Ditto（min）	－	0.3	56	－	0.50	59° Ditto	－	0.25	50 Dark	1.81	
4	－	0.47	46° Ditto ditto	－	0.10	54° Clear	－	0.50	61° Fine	－	0.30	49. Clear	1．32	
5	－	0.55	41° Ditto		0.10	54 Clear	－	0.50	57° Ditto	－	0.25	48 Ditto	1.84	
6	－	0.27	38 Ditto	－	0.31	52	－	＋0．72	56° Cloudy	－	0.25	44. Ditto	1.04	
8	－	0.24	51° Ditto	－	-0.07	57° Ditt	－	0.26	$5.5{ }^{\circ}$ Ditto	－	0.20	51. Cloud	0.35	
8	－	0.40	＋4＂Clear	－	0.13	53° Clear	－	0.17	62° Clear	－	0.10	50° Ditto	1.08	
9	－	0.13	39 Cloudy	－	0.34	46° Cloud	－	0.29	59° Ditto	－	0.26	45 Ditto	1.1	
11	－	0.34	32．Clear	－	0.34	44° Clear		0.	47° Cloudy	－	7	34° Clear	1.28	
12	－	0.20	${ }^{26}$ Ditto	－	0.19	42° Bright sun		42	49		0.34	31° Ditto	133	
13	－	0.32	28° Ditto	－	0.10	42° Ditto	－	0.67	48° Ditto		0.23	33° Ditto	1.20	
14	－	0.10	24^{\prime} Overcast		0.23	42° Ditto	－	0.50	48° Ditto		0.20	31° Ditto	1.2	
15	－	0.20	42° Cloudy		0.06	48° Cloudy	－	＋0．82	54° Cloudy	－	0.11	48° Cloudy	1.0	
16	－	0.39	47° Clear		0.34	55° Ditto	－	0.24	58° Ditto	－	0.22	52° Ditto	1.0	
17	－	0.42	42° Ditto	－	0.60	56. Clear［8u	－	0.60	63° Clear	－	0.60	51 Clear	1.3	
18	－	022	33° Ditto		22	57° Very bright	－	0.60	65° Fine	－	0.45	49．Ditto	1.6	
19	－	0.28	35° Ditto		0.19	52° Brito	－	0.65	67° Ditto	－	0.58	50 Ditto	0 ¢	
21	－	0.57	41° Ditto	－	0.23	63° Very dit	－	0.26	63° Ditto	－	0.16	48 Ditto	1.5	
2\％	－	0.60	36 Ditto	－	0.24	57° Bright sun	－	0.52	70° Ditto	－	0.23	51. Ditto	1.50	
23	－	n． 30	26．Ditto		0.27	52° Ditto		0.24	65° Ditto	－	0.42	50 Cloud	1.4	
24	－	013	28 Foggy		0.50	51° Very bright	－	0.39	59 Dit		0.28	3° Ditto	1.3	
2．	－	0.30	27 Cloudy		0.73	54° Bright sun	－	050	60°		0.34	33° Cloudy（rain		
					0.73	47 Fine	－	0.15	56° Ditto	－	0.15	40° Dark		
					13.41	$=.239$ wevage．		22.44	$=.400$ average．		16.10	$=.289$ arerage		

4. Observations on the elongation of the Vine at different periods of the day and night, in a curvilinear Stove - average temperature 69°.
$(+=$ above $.70-=$ below .10$)$

1843.	$\frac{:}{i}$	$\begin{aligned} & \text { © } \\ & \text { © } \\ & \text {. } \end{aligned}$	External Tempera ture and Remarks.	范		External Temperature and Remarks.	$\sum_{\dot{B}}^{\dot{g}}$	发	External Temperature and Remarks.	E.		External Tempera. ture and Remarks.	
Mar 1	6 A M	0.00	31° Cloudy	Noon	0.20	35° Cloudy	6 P.M.	0.34	40° Clear	11 P.M.	012	33° Clear	0.66
2	-	0.32		Noon	0.55	36° Bright sun		0.31			0.31	33° Cloudy	1.49
3	-	0.37	24° Clear	-	0.62	35° Very bright		0.54	42° Fine		0.28	27° Ditto	1.81
4	-	0.52	30° Cloudy	-	$+0.74$	37° Flying clouds	-	0.50	41° Ditto	-	0.14	27° Ditto	1.90
5	-	0.22	18° Ditto (rain)	-	038	35° Cloudy	-	0.38	46° Fine	-	0.28	34° Ditto	1.26
6	-	0.66	31° Ditto	-	0.52	39° Ditto	-	0.38	44° Clear	-	0.25	33° Clear	1.81
6	-	0.49	20° Foggy	-	0.42	34° Ditto	-	0.39	46° Foggy	-	0.40	$32^{\circ} \mathrm{Fogg} y$	1.70
8	-	0.33	24° Ditto	-	0.66	39° Clear	-	0.54	45° Clear	-	0.46	31° Clear	1.59
9	-	+0.70	28° Cloudy	-	0.47	37° Cloudy	-	0.43	38° Cloudy	-	0.47	30° Cloudy	2.07
10	-	0.50	24° Ditto	-	0.54	39° Ditto	-	0.47	44° Ditto	-	0.23	38° Ditto	1.74
11	-	0.54	28° Ditto	_	0.36	43° Ditto	-	0.35	47° Ditto	-	0.12	41° Very dark	1.37
12	-	+0.85	40° Ditto	-	0.58	46° Ditto	-	0.66	50° Ditto	-	0.32	47° Dark	2.41
1314	-	$+0.78$	32° Clear	-	0.51	44° Clear	-	0.51	52° Ditto	-	0.43	45° Very dark	2.23
	-	0.54	43° Cloudy	-	+0.77	51° Fine	-	0.47	56° Ditto	-	015	48° Overcast	1.93
14		+0.89	45° Ditto	-	0.63	51° Cloudy	-	0.32	57° Ditto	-	0.16	49° Dark (rain)	2.00
15	-	+076	45° Foggy	_	0.56	54° Bright sun	-	0.20	57° Fine	-	0.20	41° Cloudy ditto	1.72
17	-	039	29° Ditto	-	-0.05	49° Very do. do.	-	+0.70	64° Ditto	-	0.55	40° Clear	1.69
18	-	0.50	31° Ditto	-	-0.30	49° Very do. do.	-	0.22	67° Ditto	-	0.47	46° Ditto	1.49
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	-	+0.83	36° Ditto	-	0.68	47° Foggy	-	0.37	55° Foggy	-	0.20	44° Very dark	2.08
	-	0.58	41° Ditto	_	039	51° Bright	-	0.57	63° Cloudy	-	0.10	52° Cloudy (rain)	1.64
20	-	0.48	45° Ditto	-	0.36	52° Overcast	-	0.25	59° Ditto	-	0.31	51° Ditto ditto	1.40
22	-	0.62	47° Ditto	-	0.17	56° Flying clouds	-	0.54	61° Fine	-	0.11	52° Cloudy	1.44
23		0.34	46° Cloudy	-	0.11	54° Very bright	-	0.11	60° Ditto	-	0.35	47° Clear	0.91
24	-	0.43	42° Ditto	-	0.40	56° Fine	-	0.35	64° Ditto	-	0.42	49° Ditto	1.60
25		0.22	$41^{\circ} \mathrm{Hazy}$	-	0.22	48° Ditto	-	0.20	55° Ditto	-	0.20	44° Cloudy	0.84
2728	-	0.57	36° Clear	-	0.10	45° Ditto	-	0.32	51 ${ }^{\circ}$ Flying clouds	-	0.38	40° Dark	1.37
	-	0.36	36° Cloudy	-	0.51	40° Ditto	-	0.30	46° Fine	-	0.15	38° Ditto	1.32
28		0.30	38° Ditto	-	0.42	45° Ditto	-	0.22	51° Ditto	-	0.30	33° Ditto	1.24
29 30	-		28° Clear	-	0.29	46° Clear	-	044	56° Ditto	-	0.26	39° Clear	1.33
$\begin{array}{r} 31 \\ \text { Apr. } 1 \end{array}$	-	0.62	43° Ditto	-	0.42	51° Fine		0.34	54° Ditto	-	0.43	49° Cloudy	1.87 1.86
	-	0.64	46° Ditto	-	0.67	55° Ditto	-	0.61	59° Cloudy	-	0.74	52° Ditto	2.66
Apr. $\begin{array}{r}1 \\ 2\end{array}$	-	0.66	50° Ditto	-	0.47	56° Fine	-	0.57	59° Ditto	-	0.17	50° Dark	1.87
4	-	0.38	48° Ditto (rain)	-	0.20	57° Cloudy	-	0.61	61° Fine	-	0.23	49° Clear	1.42
5	-	0.55	46° Ditto ditto	-	0.36	54° Clear	-	0.37	57° Ditto	-	0.35	48° Ditto	1.63
6	-	53	41° Ditto	-	0.16	52° Cloudy	-	0.15	${ }^{2} 6^{\circ}$ Cloudy	-	0.20	44° Ditto	1.04
7	-	0.34	38° Ditto	-	0.24	52° Ditto	-	+0.71	55° Ditto	-	0.30	51° Cloudy	1.59
8		0.39	51° Ditto	-	0.15	57° Ditto	-	0.28	62° Clear	-	0.22	$50^{\circ} \mathrm{Dit}$	0.81 1.28
	-	0.27	34° Clo	-	0.43	53° Clear	-	0.34	59 Ditto		0.12	38° Ditto	1.28 0.85
10		0.15	32° Clear	-	027	46° Cloudy	-	0.19	50° Ditto	-	0.38	34° Clear	0.91
11		0.36	26° Ditto	-	017	42° Bright sun	-	0.23	49° Fine	-	0.12	31° Ditto	0.88
$\begin{array}{r}13 \\ 14 \\ \hline\end{array}$	-	0.46	22° Ditto	-	030	42° Very bright	-	0.23	48° Ditto	-	0.25	33° Ditto	1.24
		0.18	28° Ditto	-	-0.08	42° Bright sun	-	0.28	48° Ditto	-	0.28	31° Ditto	0.82
		0.35	24° Overcast	-	0.38	48° Cloudy	-	0.14	54° Cloudy	-	0.56	48° Cloudy	1.43
-					17.24	$=.383$ average.		17.21	= .380 average.		3.00	$=.289$ average.	68.60

[^5]It is probable that these returns will strike different persons differently; and therefore they are printed at length, and not in the form of an abstract. All such observations are affected by so many circumstances, the exact nature of which it is perhaps impossible to estimate, that safe conclusions can only be drawn from the average of a large number of facts. The observations made in the course of these experiments amounted to 908 ; a number sufficiently large to entitle the conclusions that are drawn from them to some attention.

As has been already stated the great object of the enquiry was to ascertain at what period in the 24 hours plants in hot-houses grow the fastest, and at which the slowest. The table No. 5, shews that upon the whole this happens in the Afternoon; but that there is a near approach to the same rate in the Morning and Night, the growth in the one case being 55.11 inches and in the others 49.87 and 49.16 respectively. When, however, we look to the details of these results we find that each of the four plants has its own period of maximum growth, the Vine preferring the early Morning, the Willow the Forenoon, the Passionflower the Afternoon, and the Fig the Night. In the Passionflower the preference amounted to something considerable; and in the Vine to as much as two inches in the course of six weeks; but in the others it was unimportant. It appears however that in the case of the Willow and Vine, that is to say of the two hardiest of the plants under experiment, the principal growth takes place between midnight and noon, notwithstanding that those are the coldest hours in the twenty four.

I have not seen the paper of Harting* on this subject, quoted by Münter in his observations on the growth of plants; \dagger but if, as

[^6]the latter author states, his own observations and Hartings are essentially the same, I may be permitted to quote the one as representing the views of the other. Münter says that he found the diminution of light increase the growth of the branches of the Sycamore, the Vine and the Elder. And this is precisely the common opinion. But it will be seen from what has been just stated, that in the four cases now mentioned, and under their peculiar circumstances, that was by no means universally the case, for in the Willow the greatest growth took place between 6 in the Morning and Noon, of the Passionflower between Noon and 6 in the Evening, and it was only in the case of the Vine and Fig that the dark hours gave the greatest amount of extension. It is however to be observed that Münter's experiments were made in the open air, and therefore may not perhaps be quite suited for comparison with those now detailed.

The period when the Willow and Vine grew slowest was the early Morning in the case of the Willow, and before midnight in the Vine : the difference in the Willow being as 9.37 to 11.13 and of the Vine as $\mathbf{1 6 . 0 2}$ to $\mathbf{1 8 . 1 3}$. This seems to show the danger of employing a high Night temperature, which must necessarily force such plants into growing fast at a period when nature bids them repose. In the Fig the smallest growth was made in the early Morning, but the rate of growth of that plant does not appear to be materially different at any period of the day; for, in nearly two months, Night, when it grew fastest, had not an advantage over Morning when its growth was slowest, to the extent of much more than $\frac{3}{4}$ an inch. In the Passionflower the fastest growth was in the Afternoon, the next at Night, and the smallest in the Forenoon, in which respects it is at variance with all the others.

Table 5 also seems to indicate the existence of some regular alternation of growth, from fast to slow ; the morning growth of $\mathbf{4 9 . 8 7}$ diminishing at the next period to $\mathbf{4 6 . 6 6}$, then rising to 55.11 , and then falling to 49.16, which again rises to 49.87 ; and it is not im-
probable that something of this kind takes place in nature: a period of vigorous developement, requiring a great expenditure of vital energy, being followed by comparative torpor till the vital powers are recruited. For example the successive growths of the Willow are represented by the numbers $10,26,20,20,25,26,26,10,42$, $31,45,17,19,40,18$; of the Fig, whose general slow progress is unfavourable to this kind of observation, by $12,22,21,03,11,11$, 16,15 , and $11,14,11,03,22,13,13,04$; of the Passionflower by $20,11,60,05,14,03,20,47,17,17,22$ and $26,16,76,33,40,50$, $29,29,34,24,50,35$; and of the Vine by $20,34,12,32,55,31$, $31,37,62,54,28,52,74,50,14,22,38$; and so on. Although this kind of oscillation is not absolutely constant, yet it is so very usual, as to appear to be a part of the customary habit of vegetation ; and is yet more striking if we turn to the instances of most rapid growth in the four cases before us; for they are invariably succeeded by a corresponding decrease of growth. For example the willow occasionally lengthened as much as four tenths or even more than five tenths of an inch in six hours; these were invariably succeeded by a considerable reduction in growth; thus .42 sunk to $.31, .45$ to $.17, .40$ to $.18, .40$ to .17 , and .43 to .20 . The maximum of developement in the Fig was rather more than two tenths of an inch in 6 hours; when this or any similar rate was observed the numbers stood thus; 22 fell to $13, .19$ to $\mathbf{. 1 5 , .} 20$ to .10 . In the Passionflower the greatest growth was rather more than eight tenths of an inch in six hours; here .82 fell to $10, .79$ to $.34, .70$ to .27 . And finally the Vine, which on one occasion grew nearly nine tenths of an inch in six hours, is found to obey the same apparent law ; for .89 is followed by $.63, .70$ by $.47, .74$ by $.50, .71$ by .30 , and so on.

Another subject of consideration is the cause or causés that tend to produce the fastest and the slowest growth. Fluctuations of temperature can hardly have had any connection with this, because the plants were grown, as has been stated, in a hothouse, the heat of which was maintained at about 73° by day and 65° by night.

Doubtless the plants under experiment were to some small extent affected by variations between these degrees, but 65 is always too high to allow of any serious impediment to vegetation, nor do I perceive any apparent connection between fast and slow growth, and the temperature of the external air. For instance the slowest growth of the Willow took place with the external temperature at 50°, when it lengthened only .03 , while with the external air at 34° it grew on another occasion as much as .56 ; the slowest growth of the Fig was .00 with the external air 54°, and its fastest was .22 with the external air 34 ; the minimum growth of the Passionflower was .03, the external air being on one occasion 48° and another 35°, but when it was 41° the Passionflower grew .70; and so of the Vine: when the external air was 44° it only grew .04 , but when it was 40° it grew as much as 85 . This evidence proves I think conclusively that in the cases under experiment the temperature of the external air in no way affected the rate of growth.

The next question that arises is whether the amount of light can be supposed to have produced any influence. If we compare the degree of light under which the more remarkable growths were made, and which are marked + and - in the tables, we shall find the following result

If we are to judge from the comparison of some of these extreme cases, we should infer that plants grew fastest in cloudy weather, under the influence of diminished light, and slowest in clear bright weather, when light is abundant, as seems to be the opinion of Münter above quoted. Thus in the Vine, out of 10
cases of unusually rapid growth 7 took place in cloudy weather, and only 3 in clear weather; in the Willow, out of 7 such extremes 5 were in cloudy and only 2 in clear weather; and in the Passionflower 3 extremely fast growths took place in cloudy and 2 in clear weather. The Fig is however altogether an exception to this supposed rule, for in 10 out 15 extreme cases it grew fastest under bright light. Possibly this discrepancy may be accounted for by the different nature of the plants under experiment. The Willow, Passionflower and Vine are plants with a very thin skin, and therefore will suffer considerable loss of their fluids, by evaporation under bright light, which must obstruct their growth ; the Fig on the other hand, being a plant with a peculiarly thick skin, will suffer much less from this cause, and may indeed demand a much larger supply of light than the others in order to perform its functions in the most efficient way.

But if the experiments were to a certain degree to confirm the general opinion that plants grow fastest in warm cloudy weather, it is also clear that they indicate the presence of other agencies than light and heat, and a regular supply of moisture. The numerous exceptions that are found even in those plants which in rapid growth conform the best to the supposed rule show this sutficiently well, and when we attempt to reduce to it the slowest growths we fail entirely; the facts inclining sometimes one way and sometimes the other.

One of the most singular facts brought out by these observations is the total want of correspondence between the effects produced upon plants by the same external circumstances. The subjects of experiment were placed within a few feet of each other, in a house heated very uniformly, and equally exposed to light, and to every other agent by which it is conceivable that plants should be affected. Yet strange to say, it appears certain that the same causes do not produce the same results when operating upon plants of different species. For example the greatest growth made by
the Sweet Willow was on the 7th of March, when the noon day observation gave . 56 ; at that hour the growth of the Fig had been only .08 and of the Passionflower .24, which was about the average; and of the Vine only .42 which was slightly above it. The greatest growth of the Passionflower was on the 14th of April, when the 6 p.m. observation gave .82 which was .42 above the average; on the same day the Willow had grown .36 , or .20 above the average; the Fig.09, or about the average; and the Vine, 14 or .24 below the average! If we turn to the instances of impeded vegetation we shall perceive just the same conflicting results. The slowest growth of the Vine was on the 10th of April when the Noon day observation amounted to only .04 to .34 below the average; at that time the Passionflower had grown .34 or .11 above the average; the Fig . 03 or .5 below the average; and the Willow .14 or only .2 below its average elongation at that hour.

Upon the whole then it seems that we must regard the growth of plants as a far more complicated problem than is generally supposed. The evidence that has been produced appears to show that there is a regular oscillation of growth during the $\mathbf{2 4}$ hours, that the principal developement takes place in the afternoon, (between noon and 6 in the evening), and follows the smallest which occurs in the Forenoon (between 6 in the Morning and noon); and that this oscillation is not connected with light and temperature, because the growth in the Forenoon is less than in the Morning (11 P.M. to 6 A.M.) when the temperature is at its lowest; it may also be inferred that thin-skinned plants grow fastest in the absence of bright light, and possibly that thick-skinned plants obey an opposite law.

But it does not appear satisfactorily that the varying rates of elongation are, under the circumstances of the experiments now detailed, dependent, to any considerable extent, upon fluctuations of temperature, light, or moisture. On the contrary it seems almost certain that some other powerful agent is in operation, the nature of which we have at present no means of ascertaining.

[^7]-

[115]

VI. Notes of a Visit to Mexico, Guatemala, and Equatorial America, during the Years 1836 to 1843, in search of Plants and Seeds for the Horticultural Society of London. By Mr. Theodore Hartweg.

After a voyage of fifty-eight days I arrived, on the third of December, 1836, at Vera Cruz; and immediately, after landing my luggage, I took advantage of the offer of Mr. De Wilde, a partner in the house of Messrs. Stallforth and Co., to proceed to the farm of Mr. Lavater, a gentleman to whom I had letters of introduction. Two days' riding, over a country without regular roads and through ravines, brought me to Zaquapan, the name of this gentleman's residence.
For three leagues, from Vera Cruz to Santa Fé, the road lay over a sandy plain by the seaside, covered partly by Convolvulus maritimus, a large round-leaved Opuntia, a Croton, and, above all, by Mimosa pudica. At Santa Fé the vegetation became more luxuriant, and the small shrubs were replaced by stately Palms, Acacias, several Scitamineous plants, and various climbers. However, being anxious to quit the lowlands, which so often prove fatal to new comers, I did not particularly examine them.
$\mathbf{Z}_{\text {AQUAPAN }}$ is placed at an elevation of about $\mathbf{3 , 0 0 0}$ feet above the level of the sea, on the eastern declivity of the snow-clad Orizaba, which attains the height of more than 17,000 feet; the climate is temperate and the place surrounded with the richest vegetation I ever saw in Mexico. Upon leaving the savannahs, which are covered with a scanty undergrowth, I entered a forest of Oaks, (Quercus jalapensis, H.B.K.) and there a change took place as if brought on by magic ; Orchidacea, for which I had been on the look out since I left Vera Cruz, and of the finding of which I had
given up all hope, considering the elevation I had attained, appeared here in the greatest abundance; the oaks actually seemed to groan under their weight ; Maxillaria densa and tenuifolia, forming festoons and hanging gracefully over the branches they were growing on, seemed to strive with the larger species of Tillandsia for their existence. It was here I met with the beautiful and new Cyrtochilum maculatum, and the varieties of it now become so common. In the ravines or rocks I found Maxillaria aromatica, Epidendrum seriatum, equitans, umbellatum, fuscatum, cochleatum (this latter with nearly all its varieties), and Acropera Loddigesii. In the more exposed situations, particularly on trees overhanging the perpendicular sides of the ravines, Stelis ciliaris, Dinema polybulbon, Isochilus linearis, Polystachya luteola, and the little plant that now bears my name (Hartwegia purpurea) were common. The first plant of Brassavola glauca I met with was on a Coccoloba, in a wood descending to the savannah; but I afterwards found it on oaks in abundance near this station. To grow this plant, as well as Hartwegia purpurea, to perfection, I would recommend a temperature of $65-70^{\circ}$ of Fahr., and to be kept in the driest part of the stove. The same treatment may be applied to the thick-leaved Epidendrums and Oncidiums. Near the same locality I found Berberis tenuifolia, forming a shrub 10 to 12 feet high, and at the time covered with its black berries on spikes more than a foot in length. In the more open places, among grass, the Cebadilla, or Asagrea officinalis was ripening its seeds on a stem four feet high; the roots, leaves, and particularly the seeds of this plant are used by the muleteers, in a state of fine powder, for killing the maggots in the wounds of their beasts, and occasionally an infusion of it is used in extirpating certain vermin which may be found on the heads of the lower class; but its employment is not so general as the occasion for it. The seeds of the Cebadilla form an article of export in Vera Cruz; but judging from its low price (six shillings for 25 lbs .) it seems to be in little demand, and scarcely pays the
gathering. The soap plant, Agave saponaria, was found in the same locality, throwing up its flower-stem like a tuberose to which in fact it bears much resemblance. Its thick fleshy root crushed is a good substitute for soap, and is abundantly used by those who are too poor to buy that article. This, as well as the Cebadilla, appears to be common in the temperate parts of Mexico, having been found in several places, even as far south as Guatemala.
The 27th of December found me on the road to Jalapa, where I arrived on the following day. Being anxious to come to my journey's end, I took the diligence for Mexico ; and thence, after delivering various letters of introduction and procuring new ones, I again proceeded to Guanajuato, the place of my destinati n. Upon my arrival I presented my letters of introduction to Mr. Stanley, Mr. Shoolbred, and Mr. George O'Gorman. The latter gentleman being about to proceed to Silao, a place distant seven leagues, I accepted an invitation to spend a week with him, but it being then the middle of the dry season, my exertions did not prove very successful; and upon my return, the necessary arrangements having been completed, I left for the more elevated parts of that mountainous district, which I hoped to find more likely to fulfil the object of my mission.

My first excursion was to the Gigante, the highest point of the range of mountains of Guanajuato, where I was rewarded with Garrya obovata, then in flower, forming a shrub six feet high ; I afterwards found it more commonly on the Bufa, a bluff rock a league from Guanajuato, but all my efforts to procure seeds were only rewarded with a single grain, which I now find did not germinate. Arctostaphylos pungens has also been found in these stations, both in flower and fruit. Berberis fascicularis forming a shrub 8 to 10 feet high, was covered with flowers, as well as Ribes campanulatum. In another excursion I found, both in flower and fruit, a second species of Garrya (\boldsymbol{G}. laurifolia,) forming an evergreen shrub 12 to 15 feet high, with the Madrono, or Arbutus densiflora, forming a
shrub, or small tree, covered with delicate white flowers. In the more sheltered situations, in the ravines near the town, Clematis pubescens was in full flower. Oaks, which cover the greater part of the mountains, were in great variety, but the acorns of the preceding year being all dead, I could procure neither seeds nor specimens. Pines were nowhere to be met with.

On the 13th of April I arrived in Leon from Guanajuato, but after two months' disappointment on the then parched up plains and mountains, from which I often returned without having found a single seed or specimen for the herbarium, I often longed for the green woods on the declivity of Orizaba, where vegetation never seems at rest. The only things worthy of notice from this station were Ipomaa longifolia and Laelia majalis; the latter species I found at an elevation of about 8,000 feet, growing on oaks, and producing such a profusion of large pink flowers in May, that even the Mexicans find it attractive, and stick a few plants on the Limes, (Citrus medica) growing before their houses. Of this I sent an abundant supply of plants, but as it has resisted all attempts at cultivation, I would recommend it to be kept in the driest part of the stove, and to be liberally supplied with water during the summer months only. In fields Lupinus Hartwegii was common; this seems to be quite stationary, having nowhere else been met with.

On the 17th of June I arrived at Lagos, where I found the same barrenness during the dry season as at Leon; and after a month's fruitless wandering, I left, on the 13th of July, for Aguas Calientes. Of the more interesting plants found near Lagos, I may mention Milla biflora, bearing from one to six of its star-like white flowers on one scape; Bessera elegans (Caloprasum Geroltianum of Schiede), the bruised leaves of which, mixed with a little water, are used occasionally for killing flies; Zephyranthes sessilis; Sprekelia glauca; and Habranthus concolor; the three latter flowering before the leaves appear.

At Aguas Calientes I found a little more occupation, the rains having then set in; but being still dissatisfied with my excursions, I determined at once to leave the high table land and proceed to Bolaños, where I should have the command of a vegetation from 3,000 to more than 8,000 feet of elevation. The town of Bolaños, where I arrived on the 4th of October, is situated in a deep ravine, about 3,000 feet above the level of the sea, and from its confined situation has a higher temperature than might be supposed. The thermometer ranges from 39° to 85° Fahr. in the month of December, but in May it is from 85° to 95° Fahr., and even as high as 102° in the shade. The atmosphere being very dry is favourable to the growth of Bromeliaceous and Cactaceous plants, of which latter there is a great variety, especially among Opuntias and Cerei. Of the latter there are species which rise to the height of $\mathbf{3 0}$ or $\mathbf{4 0}$ feet, and yield an agreeable fruit of the size of a large walnut, with red or yellow pulp; they are known under the name of Pitaya. Here also occurred a species of Agave with leaves six feet long by four inches broad, from which a spirit is distilled known under the name of Vino Mescal. When the plants are of a certain size they are taken up, and the stem, which is about 18 inches long, as well as the leaves, is cut off to the base, which gives the trunk a globular appearance. In this state it is roasted, then crushed, and after passing into the vinous fermentation, Vino Mescal is distilled from it. This spirit may be compared to weak whiskey, but its strong smoky flavour renders it anything but pleasant. The plant I never could see in flower.
Ascending the steep sides of the ravine on the western side, I left the region of Acacias, Bromeliacea and arborescent Cerei, and entered that of Oaks. After a four leagues' ride, and constant ascent, I arrived at Berberea, the Mining Company's wood cutting establishment, situate in the midst of woods at an elevation of more than 8,000 feet above the level of the sea. Here I found, surrounded by evergreen Oals, Pines and Arbutus densiffora, the
showy Befaria mexicana, forming a shrub of about eight feet high, and at the time covered with its large white flowers.* The pretty little Mammillaria senilis I found on rocks in the more exposed situations; its long white spines which at the points are bent backwards seem to defend it against frost. In the more open places Lupinus leptocarpus, Pentstemon imberbis, Lamourouxia longiflora and multifida were common.

On the 10th of January 1838, I left Bolaños in company with Mr. Floresi the chief commissioner of the Bolaños mines, after having been most hospitably treated by him as well as by Mr. Watson, the company's accountant. On the 14th of that month, I arrived at Zacatecas, whither my collections from Aguas Calientes and Bolaños had preceded me. The sterility of the mountains and plains about Zacatecas, at this season, was such that I was spared the trouble of making fruitless excursions; I, therefore, arranged my dried specimens and despatched them along with the seeds and bulbs to England. The species collected during the first year amount to 227 , of which the following have flowered, or exist in the Garden.

Catasetum maculatum - citrinum

Epidendrum asperum

- equitans
- umbellatum
- fuscatum

Isochilus linearis
Trichopilia tortilis
Hartwegia purpurea
Oncidium stramineum

- sphacelatum

Læelia anceps

- furfuracea
- majalis

Notylia punctata
Acropera Loddigesii
Brassavola glauca
Liparis elata
Maxillaria aromatica

- tenuifolia

Maxillaria variabilis

- - var. unipunctata

Cyrtochilum maculatum

- var.

Stelis ciliaris
Polystachya luteola
Dinema polybulbon
Asagræa officinalis
Ferraria sp.
Agave saponaria
Habranthus concolor
Allium striatellum
Sisyrinchium sp.
Milla biflora
Zephyranthes sessilis
Bessera elegans
Sprekelia glauca
Bouvardia splendens
Quercus jalapensis
Crotalaria sp.

[^8]Solanum sp.
Lupinus Hartwegii

- leptocarpus

Anemopsis californica
Cuphea sp.
Heliotropium curassavicum
Verbena incana
Parkinsonia aculeata
Malvacea
Prosopis dulcis

Onagracea
Trifolium involucratum Mimosea
Ipomæa rubrocærulea

- Horsfallii
- longifolia

Convolvulus 3 species
Berberis tenuifolia
Mimosa filicina.

On the 26th of February, 1838, I proceeded from Zacatecas over the high table land to San Luis Potosi and thence to the Rancho de los Gallitos. Near San Luis Potosi I found Berberis trifoliata in great abundance, forming a shrub 4 to 5 feet high; it was then just coming intoflower, and all my efforts to find seeds were useless; but I afterwards received a large supply through the kindness of the bailiff of the Hacienda del Espiritu Santo, and it has since been abundantly raised and distributed at the Garden. The Rancho de los Gallitos, being situate on the eastern declivity of the great table land, in a narrow valley, enjoys a delightful temperature, and is surrounded by constant verdure and noble forests of Oaks. It was near this station I found the striking Berberis Hartwegii with its long spikes of flowers and pinnate leaves. This desirable species still remaining to be imported, I shall describe its locality particularly, for its seeds will amply remunerate any traveller that may land at Tampico and proceed to San Luis Potosi or Zacatecas. Before reaching the valley of Los Gallitos, on the ascent from Santa Barbara, there is a bluff rock on the right hand side of the road, called "El Contadero," with a small chapel hewn in the rock, and always gaily adorned with flowers and candles by the passers by; this place is held in the deepest reverence by the Indians, from the circumstance of Nuestra Señora de Guadalupe being said to have appeared to several of them, and they cannot pass this place without paying homage to their protectress saint. It was at the foot of this rock that I found Berberis Hartwegii.
After exhausting the resources of the last station and despatching my collections to Tampico I returned to Zacatecas, where I
expected to have found some Pine seeds which had been promised me by the Company's forester at Bolaños; but not receiving any, I went there myself without loss of time, and found to my great regret, that the cones had all shed their seeds. I then joined a convoy for Guadalajara whence I returned to Bolaños and Zacatecas, with scarcely an acquisition to remunerate me for that long journey.

Having now received permission to proceed in the direction I thought most proper, always, however, visiting the more elevated parts, because they were most likely to furnish plants that will endure the open air in England, I resolved to leave the arid plains in the north, and proceed to Morelia the capital of the State of Mechoacan. The country about this town, from its broken surface, presents a beautiful vegetation; in the higher parts Pines and Oaks grow intermixed, and the latter are adorned with a great variety of Epiphytes. On the western declivity towards the active volcano Jorullo, I found Pinus oocarpa in great abundance, forming a tree 40 to 50 feet high; of this I secured an ample supply of seeds, but from its low situation, I fear it will not be proof against our northern winters. The cones of this pine after being ripe will remain on the tree without opening for two or three years, and the seeds in them are equally as sound as the fresh ones. In the more elevated parts I found the showy Fuchsia fulgens, in the greatest perfection, and beside it Rigidella flammea, bearing its bright scarlet flowers on a scape 3 to 4 feet high. In the more shaded places the pretty little Hydrotania meleagris and Arisama macrospatha were met with. In pastures, Bravoa geminiflora and Cyclobothra barbata were common.

After a two months' stay in this interesting country I left for Angangueo, at which place I arrived after a two days' ride over a mountain road, where I observed fine trees of Pinus leiophylla and pseudostrobus, the former being called " Ocote chino" because, from its abundance of resin, it yields the best "Ocote" or candlewood; it
attains the height of $\mathbf{1 0 0}$ feet, and is often 4 feet in diameter. \boldsymbol{P}. pseudostrobus also grows in the same situation, and may be easily distinguished at a distance by its long slender branches diverging at a right angle from the main stem, as in the species of the section Strobus; its chief range is about 8,000 feet, while that of \boldsymbol{P}. leiophylla is a few hundred feet lower. On an excursion to the "Campanario " the highest point of the mountains of Angangueo, I saw some remarkably fine trees of the "Oyamel" or Abies religiosa, 5 to 6 feet in diameter and rising to the height of 150 feet. Its chief rangeis about 9000 feet above the sea; beyond that elevation its place is supplied by Pinus Hartwegii rising to the height of $\mathbf{4 0}$ to 50 feet. With the latter I found Veratrum frigidum, the leaves of which are poisonous to cattle, Microstylis macrostachya and Juniperus mexicana, the latter forming a small straggling shrub three feet high.*
On the 30th of October, 1838, I arrived at Real del Monte, after having crossed once more the high table land of Mexico, but as usual without finding much to reward me. The town of Real del Monte, being situated at an elevation of above 8,000 feet, is surrounded by high ground, of which the "Sumate," the highest peak, rises to the height of 9,500 feet above the level of the sea, the country around being well wooded with a great variety of Oaks and Pines. On the eastern declivity of the Real del Monte chain of mountains is the deep ravine of Mestitlan, commonly called "Barranca grande," which from its chalky soil is a favourite haunt for Cactacea. It is the only habitat of Cereus senilis, that I am acquainted with in Mexico, the largest plants of which, attaining a height of 24 feet, give the scenery a very singular appearance. On another excursion to the natural bridge called "Puente de Dios" I found Spirca parvifolia, Quercus petiolaris, Lindleya mespiloides, the latter forming a slender shrub 10 to 12 feet high, and the pretty little Mammillaria Schiedeana with seems quite stationary there, having no where else been met with.

[^9]On the barren hills of Zimapan, Pinus Llaveana, forming a tree 15 feet high, was at this time (November) covered with small green cones, which are two years in coming to maturity; Berberis gracilis, with its slender stem and red leaf-stalks, and Berberis pallida have been found at this station, as well as near the hot springs of Atotonilco el grande. In the ravine of Encarnaçion I found another new species of Garrya, G. macrophylla, which from its large foliage is by far the handsomest kind; but unfortunately the few seeds I found did not grow. Juglans nigra was found in the same locality. Near the Company's farm of "Guajolote" I found several sorts of pines, among which P. patula, from its smooth slender stem and valuable timber, particularly attracted my attention. Near the small village of Apulco I found Berberis lanceolata and Pinus apulcensis, and along the road Cupressus thurifera forms a stately tree 120 feet high. From this latter station the descent was very rapid to a place called "El Banco," probably so named in allusion to the bank or ledge of rock over which one has to pass at the imminent risk of falling into the ravine below, in order to reach the small village of San Cornelio. The descent to this place is very interesting; at every step there is some change, the noble Tree fern (Cyathea mexicana) makes its appearance there; Lopezia lineata, Alstonia ciliata, Lophospermum scandens, Cobea stipularis, Gaultheria nitida, were all in full flower. It was in company with those that I found the noble Habrothamnus fasciculatus of Schlechtendahl, the seeds of which I was unable to procure; it was a very fine shrub about five feet high. It has since been raised in Belgium, and a fresh specimen in flower, communicated by Mr. Van Houtte, Nurseryman of Ghent, has furnished with the assistance of one of my dried specimens the means of preparing the accompanying figure of one of the gayest plants of the Mexican Flora.

By the end of January, 1839, instructions reached me to proceed to Guatemala. I, therefore despatched the collection formed at

Real del Monte, and proceeded again to Angangueo, where by that time I found the pine cones, which I left ripening on my first visit, in a fit state for transmission; on the 20th of February I reached the city of Mexico.

The articles collected in 1838 amount to 307 , of which the following have flowered or been raised at the Garden.

Oncidium reflexum, large var.

- sanguineum

Lælia autumnalis

- furfuracea

Stanhopea venusta
Agave sp.
Yucca sp.
Veratrum graminifolium
Hydrotænia meleagris
Rigidella flammea
Bravoa geminiflora
Arisæma macrospatha
Hymenocallis Harrisiana
Dioscorea multinervis
Berberis trifoliata

- pallida

Litsæa glaucescens
Rhamnus umbellatus
Cistus glomeratus
Bouvardia splendens
Melastomacea
Carduus sp.
Scleröon oleinum
Russellia sp.
Quercus petiolaris
Rhus sp.
Loperia lineata
Sophora secundiflora
Lupinus vaginatus
Acacia sp.
Mimosa sp.
Dalea odorata
Sąlvia sp.

- Regla
- tubifera

Arctostaphylos pungens
Cobæa stipularis
Celtis canescens
Alnus jorullensis
Spiræa fissa
Cotoneaster denticulata
Cratægus mexicana
Lindleya mespiloides
Rollinia 2 sp.

Carya olivæformis
Philadelphus mexicanus
Cornus grandis
Fuchsia fulgens
Valeriana Napus
Convolvulus, two species
Ipomæa batatoides
Calonyction speciosum
Garrya laurifolia
Lycium macrophyllum
Myrsinacea
? Freziera sp.
Juniperus flaccida

- tetragona

Cupressus thurifera
Abies religiosa
Pinus Russelliana

- Devoniana
- Montezumæ
- Teocote
- oocarpa
- macrophylla
- Hartwegii
- apulcensis
- pseudostrobus
- Llaveana
- patula
- - var.
- leiophylla

Mammillaria pycnacantha

- uncinata
- fulvispina
- aciculata
- auriceps
- fuscata
- macrothele
- horripila
- villifera
- cirrhifera
- longimamma
- bicolor
- quadrispina
- crocidata
- Schiedeana

Mammillaria gracilis

- tenuis
- Wildiana and 22 species not named.
Echinocactus obvallatus
- coptonogonus
- cornigerus and five sorts not named.

Cereus sessilis

- polylophus
- Deppii
- pulcherrimus

Opuntia sessilis

- geometrizans

Upon my arrival in the city of Mexico (Feb. 20. 1839) I lost no time in making the necessary inquiries respecting the best way of proceeding on my new mission to Guatemala, distant nearly twelve hundred miles. After considering how circuitous is the route by sea, I resolved to undertake the journey by land, anticipating that, by going over such an extensive country, I must fall in with some novelties. Having completed the necessary arrangements for such a journey, and procured some letters of introduction to persons in Central America, I gladly accepted a kind offer made to me by Robert Smith, Esq. of Oaxaca, to accompany him and his convoy to that place, which we safely reached after a journey of eighteen days.

The valley of $\mathrm{O}_{\mathrm{axaca}}$ is between 4000 and 5000 feet above the level of the sea. The greater part being under cultivation, I resolved to visit the well-wooded heights to the east, which are visible from the town. A ride of five miles over a well cultivated country, varied by a few patches of sugar cane and cochineal plantations, brought me to the entrance of the mountains, which are thinly covered with Oaks of a dwarfish growth, intermingled with Arbutus jalapensis and oaxacana. Cratagus mexicana, Alnus mexicana, Maurandya antirrhiniflora, and a species of Salix grew along the rivulet. About 500 feet higher at a hut called the Rancho del Estudiante, Pinus Teocote and Leiophylla appeared, in company with Cercocarpus Fothergilloides, and Tilia mexicana, the latter forming a lofty tree. In shaded places overhanging the rivulet, Fuchsia arborescens, was flowering profusely, forming a little tree 12 feet high with a stem five inches in diameter; a shrubby Bocconia and Garrya laurifolia were also met with. At the
"Rancho del ojo de agua," the ascent became more steep, the Oaks appearing in larger masses and taller trees, and covered with several species of Tillandsia and a few Orchidacea.
Having reached the "Cumbre" or highest point, there were some stragglers of Pinus Russelliana or Devoniana, which in want of cones I could not distinguish, and some stately trees of Abies religiosa. The oaks were no longer clothed with Tillandsias and Orchidacea, but their places were occupied by a brown moss hanging gracefully down the branches in threads nearly three feet long, which gives the trees a singular appearance. Cornus disciflora, Ceanothus azureus, Rubus trilobus with its large white flowers, the pretty little Cuphea pubifora and Melampodium montanum were found at that station, the elevation of which above the level of the sea, must at least be 8,500 feet. In descending gradually towards " La Parada" which is a kind of inn, the woods consist chiefly of Pinus Teocote and Oalis. On the latter I found Odontoglossum nebulosum, Cattleya citrina and several other species. After passing the bridge, "Puente de Gia," where I found Echeveria acutifolia, and the village of San Juan, the Oaks ceased entirely, and were replaced by small Acacias and Bromeliacea. Orchidacea, although few in number, no longer cling to trees, but seek their nourishment from the ground; an instance of which is Epidendrum falcatum with its thick leaves and brittle rhizoma, which was growing most luxuriantly on a heap of loose stones and perfuming the air towards evening with its large white flowers. After descending from the village of San Juan to the Hacienda of Santa Ana, and following the rivulet as far as the mine of Socorro, I crossed a high ridge, where mining operations are carried on, and arrived at the Hacienda del Carmen, an establishment for reducing the silver ore. Carmen, or Castresana as it had formerly been called, is situate in a deep and narrow ravine, the sides of which are well wooded with Pines and Oaks, the showy Arctostaphylos nitida, Gaultheria hirtiflora, Vaccinium brachys-
tachyum, Arbutus jalapensis, Lyonia ferruginea and Philadelphus mexicanus. Ascending the steep sides on the right I arrived on the "Monte Pelado" or bald mountain, so called from the upper part being destitute of trees, which gives it a singular appearance compared with the mountain ranges on the opposite side of the ravine. Near "Las Cruces" on the ascent to the Monte Pelado I observed some remarkably fine trees of Abies religiosa and Pinus Ayacahuite, the latter measuring three to four feet in diameter. Bordering on the limits of trees I found three plants, remarkable for their geographical distribution ; they had previously been known from other countries; they are Chimaphila maculata, Pyrola rotundifolia and Ottoa menanthoides, the latter found by Humboldt near Ibarra in the Andes of Quito.
Having well examined the vegetation about Carmen, I ascended the high ground at the back, crossed Llano verde and arrived at the Indian village of Tanetze. The name of Llano verde (green plain) is given to the mountain intervening as far Tanetze, a distance of eighteen miles, and is derived from a green swampy place in the midst of the wood, measuring some twenty feet square. The climate of Llano verde is termed by the natives " caliente humida," or warm and damp, the temperature being about 70° Fahr. and particularly adapted to the growth of Oncidium ornithorhynchum, which I found there in great splendour. In the more elevated parts Pinus apulcensis, Tilia mexicana, Clethra mexicana, several Lycopodiums, Pteris aquilina twelve feethigh, and Cyathea mexicana were met with. Descending this ridge, several Melastomacea, Epidendrum rhizophorum with its bright scarlet flowers, were growing on the outskirts of the wood. From Tanetze I went over a broken road to Tabaa where I found Befaria lavis and discolor in full flower, growing in company with Magnolia glauca, the flowers of which are used by the religious Indians in decorating their places of worship. Tabaa, being situate in "tierra caliente," or the warm country, produces some fine Pine apples, Oranges,Plantains,Sugar-

$$
\begin{aligned}
& \text { Rugrolds ant }
\end{aligned}
$$

CONTENTS.

VII. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1842. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden. p. 163 VIII. On the Exhaustion of Soils. By Edward Solly, Esq., F.R.S., F.L.S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.
p. 189
IX. On Seed-steeping. By Edward Solly, Esq., F. R.S., F. L.S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society. p. 197 X. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1843. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.
p. 211
XI. A Calendar, for four months, of the Weather, Natural History and Country Operations, at Foo-chow-foo. By G. Tradescant Lay, Esq., Her Majesty's Acting Consul at that place. p. 237 XII. Notes made in the Garden of the Horticultural Society upon the rate of growth by Plants at different periods of the Day. Second Series. By John Lindley, Ph. D., F.R.S.
p. 247

DIRECTIONS TO THE BINDER.

Achimenes picta	-	-	to face page 161			
Meteorological Diagram for 1842	-	-	-	-	163	
Ditto	Ditto for 1843	-	-	-	-	211

cane, Cherimoyers and Coffee. Descending towards Santa Gertrudes I found a small bean, the seeds of which resemble those of Abrus precatorius, and are said to be employed with success against the bite of the little venomous spider called Chiatatlahua.

Passing over the steep ascent of the Cuesta de mata Hombre I found some Orchidacea which had previously been seen near Taba; the woods consisted of a variety of Pines and Oaks. Descending towards the river Tabaa luxuriant vegetation gradually disappears, and the arid soil only produces stunted Mimosas, Agaves, tall Cerei, and a few straggling specimens of Cyrtopodium punctatum. The same vegetation continues ascending the other side towards Villa-alta. From the latter place to Tonaguia, the road leads through many ravines, and the vegetation is similar to that of Tabaa. The inkplant, "Xuquilite," Justicia atramentaria, was pointed out to me here as a great curiosity. To produce the ink the foliage and young shoots are enveloped in large leaves, such as those of Plantains, and are gently heated over the fire for a few minutes, after which a black fluid is expressed from them, and used instead of ink. Its chief use with the Indians, near whose houses some plants are generally to be met with, is in a diluted state, to give their linen a blueish appearance. I never found the plant wild; in its cultivated state it forms a compact erect shrub three feet high.

Towards Comaltepeque, species of Arum, Pothos, and Heliconia, indicating a true tropical climate, make their appearance, the Mammee trees are covered with a variety of Orchidacea and Tillandsias, and, such is the fertility of the soil, assisted by a constant heavy dew and mist, that three crops of Indian corn are obtained on the same piece of ground in one year.

Between Comaltepeque and Choapan the mountains are partly destitute of trees; woods of deciduous Oaks still occur, and trees of Pinus oocarpa which latter seems to enjoy a high temperature.

Near Roabela, pine apples were growing wild along the road; VOL. III. 2ND SERIES.
the fruit they produced was small and worthless, but was said to improve much when cultivated.

At Yalahui the vegetation is most luxuriant; Pines cease to grow, but the higher parts are still covered with deciduous Oaks. Here the Cordillera, which had been entered at a distance of two leagues from Oaxaca, is passed; the whole distance being about fifty leagues. Towards Iochiapam the " bajos," or lowlands, bordering on the gulf of Mexico begin, Palms become more frequent, and the first Cotton plantations occur.

At Playa Vicente Palms covered large spaces of ground; and the thermometer stood at 2 P.M. at 94° Fahr.

At the Rancheria de Buena Vista the Oaks composing forests are small, vegetation assumes a dry aspect, and the large tracts of savannahs were parched up. Towards the Santuario Cotton plantations became more frequent, and three species of Palm were observed. The temperature of the lowlands was 95° in the shade during the day, and 83° at night. From this place which is one hundred leagues from Oaxaca, I returned by the same road as far as Comaltepeque.

From the latter place to Totontepeque the vegetation bears a great similarity to that of Tonaguia, from which it is separated by a high ridge. In the more elevated parts the Amber tree, Liquidambar styraciflua, forms a large tree and its secretion is highly valued by the Indians in dressing wounds. The village of Totontepeque is about 4,000 feet above the level of the sea, and enjoys a temperature of 65° to 75° all the year round ; the climate is particularly well adapted to the growth of Coffee of which there are some patches; the Granadilla (Passiflora stipularis) is very common, as also the "Aguacate" or Alligator pear, a species of Persea, with a large globular fruit and thick rind.

From Comaltepeque the road for nearly eight leagues rises continually until it reaches its highest point, the "cumbre" or summit of Totontepeque, which by several barometrical observations
is determined to be between 9,000 and 10,000 feet above the level of the sea; the temperature on the 13th of May at two o'clock P.M. was 58° Fahr. The deep vallies and ravines surrounding this mountain no doubt contribute in a great measure to heighten the temperature, which in combination with the heavy dews and mists, produces a most luxuriant vegetation, which, under ordinary circumstances, could not be expected at such an elevation. The whole mountain, up to the summit, is covered with large evergreen Oaks and other forest trees, and their branches were loaded with a variety of Tillandsia and Cereus Aclermanni, the latter in full bloom, vying in richness of colour with Epidendrum vitellinum. The first flowers I saw of that rare and magnificent Epidendrum were at such an elevation on the trees that I was unable to recognize what they were, until on the descent, about 400 feet lower, I fell in with more, and procured several large masses; in the same locality I found Fuchsia splendens in flower and seed, from which many plants have been raised and distributed.

Towards the village of Betaza the vegetation is very poor, and the soil, from its aridity, scarcely cultivated. From Betaza to Yalina the road leads again over the river of Tabaa, about two leagues higher than where it had been crossed before, and offers again the same dry parched appearance.

Passing over the "Monte de Yalina" I observed towards the summit Myrtus montana forming a shrub two feet high, having a great resemblance to the common narrow leaved kind. There also I found again Abies religiosa and Pinus Ayacahuite which had been met with on the Pelado which is separated by a deep ravine from the Monte de Yalina. Following the steep descent the same plants appeared that had been observed on the ascent to the Pelado, and after an absence of eight and twenty days, during which time I travelled six hundred miles, I returned to the Hacienda del Carmen with several loads of plants.

Having returned to Oaxaca and despatched my collections to Vera Cruz, I resolved to undertake a journey to the south coast. The road leads along cochineal plantations, through the valley of Oaxaca, for nearly ten leagues, and then enters the mountains near San Andres, without offering much more than a few Mimosas and Algarobia dulcis. Near the Rancho del Aye, the river of Oaxaca, is bordered by fine specimens of Taxodium distichum, some of which measure between 4 and 5 feet in diameter. Ascending the mountain, I observed a tall Cereus, a Cyrtopodium, and a few Epiphytes. About two leagues further on, the mountains are well covered with a variety of Oaks and Pines, and from thence to the sugar plantation of Santa Ana, the same barrenness prevails as had been observed the day before. Near San Miguel Sola, I found Cypripedium molle in full flower, growing in the shade of Oaks. The valley of Santa Ana is barren and destitute of trees; sugar cane however is cultivated; but from the dryness of the soil and atmosphere, it does not succeed without artificial irrigation. Towards the Monte de la Virgin the vegetation improves; it was in this wood that I first found the Hand-tree, Cheirostemon platanoides, which here forms a tree 60 feet in height; it was at the time in which I first saw it covered with half ripe seed pods. A tree of this kind stands in the Botanic Garden of the city of Mexico, and another grows near Toluca, both of which have attained some celebrity, as no traveller who has seen them has ever failed to extol their rarity, they being considered to be the only two trees of the kind in existence until this station was found out.

Between Juquila, where I found Catasetum laminatum and other Orchidacea, and the villages of Panistlahuaca and Tepanistlahuaca, where I met with Dioscorea macrostachya, the savannahs offering but little during the dry season, I found a high ridge and arrived at San Juan Quiage, where I discovered some very interesting plants. Towards Tecojomulco, Pine woods intermixed with Oaks, continue to the descent to San Andres in the valley of Oaxaca.

After returning to the town of Oaxaca^{2} and despatching the collections which I brought with me from the south coast, I made an excursion to the Chinantla, which had been represented as being particularly worthy of my attention. The district so called lies in the mountains north of Oaxaca and comprises several Indian villages ; it is intersected by several large rivers which empty themselves in the Gulf of Mexico, measures about thirty leagues in length, and from one to five in breadth, and produces nearly all the tropical fruits cultivated in Mexico in addition to the Soursop (Achras mammosa) which is rarely seen in other parts of that country, and the "Palao," a species of Passiflora, having a yellow fruit three inches in length and two and a half in diameter; the pulp of this being rather acid is chiefly used in making refreshments.
The whole district of the Chinantla from its broken surface and well wooded mountains offers a great variety of climate and vegetation, but from my visit happening near the end of the dry season my exertions did not meet my expectations. Having returned to Oaxaca and despatched my collections to Vera Cruz, I prepared to resume my journey to Guatemala.

The following plants collected in the state of Oaxaca have flowered or been raised in the garden, viz. :

Epidendrum diotum

- cochleatum
- virgatum
- radiatum
- asperum
- bractescens
- arbuscula
- fragrans
- gladiatum
- ritellinum
- falcatum

Oncidium reflexum var.

- ascendens
- sanguineum
- ensatum
- incurvum
- longifolium

Galeandra Baueri
Acropera Loddigesii
Cyrtochilum hastatum
Catasetum maculatum

Catasetum laminatum
Maxillaria elegans
Peristeria Barkeri
Gongora maculata alba
Lalia albida

- autumnalis
- acuminata

Ornithocephalus reflexus
Stanhopea saccata

- oculata

Chysis bractescens
Cattleya citrina
Cyrtopodium punctatum
Dioscorea macrostachya
Bessera elegans
Oxalis sp.
Mammillaria divergens

- hystrix
- elegans globosa

Echinocactus macrodiscus

Cereus sp.
Amaryllis sp.
Eeheveria acutifolia

Dipsacozamia mexicana Bocconia sp. Rigidella immaculata.

On the 13th of August I finally left Oaxaca for Central America, passing once more near that extraordinary tree Taxodium distichum, which I had visited before on an unsuccessful excursion to the ancient palaces of Mitla. This tree stands in the village of Santa Maria del Ule, about seven leagues south-east of Oaxaca; it measures at 6 feet from the ground $32 \frac{1}{2}$ Spanish yards, or 98 feet English measure in circumference, and is I believe the largest tree of its kind on record. The stem is not perfectly round, for several board-like excrescences descend the main stem in a longitudinal direction from a height of fifteen feet; these when they reach the ground are from 6 to 8 feet distant from the stem. At the height of 40 feet, the branches, each of which are good-sized trees of several feet in diameter, separate. The top, enormous although it appears, is not in proportion to the stem, both together measuring barely $\mathbf{1 0 0}$ feet in height. The tree grows in dry burning soil, it is surrounded by houses, and is in perfect health ; Santa Maria del Ule, the name of the village in which this tree stands, derives the apposition "Ule" from the tree, and is still known by this name in other parts of the country where the same language is spoken. When we consider that at the conquest of Mexico the Spaniards allowed the name of this tree to be affixed to the patron saint of the village, the tree must have been even at that period of considerable size. This, although the tree is common in the milder parts on the eastern declivity of the great mountain range north of the city of Mexico, is the most southern specimen of the kind with which I fell in, and it has in all probability been brought from the north, and planted there like the Hand-tree, the two solitary specimens of which existing in the city of Mexico and near the town of Toluca, must have been brought from the south.

After leaving the valley of Oaxaca, the road gradually descends to the shores of the Pacific, along which I travelled for about one
hundred and thirty leagues. The rainy season having set in, and having already experienced difficulties in passing some rivers, I was obliged to abandon my plan of following the coast road to Guatemala. From the farm of Espiritu Santo, I struck in for the mountain road of Chiapas, and after a journey of three days I arrived at Comitan, which is the last Mexican town on the frontiers of Central America, it is distant from the city of Guatemala one hundred leagues. After entering the confines of Central America, the road becomes more uneven until it reaches the highest point at Rosario, which, judging from the stunted appearance of Juniperus mexicana growing a few hundred feet above the range of Abies religiosa, is at an elevation of nearly 11,000 feet.

Near Gueguetenango and Chiantla I first found Lalia superbiens, then opening fine rose-coloured flowers, which were supported on a stem from 3 to 5 feet in length; in the more shaded places, overhanging mountain torrents, I have observed the flowerstem sometimes 9 feet in length, but never more.

On the 26th of October I arrived in the town of Quezaltenango, and finding the surrounding mountains likely to furnish plants suited to fulfil the object of my mission, I resolved to stay there. Quezaltenango is about 8,500 feet above the level of the sea, and is situated at the foot of the active volcano Xetuh, the summit of which is about 1,500 feet above the town; the lower portion of this mountain is partly cultivated; a few hundred feet higher up some stunted oaks, on which I found Odontoglossum pygmeum, are growing in company with Comarostaphylis arbutoides, the latter forming a tree 18 feet in height; near the crater of Xetuh I found Fuchsia cordifolia and the little Polygonum volcanicum. This volcano, when it first broke out, which is about forty-eight years ago, had been densely wooded, and a few large, dry, and blackened stems of Pinus Ayacahuite, some of which are still erect and-overhanging the crater, bear witness to the fact. At the foot of Xetuh, as well as that of the neighbouring mountain

Santa Maria, the Ayacahuite, there called Tablas, is still common, and there are equally large trees with those observed on the Pelado in the Sierra of Oaxaca. It was at this station that I at length succeeded in obtaining a supply of ripe cones, which have been amply distributed among members of the society, and from which plants have been raised at the garden. It will no doubt prove quite hardy. Following the road at the foot of Xetuh for nearly three miles, I arrived at "Las Cruces," where I found Solandra grandiflora producing large yellow flowers, and clinging for support to other trees. Las Cruces is merely a place where a few rudely made crosses are fixed by the road side, in order to apprize the traveller, ascending from the lowlands, that he has reached the highest point on the road; this place is held in great veneration by the Indians, who often adorn the crosses with flowers, or burn incense, which is the produce of an Elaphrium found in the province of Soconusco. Descending gradually from Las Cruces towards the village of Santa Maria, I first found Achimenes pedunculata with a slender naked stem, 1 foot in height, having a few leaves at the top, and seldom bearing more than two flowers. The original plant is scarcely to be recognized in the large fine specimens cultivated in this country. Peristeria Barkeri, Odontoglossum grande, and Rossii, with Oncidium leucochilum, were also met with near Santa Maria.

Travelling to the village of Retahluleu, in the lowlands, near the shores of the Pacific Ocean, the road passes along the foot of the mountain Santa Maria, until it descends into the gloomy forests of the temperate region, where the showy Justicia umbrosa, macrantha, and inaqualis, all of which failed to vegetate in the gardens, attracted my attention; there I also found for the first time Quercus Skinneri, with its extraordinary acorn; the specimens rose to the height of 50 feet.

Passing from these temperate parts towards Retahluleu, Orchidacea became more plentiful, and Epidendrum Stamfordianum, E. asperum, Fernandezia elegans, Brassavola venosa and Lalia
acuminata, were found in abundance growing on the Calabash tree (Crescentia Cujete) in that village. This tree is peculiarly adapted to their growth.

On an excursion to Sunil I passed near the morass of Almolonga, where I found Escobedia linearis growing in great abundance, and apparently enjoying a swampy situation, although often seen in dry and heavy soil. The root yields a yellow dye, resembling saffron. Upon entering the defile, after leaving the morass, I found Cobaa macrostema in full bloom, covering with slender vines anything with which it happened to come in contact.

The village of Sunil is situated on the western declivity of Xetuh, nearly on the same level as Quezaltenango, but, being surrounded by high mountains, the flora is materially different from that on the burnt up fields near that town.

The following is a list of the plants procured about Quezaltenango, which have flowered or exist at the Garden :

Oncidium leucochilum - nebulosum	Lælia acuminata - superbiens
Odontoglossum grande	Fuchsia cordifolia
- Rossii	Phaseolus sp.
- pulchellum	Comarostaphylis arbutoides
Epidendrum asperum	Passiflora stipulacea
- Stamfordianum	Centropogon cordifolius
- aurantiacum	Salvia involucrata
Peristeria Barkeri	- pulchella
Maxillaria variabilis	Cuphea pubiflora
Dinema polybulbon	Rubus trilobus
Hartwegia purpurea	Polygonum volcanicum
Hexadesmia fasciculata	Convolvulus sp.
Trichopilia tortilis	Bouvardia strigosa
Fernandezia elegans	Pinus Ayacahuite.

Having packed up my collections, and having failed to procure mules to carry the chests to Guatemala, I hired some Indians to transport them on their backs; this sort of conveyance, although novel to me at that time, I subsequently made use of whenever quadrupeds could not be procured, or when care and despatch were required. The only drawback connected with the Indians is, that they must before starting get intoxicated with the money they receive on account
of freight, and then by way of diversion they commence fighting ; this done, they resume their journey with sorrowful countenances, and contrive by forced marches to arrive within the stipulated time. The load for an Indian weighs from 80 to 150 lbs ., and with this they will walk ten and fifteen days in succession, performing each day a journey of from twenty to twenty-five miles. The remuneration they receive is half of that of a mule load, which is always composed of two parcels, or about one shilling for every ten miles.

Once more I resumed my journey to Guatemala. After leaving Quezaltenango, and travelling about two miles along the swampy plain, which is considered to be the source of the river Motagua, the road gradually rises towards the village of Totonicapan; the ascent becomes then more steep, and the sides of the mountain become covered with large evergreen Oalss, with scarcely any under shrubs except a few bushes of Viburnum discolor. Passing gradually from the region of Oaks to that of the Pinuses, I once more found some remarkably fine trees of Abies religiosa, together with Pinus Hartwegii. I may here observe, that this is the most southern station of Abies religiosa, with which I am acquainted, it having now been found at various places between 15° and $22^{\circ} \mathrm{S}$.L. ; its chief range however, is about 19°.

Passing over a slightly undulated surface I reached the high table land, which is thinly wooded with stunted trees of Alnus mexicana, on which I found in great luxuriance, the pretty little $A r$ pophyllum alpinum, with short spikes of dark purple flowers. The elevation of this plain above the sea is at least 10,000 feet, and the black volcanic soil of which it is composed is chiefly occupied by a long coarse grass, which grows in large tufts, giving not the slightest chance to other plants. Cattle will not eat this grass.

Having crossed the plain I arrived at the descent to the farm of Argueta, which is known by the name of Cuesta de la Alhaja; here my attention was arrested by the showy Oxylepis lanata, resembling in habit the dwarfer kinds of Helenium, and
bearing several large yellow flowers on a stem of 18 inches in height.

Near this place a singular custom is observed by the Indians, who, with loads on their backs, put their feet into a hollow rudely resembling the foot of a human being, made by nature in a large flat rock by the road-side. This precaution they say is necessary in order to prevent them from making a false step on the descent to Argueta. I have no doubt that the carriers of my chests of plants from Quezaltenango, went through this ceremony of "footing."

Descending the Cuesta de la Alhaja, where I found Passifora membranacea and the pretty Rigidella immaculata, the latter growing in a dry hard loam, the ground becomes more uneven, and is for the greater part covered with evergreen Oaks, and Pinus oocarpoides. Near Santiago, I found Pinus filifolia, producing large cones and long foliage and rising to the height of 40 feet; judging from its habit and the exposed situation in which it was found, it will no doubt prove as hardy as most Mexican Pines.

Having arrived at the descent towards the village of Mixco, a beautiful panorama of the town of Guatemala, which lay in the plain below, burst open to the view ; the pleasure I felt after such a long and toilsome, but withal interesting journey, may be easier imagined than described. The plain or rather valley of Guatemala, which is fifteen miles in length by nine in width, enjoys a delightful temperature, resembling that of the month of May or June in England; the lowest temperature I observed was in February, when the thermometer occasionally falls to 60° in the morning, and the warmest was in April, when it sometimes rises as high as 80°; during the rest of the year it ranges from 70° to 75°.

The plain in which Guatamela is situated, is about $\mathbf{5 , 0 0 0}$ feet above the level of the sea, and yet Sugarcane, Bananas, Coffee, Cherimogers, Custard Apple, Peaches, Spondias Myrobalanus, (from the fruit of which "Chicha," a favourite beverage of the

Indians is prepared), and Indian Corn succeed at this elevation. Morus multicaulis, which has lately been introduced for rearing the silkworm, thrives most vigorously and produces leaves during the whole year. The silk produced is of the finest quality and promises to become an important article of exportation. The greater part of the valley of Guatemala is under cultivation, and produces excellent crops of Indian Corn; the ravines by which it is surrounded on three sides, vary in depth from 100 to 500 feet; they have evidently been made, and are still being made daily, by the water from the plain and surrounding mountains, after a heavy shower, having washed away the thin cover of ferruginous clay, till it reaches the crumbled pumicestone of which the plain is composed, when that light material is also carried away by the flood. The sides of these ravines slope at an angle of 45° more or less, and a rivulet of insipid water winds its way through most of them. The pumicestone is not suitable for vegetation, unless it is well decomposed and mixed with vegetable matter; in this state it is the favourite soil of Sobralia macrantha, which is one of the most splendid of the Guatemala Oichidacea, unfolding, for several weeks in succession, rich crimson flowers, from 6 to 8 inches in diameter, supported on a reed-like stem, and forming a beautiful contrast between the dwarf, but not less handsome, Achimenes longiflora, growing by its side. This Achimenes, like pedunculata, has also been materially improved by proper cultivation. The flowers have become nearly double the size and are produced in greater abundance than in its native place.

The valley of Guatemala is destitute of trees, and for the greater part also of shrubs; it is chiefly on the sides of the ravines that Oncidium Cavendishianum, leucochilum and Epidendrum aurantiacum are to be found.

One of my first excursions after examining the vegetation about Guatemala was to the "Chorro," a little cascade by the roadside, about 12 miles N.E. of the capital; here I found again, though
not plentifully, Brassavola glauca, with large white lip and slightly scented flowers, growing in company with Cyrtochilum maculatum var., Russelianum, Epidendrum varicosum, and fragrans, Brassia guttata and brachiata, the latter remarkable for its long narrow sepals spotted with brown. On the steep rocks overhanging the rivulet the "Papelillo" (Caloseris rupestris Benth.) with long panicle and large leaves which are white underneath, formed a beautiful object. The stem of this plant is covered with a yellowish wool, which is used as a substitute for tinder. The woods about this place are composed of evergreen Oaks, and especially of Pinus oocarpoides, which attains the height of 50 feet; the chief range of this is at an elevation of about 4,000 feet, and though it descends nearly to the shore of the Bay of Honduras, it never occurs on the South coast, or higher than 5,000 feet above the level of the sea. It is to be feared that it will prove too tender for English gardens. The same may be said of Pinus tenuifolia, which I found in ravines east of Guatemala, and on the mountains of Choacus in the province of Vera Paz, only a few hundred feet higher than Pinus oocarpoides. In the more sheltered places I often found this $\mathbf{1 0 0}$ feet in height and from 3 to $4 \frac{1}{2}$ feet in diameter at the base. Scarcely a shrub or herbaceous plant is found in these Pine tracts.
On an excursion to the lowlands bordering on the Pacific Ocean, the road led me through the valley of Guatemala, and after a short but rather steep descent, I passed the lake of Amatitlan, and entered the village of the same name. The dry atmosphere and arid soil are not favourable to much variety in the vegetation, but are well adapted to the cochineal which is here produced in great abundance and of the finest quality. Following the gradual descent, and entering shaded woods, I met with Stanhopea saccata, Trichopilia tortilis, Mormodes lineatum, the latter scenting the air with its fragrant flowers, and Cycnoches ventricosum. The latter, now well known for its tendency to sport never did so as far as I could
observe in its native haunt. Although Mr. Skinner, who was with me on one of these excursions, called my attention to the then supposed C. Egertonianum, yet among several dozen plants that I had collected out of flower, after careful examination I could only discover the short flower stem of Cycnoches ventricosum.*

The village of Escuintla, where I next arrived, is on the same level as Retahluleu, which I had visited from Quezaltenango, and it yielded me the same plants found at the latter place with the addition however of Catasetum maculatum, and integerrimum, Aspasia epidendroides, Oncidium ascendens, and the large variety, of ampliatum, Epidendrum macrochilum, Brassavola venosa, Trigonidium Egertonianum and Cattleya Slinneri; the latter I found inhabiting the highest trees, in abundance, in full bloom in the month of February, in the damp and gloomy woods looking towards the sea.

From Escuintla I returned over Medio Monte to Antigua Guatemala. The name of Medio Monte is applied to the wood between the fire and water volcanoes, which at their base are only a few hundred yards apart; this wood furnished me with some fine specimens of Oncidium ornithorhynchum, Maxillaria cruenta, and aromatica; and in the higher parts, Oncidium macrantherum, and O. Wentworthianum, with a long flower stem resembling in habit O. leucochilum ; here also a few small plants of Barkeria spectabilis have been found. Some fine masses of the latter as well as of Epidendrum Slinneri, Oncidium Cavendishianum and Stanhopeas are sometimes seen in the villages of Mixco, Sumpango, and Alotenango, where they are stuck on the trees near the houses, merely surrounded at the roots with clay to prevent them from being

[^10]blown down, by this means they form better plants and flower more freely than in their native woods. The Indians, who grow them for the sake of the flowers to adorn their altars, are generally very reluctant to part with these plants.
The Volcan de Agua, or water volcano rises to the height of 12,600 feet above the level of the sea, and is about 6,000 feet higher than the plain on which Antigua Guatemala or the old town of Guatemala is built; it is regular on all sides, representing the form of a sugar loaf with the point cut off. It received the name of Volcan de Agua from the Spaniards, under Alvarado, who after subduing the country, formed a settlement at the foot of this mountain. It, however, was soon destroyed by a torrent of water issuing forth from the summit, and carrying every thing before it. The deep furrows which the water made in its descent, although now again covered with vegetation, are still plainly visible even from the new town of Guatemala, a distance of 25 miles. The lower region of this volcano is under cultivation, or is pasture land, while at an elevation of $\mathbf{9 , 0 0 0}$ feet a girdle of trees passes round it, the most conspicuous of which is Cheirostemon platanoides, which also occurs at the same elevation on the Volcan de Fuego, where it attains the height of from 60 to 80 feet, often forming a stem of 4 feet in diameter. Having passed this region, a long grass covers the ground, which makes the hill, which is steep, still more difficult to ascend. A Veratrum like Zygadenus volcanicus, was found here, throwing up a branched flower stem of 3 feet in height, covered with pendulous scented flowers of a dingy yellow ; and by its side Berberis gracilis, which I recognised immediately by its slender growth and red petioles, although without either flower or seed. After much halting on account of the steep ascent and rarified air, which made breathing continually more difficult, I at length arrived at the brink of the crater, climbing the ascent from the village of Santa Maria in four hours. A few minutes delay would have deprived me of the view I had, for the clouds arose rapidly from the
plain below, and soon obscured even the interior of the crater in such a manner that I could not clearly distinguish its sides afterwards, although I encamped in it for the night, and staid there part of the next day.

The crater is similar to an immense caldron, about 300 feet in width at the top and 150 feet in depth. Its nearly perpendicular sides admit of only one descent, at a place where they appear to have fallen in, or to have been carried away by the eruption of the water. The bottom is perfectly flat and consists of black volcanic ashes, strewed with a few blocks of porphyry which had been detached from the sides above. The present state of the crater is not easily reconciled with the account of eruption of water that occurred about three centuries ago; for if we suppose the water to have sprung from an internal opening of the crater, how can we account for its present level state? and if, as some have supposed, the water that burst forth, had been collecting in the crater during the heavy periodical rains with which that country is visited, how could the volcanic ashes, of which the bottom is composed, have retained it? With regard to the ashes, found in the crater, we might ascribe the circumstance to the Fire volcano close by, (which even now throws out a column of smoke), if we had had any large eruptions on record posterior to that of the water. That the so called water volcano had at one time largely contributed in covering the country for leagues around with beds of ashes and pumice stone, we cannot for a moment doubt, considering its enormous crater. And with regard to the eruption of water, we shall not be far from the truth in ascribing it to a waterspout alighting near the crater; a circumstance not at all improbable, for such occurrences are not rare. I have observed the effects of three of very recent date, one in the mountains of Oaxaca, and two in the Andes of Popayan, where the water in its descent swept away the largest trees, and left furrows similar to those on the Volcan de Agua.
The bottom of the crater, which is but scantily covered with vege-
tation, furnished Aplopappus stoloniferus; and a Commelynaceous plant which constitutes a new genus (Lampra volcanica Benth.) was found unfolding pretty white flowers where the blocks of stone afforded it a little protection, whilst in the more exposed places it had been nipped by frost. The only tree which grows near the crater and even inside of it is Pinus Hartwegii; and these specimens are equally large with those observed in Mexico. The cones which had been but sparingly produced that season were then (in August) half ripe; and the squirrels which visit that desolate region had eaten them even in that state.
During my stay in Guatemala, I saw this mountain twice covered with snow, or rather with hailstones; but the top not being within the limits of perpetual snow, the latter seldom lies more than two or three days. No water being found on the ascent after leaving the village of Santa Maria, I had to include that article among my provisions, although I was rather liberally supplied from above, during the night which I passed in the crater.

Crossing the plain of Guatemala in a southerly direction, I ascended the gentle acclivity of the Cuesta de Pinula, and arrived at the farm of Arrasola, which is situated about 500 feet above the plain. The undulated surface, clothed with a green sward and detached shrubberies, presented a beautiful picture, and strongly reminded me of park scenery in England. In the shaded woods in dells, I found Odontoglossum grande, bearing from 3 to 4 large showy flowers on a spike; in the more exposed situations Ornithocephalus inflexus, Coelia macrostachya, with dense spike of rosecoloured flowers, and Oncidium pergameneum, bicallosum, and the latter with a flower-stem equalling the leaves, and large yellow flowers, were collected.
Having here received instructions from the Council of the Society, to proceed to the equatorial Andes, I packed up my collection; duplicates from which I remitted from time to time.
The following is a list of plants collected in Guatemala, which VOL. III. 2ND series.
have flowered in the garden; besides these, however, there are many Orchidaceous and other plants, which have as yet not shown any disposition to flower.

Aspasia epidendroides
Barkeria spectabilis
Brassavola glauca

- venosa

Brassia brachiata

- guttata

Catasetum integerrimum

- maculatum
- Russellianum

Cattleya granulosa

- Skinneri

Colia Baueri

- macrostachya

Cycnoches ventricosum
Epidendrum alatum

- aurantiacum
- diotum
- incumbens
- lacertinum
- macrochilum
- polyanthum
- selligerum
- Skinneri
- Stamfordianum
- varicosum
- virgatum

Govenia liliacea

- sp .

Lacæna bicolor
Lælia superbiens

- acuminata

Maxillaria aromatica

- concava
- cruenta
- densa

Mormodes lineatum

- aromaticum

Notylia bicolor
Odontoglossum bictoniense

- elatum
- grande
- pulchellum

Oncidium ampliatum large var. - ascendens

- bicallosum
- Cavendishianum
- Cebolleta

Oncidium filipes

- leucochilum
- macrantherum
- microchilum
- ornithorhynchum
- pergameneum
- sphacelatum
- - var.
- Suttoni
- Wentworthianum

Sobralia macrantha
Spiranthes rosulata

- cerina
- grandiflora

Stanhopea saccata

- Wardii
- - var.

Trichocentrum candidum
Trichopilia tortilis
Trigonidium Egertonii
Achimenes longiflora

- pedunculata
- rosea

Aristolochia Gigas
Begonia crassicaulis

- incana
- vitifolia

Cheirostemon platanoides
Drymonia punctata
Fuchsia splendens
Gesnera longifolia
Hydrotænia Meleagris
Hymenocallis patens
Ipomæa rubro-cærulea
Lampra volcanica
Niphæa oblonga
Pancratium sp.
Passiflora membranacea
Pinus filifolia

- tenuifolia
- oocarpoides

Quercus callosa

- Skinneri
- - var.

Rigidella immaculata
Salvia prunelloides
Zygadenus volcanicus.
orders to proceed, in consequence of the little traffic carried on between the two countries, I eventually sailed from the port of Realejo, and after what might be considered a fine passage of 36 days, I landed at Callao on the coast of Peru. Having stopped here for a few days, I made an excursion from Lima towards Acobamba. This is situated in the Cordillera, which rises behind the capital and which attains its highest point at the Toldo de nieve, (tent of snow), being a broad sheet of perpetual snow visible from Callao. The lower part of this Cordillera, and indeed the whole coast of Peru, from the total absence of rain, presents a most desolate appearance, and the eye in vain searches for a green spot for relief. Entering the ravines, I observed a few plants of Cereus senilis and another tall growing species ; the former however seldom attains more than 10 feet in height, nor has it the long white hairs with which that species is covered in Mexico. Near the solitary bluff rock, called Paucacha, which is barely within the influence of the periodical rains, I found a beautiful bright orange-flowered Tacsonia, also Oxalis rubrocincta, Berberis dealbata, Colletia horrida, and a Hesperomeles with long thorns.

Returning to Lima, and finding that the vessel in which I had engaged a passage was to sail shortly, I repaired to Callao, and after a passage of nine days with a favourable breeze and current, we entered the river Guayas, on the right bank of which the town of Guapaquil is situated. The country hereabouts is flat and well wooded, particularly along the river ; but the myriads of mosquitoes which inhabit the thickets, make the examination of their flora anything but agreeable. The thermometer ranges here from 80° to 85° throughout the year, with little variation during night; this temperature, which is considerably less than that of the east coast in a similar latitude, is no doubt owing to the high Cordillera in the interior, and also to numerous snow clad mountains, of which, Chimborazo is visible from the coast. These no doubt contribute in lowering the temperature.

Orchidacea which I expected to find in abundance in the shaded woods along the river, were comparatively scarce, and my exertions were only rewarded with four species, which although they arrived safely have not yet flowered.

Towards the middle of May the periodical rains, which make travelling in the Andes next to impossible, having ceased, I resumed my journey to Loxa. A three days sail in a canoe down the river Guayaquil, brought me to the village of Santa Rosa, from whence I started on the following day for the village of Paccha, which is distant about fourteen leagues, for the purpose of procuring mules to bring up my luggage. This journey gave me some insight with regard to the roads that I should have to take in pursuing my occupation in the Andes. The road as far the Tambo de la Chonta, a distance of seven leagues, leads through a narrow ravine, and crosses the rivulet which flows in it sixty-five times; these repeated crossings although the water is scarcely 3 feet in depth, became at every step worse, for the large stones, which had been carried down during the rains, rendered the footing of mules unsafe. The Tambo de la Chonta, where I arrived towards the evening, is only a thatched roof supported on a few beams, affording the weary traveller no other accommodation than that of shelter ; the ascent which had hitherto been comparatively trifing becomes steeper; and the large trees, Palms, and thick underwood bespeak a damp climate.

The village of $\mathbf{P a c c h a}^{\text {at, (if twenty mud-built houses deserve the }}$ name), is about 5,000 feet above the level of the sea and enjoys a delightful temperature; sugarcane, coffee, yuca, (Jatropha Manihot), oranges, pine-apples, come to perfection at this elevation. The shaded woods and dells furnished me a great variety of Orchidacea, among which an Oncidium from its singular habit particularly attracted my attention; this plant throws up a slender branched flower stem from 10 to 12 feet in height and produces pseudobulbs from the stem itself; these in the course of time form plants
again, sending their offspring a couple of yards higher up, and thus often a single plant runs up a tree 25 feet in height. This species together with twenty more, which I collected in these damp woods, was ill fitted to withstand the long journey round Cape Horn; and, consequently the greater part of them when they arrived in England were dead ; of those surviving, Stanhopea Bucephalus and Lycaste lanipes alone have flowered.
From Paccha towards Loxa, the ground is extremely uneven. Near the Indian village El Sisne, at an elevation of nearly 9,000 feet, I found Stenomesson aurantiacum, displaying bright orange flowers, and several large-rooted species of Macleania, with Myrica macrocarpa, from the seeds of which the industrious Indians obtain a green wax, employed for religious purposes. Descending to the valley of El Catamayo, the presence of Agaves, Mimosas, a triangular Cereus, Schinus Molle (here called "Molle," or pepper tree), Elaphrium and Crotons, indicated a dry atmosphere. A tree called Arupo (Chionanthus pubescens,) inhabiting the steep sides of the mountains, formed a conspicuous object ; its delicate rose-coloured flowers, produced in great abundance before the leaves, are visible at a great distance, and contrast well with the apparently dead vegetation around. From the farm of El Catamayo, where sugar-cane is cultivated, to the town of Loxa, a distance of five leagues, the main Cordillera has to be crossed; this part of the Andes is of easy access and is scarcely more than 8,000 feet above the sea; it has formerly been a Cinchona forest, but since the Quina has become an article of commerce, the Cinchona has gradually disappeared, on account of the bad system which is pursued in obtaining the bark by uprooting the plant. The best Quina or Cascarilla is yielded by Cinchona Condaminea, which is 6 feet in height ; several other species of arborescent Cinchonas abound in the mountains of Loxa, but their bark is considered to be inferior to this. In the more exposed situations of this Cordillera, I collected several
species of Befaria, also Macleanias having large fleshy roots, Vacciniums, Fuchsia loxensis, Barnadesia spinosa, Berberis glauca, Alströmerias, Hypericum laricifolium, yielding a yellow dye, a Viburnum and Lupinus semperflorens, the latter forming a shrub 12 feet in height, and flowering profusely throughout the year.

Orchidacea also, are to be met with at this elevation, but they are more abundant in the woods a few hundred feet lower; the damp atmosphere which prevails about Loxa, is favourable to the growth of that class of plants, but renders them unfit to undergo a long journey; of seventy species which I collected here, very few succeeded after their arrival in England. The thermometer at Loxa, stands generally between 60° and 65°; the rainy season sets in in December and lasts until May, when it is followed by the "paramos," light but continued rains unaccompanied by thunder. These paramos are peculiar to the more elevated parts of the Andes, where that term is also applied to the grass lands (pajonal) above the regions of trees; they seldom pass their prescribed limits by descending into the warm vallies or down to the coast; an instance of which I observed on my arival at Loxa from El Catamayo, for in a distance of five leagues, in the former place it had been raining for several days, whilst in the latter every thing was burnt up by the continued drought. About Loxa, the lower region of the mountains, to which I made frequent visits, furnished me with Tropaolum peltophorum, Lupinus arvensis; Berberis loxensis, an Oreocallis, several species of Rubus, Hypericum, Monnina, and Alströmeria, whilst the more elevated parts were rich in Composita and Ericacea. A small tree called Ducu (Clusia Ducu Benth.) is also found in this region, exuding a yellowish transparent resin from the stem, which is used as incense.

The Wax palm (Ceroxylon andicola) occurs at an elevation of nearly 8,000 feet; the stem, which attains 60 feet in height
and from 12 to 18 inches in diameter, is in the larger specimens covered with a thin coating of a whitish, waxy substance. This when purified in hot water, becomes compact, and acquires a cream colour. It is generally mixed with a little tallow if made into candles, being of too brittle a nature to be worked by itself; it then burns with a bright flame without any smell or smoke. The quantity of wax from a full grown palm varies from 12 to 25 pounds.

In the ravine leading to the village of Saraguru, I found Brugmansia sanguinea called Guando, forming a shrub 12 feet in height; the seed-pod of this, as well as the seeds, is considered to be highly narcotic, and to cause death. In this ravine I likewise found a Walnut allied to Juglans nigra, called Tocte, several Melastomaceous and Myrtaceous shrubs, Eccremocarpus longiflorus, and a pale yellow flowering Tropaolum, the latter ascending to the tops of the highest trees. On the bluff rocks near the village, I observed Phycella chloracra, having scarlet flowers tipped with green, but from its inaccessible habitat, I could procure only a few bulbs.

After a stay of four months in Loxa, during which time I formed large collections of plants and seeds, I resumed my journey, and arrived at the town of Cuenca, which is forty leagues north of Loxa, and became my head quarters. The greater part of the road, after emerging from the ravine of Saraguru, leads over the Pa ramo (grass lands) at an elevation of from 10,000 to 11,000 feet above the level of the sea. Near the Tambo de Marivina, I found Odontoglossum pardinum, growing on trees, associated with Berberis conferta and glauca, two species of Osteomeles, a tall shrubby Lobelia with large yellow flowers, Alströmerias, a Ribes with greenish flowers and several shrubby Hypericums. Having made repeated excursions to the neighbouring mountains with no great success, I visited the warm valley called Yunguilla, where I was rewarded with the bulbs of a yellow flowering Cybister, a scarlet

Phycella, and a large rooted Gesnera, all flowering before the leaves appear.*

Towards the end of January 1842, I left Cuenca and reached Riobamba, by passing over the Paramo del Assuay, which lies at an elevation of $\mathbf{1 5 , 0 0 0}$ feet above the level of the sea. This "highway," being the only means of communication between the two towns, is justly dreaded by the natives, as the sudden hailstorms and rain, with which this desolate region is visited, make travelling at all times a hazardous undertaking. The highest point of Assuay is about 500 feet above the road, or 15,520 feet above the sea, and is consequently scarcely within the limits of perpetual snow, although repeatedly covered with it in summer, during the dry season, which is from June to October, when the snow-line in the Andes descends much lower than during the rainy season or winter. At this elevation several species of Gentiana, Culcitium rivale, Sida phyllanthos, with a large purple flower resembling a Crocus, and a small creeping Lupine were observed; in wet places a red Lycopodium, called in the Quichua language Hatun condenado (great devil) is abundant; highly medicinal properties are ascribed to this plant by the natives, who employ it for the cure of that horrible disease, Mal de San Lazaro (Elephantiasis tuberculata), which is so common in the equatorial Andes; but I could not learn that they derive any benefit from its application.

Riobamba, or Ciudad de Bolivar, as it is now called, agreeably to a late decree of the equatorial government, stands in the midst of a sandy plain almost destitute of vegetation, at an elevation of $\mathbf{9 , 4 7 2}$ feet. The majestic Chimborazo, which rises gradually out of the plain at adistance of six leagues, attaining the height of $\mathbf{2 1 , 4 4 1}$ feet above the sea, with Carguairazo a little to the north, and 'Tunguragua and Capac Urcu, called El Atar by the Spaniards, in the north east, form a magnificent mountain prospect if viewed from the

[^11]great square in Riobamba. Chimborazo, like most elevated plains in the Andes, is destitute of trees and shrubs ; the highest range of cultivation we find is, at the farm of Chuquipollo, at an elevation of 11,500 feet ; barley, potatoes, "Mayua" (Tropaolum tuberosum), "Oka" (Oxalis tuberosa), and Lucerne, form the chief objects of agriculture. Here I found Salvia macrostachya, a Castilleja, Plantago, Calceolaria ericoides, Alchemillas, a Ranunculus, a Rumex, with large leaves resembling R. Patientia, several species of Baccharis, Grasses and Ionidium parviforum. The latter is called "Cuichunchullu," (i.e. bowels of the guinea pig,) and is in repute as a remedy for the mal de San Lazaro, but from the frequency of that disorder in Riobamba, Huano, and Cuenca, where the Cuichunchullu is so easily procured, and where no complete cure of confirmed leprosy has ever been effected, it may be concluded that its virtues are greatly exaggerated.
The ascent from the farm of Chuquipollo to the snow-line, a distance of nine miles, is easily acconplished in three hours; judging from the eye, the distance seems much less than it really is, a deception arising from the brilliancy of the snow. Two or three species of grass, which leave but little chance for other plants, densely cover the ground, until at an elevation of about 15,000 feet, they gradually give way to the more interesting Alpine flora, which extends to the limits of perpetual snow. Among the plants collected here, I may mention several species of Gentiana, Valeriana, Lycopodium, Draba aretioides, Arabis andicola, a Jamiesonia, Cerastium densum, Astragalus geminifforus, several species of Lupinus, among which L. alopecuroides, was remarkable for its dense inflorescence of 2 feet in height, and an Halenia. Culcitium reflexum, nivale and rufescens, or "Fraylejon," with a woolly head and large cernuous flowers are found in abundance on the sandy tract within a few yards of the perpetual snow and at an elevation of 15,800 feet above the level of the sea.
Having made several excursions to Penipe, the lake of Colta vol. ili. ${ }^{2}$ nd series.
near the ruined town of Caxabamba and Tunguragua without finding many plants worthy of notice, I repaired to Quito, about the middle of March 1842.

The eastern declivity of Pichincha, at the foot of which the town of Quito is built, at an eleration of 9,400 feet, retains its verdure throughout the year; here Brugmansia sanguinea, a shrubby Euphorbia, Duranta triacantha, Prunus salicifolia, Clematis sericea, are employed in forming fences, whilst on uncultivated spots and by the sides of ravines we find Thibaudia acuminata, Salvia rubescens, Lamourouxia virgata, Gesnera ulmifolia, Lupinus pubescens, EEnothera sinuata, Sedum quitense, several species of Fern, Calceolaria, Solanum, Cestrum, Melastoma, Composita, and a few Grasses. The region of arborescent shrubs, which extends to an elevation of 12,000 feet, is chiefly composed of Buddlea pichinchensis, interrupta, and bullata, Barnadesia spinosa, Monnina nemorosa, Andromachia igniaria, the bark of which is used for tinder, several species of Hypericum, and Baccharis, Eupatorium glutinosum, called Matico, whose dried leaves reduced to powder are useful in stopping bleeding and healing wounds, Gaultheria pichinchensis, insipida, and purpurascens, Vaccinium Mortinia, Cremolobus peruvianus, the rich Fuchsia ampliata, with Rubus glabratus, pichinchensis, and glaucus, the latter bearing a large black fruit resembling a mulberry in flavour. Here was also a kind of Bamboo, which formed impenetrable thickets.

The region we next enter is that of the Paramo, or Pajonal, presenting to the eye an unvaried expanse of long grass, constituting the pasture of the Andes; here we find Ranunculus peruvianus, Valeriana hirtella, Andromachia acaulis, Swertia umbellata, Werneria nubigena, a dwarf shrubby Vaccinium, Gentiana sedifolia, the smallest in the Andes, the corolla of which closes immediately when taken up, Petroselinum depictum, and near the sandy crater, in addition to most of the plants observed on Chimborazo, Sida pichinchensis, Draba alyssoides, and in clefts of rocks the rare Saxifraga andicola.

Pichincha attains a height of 15,979 feet, and although repeatedly covered with snow, the latter seldom remains long. The line of perpetual congelation under the equator is fixed by Humboldt at 15,736 feet, but this limit admits of local variation, as for example on Cayambe, where a broad sheet of snow extends over a gradual descent, and is found as low as 14,200 feet; whilst on Chimborazo, where the form of the mountain is more conical, it ascends to 16,000 feet. The crater of Pichincha, which looks like an immense ravine, having an opening towards the west coast or in the opposite direction of Quito, is inaccessible on all sides, and is probably not less than a thousand feet in depth. Many centuries have elapsed since it existed in full activity, when it must have largely contributed to covering the country around with pumicestone and ashes; now, though still smouldering, its present commotions are the enfeebled efforts of age.

The western declivity of Pichincha, to which I made frequent excursions, afforded me Andromachia solidaginea, Valeriana microphylla, Viburnum pichinchense, Arracacha acuminata, Tacsonia quitensis with an oblong acidulous fruit, Rubus stipularis, Fuchsia sylvatica, sessilifora, scabriuscula, and dependens, the latter forming a large shrub, producing numerous scarlet flowers at the points of the slender branches which give it a graceful appearance, an Iochroma with large dark blue flowers two inches in length, Mutisia Clematis, Mikania corymbulosa, Miconia pichinchensis, Macleania cordifolia, having a large fleshy root, Thibaudia pichinchensis, Palicourea lineata, and in the more temperate parts towards the uninhabited woods of Esmeraldas, Centropogon calycinus, and prostratus, Begonia longirostris, Quercus Benthamiana forming a middle sized tree with wide spreading branches and large leaves which are brown underneath, the rare Fuchsia longifora, several species of Orchidacea, among which Epidendrum amethystinum, and porphyreum and Cypripedium macranthum, are the most remarkable, the latter preferring wet situa-
tions and producing large greenish brown flowers on a scape of three feet in height. The singular Ophioglossum palmatum, already known from having been received from various parts of the globe, is also found here growing on trees, but it is by no means common.

Travelling to Antisana, whose broad cone covered with perpetual snow is plainly visible from Quito, I crossed the well cultivated valley of Chillo to the farm of El Isco, which is situated at an elevation of 11,400 feet; here the cultivation of barley and potatoes is carried on with success; the plants which I observed there were Onoseris eriocephala, Senecio pimpinellifolius, and Antisana, Culcitium rosmarinifolium, Erigeron campanulatum, Liabum acaule, and in the clefts of rocks overhanging the farm-house Stenomesson Hartwegii, producing its scarlet pendulous flowers on a scape of 18 inches in height. I may here observe that bulbous plants are by no means common in the Andes, for besides the last mentioned I only found two other species on old walls in Quito, where they have been apparently planted, and Phadranassa obtusa, on the banks of the Guallabamba and in the valley of San Antonio.

Following the gradual ascent from El Isco, I arrived at the farm-house of Antisana, which is situated in a grassy plain at an elevation of 13,434 feet, and within four miles of the snow-line. This ground being extremely rich in Alpine plants, furnished me with Gentiana diffusa, and rupicola, Ranunculus nubigenus, pramorsus, and sibbaldioides, Castilleja nubigena. Euphrasia stricta, Liabum erigeroides, Bowlesia acutangula, Werneria densa, Aster rupestris, Culcitium ascendens, and hyoseridis, Eryngium humile, Valeriana plantaginea, Baccharis humifusa, thyoides, and alpina, Ribes frigidum, and two species of Urtica, together with Chuquiraga lancifolia, with showy heads of yellow flowers, which is the only shrub that supplies the herdsmen of the estate with fuel. On the eastern slope of Antisana, near the swampy outlet of the Lake of Mica, I observed Gentiana limoselloides, Plantago nivalis, Vaccinium empetrifolium, and penaoides, Lysipoma montioides, Liabum erige-
roides, Azorella aretioides, Werneria disticha, Potentilla andicola, Alchemilla nivalis, and a moss-like plant supposed to be a species of Sisyrinchium, forming large tufts several feet square, and rising from one to two feet above the surface of the soil ; these masses are so compact that with great difficulty I succeeded in separating a piece.

The proper season for travelling having arrived, I became desirous to resume my journey northwards, I accordingly despatched the collections made about Quito to Guayaquil, and set out on the 21st of July for Popayan, where I arrived on the 17th of August, after a painful journey of twenty-six days.

The town of Popayan being situated in the valley of the river Cauca, at an elevation of 5,900 feet, enjoys a mild climate, the thermometer ranging between 65° and 70° throughout the year; most European fruits are cultivated here by the side of Cherimoyers, Coffee, Sugarcane, Pine-apples, Granadillas, and several kinds of Plantain; among the latter I observed one called Pacifico or Otahete, esteemed for its fruit, which for size and flavour is between Musa sapientum and paradisiaca; it is of recent introduction, and judging from the name has been brought from some of the islands in the Pacific Ocean.

The Central Cordillera at the foot of which the town of Popayan is built, and which is scarcely ever less than 10,000 feet in height, attains its greatest elevation in the peaks of Puracé, and a little more to the south in Zotara ; they are both considerably above the snow-line. The slopes of these mountains and the mountain-pass of the Paramo de Guanacas, which connects the valley of the Cauca with that of the Magdalena, afforded me ample occupation. Here I found Myrica mollis, Psidium sericiflorum, Eugenia Guayavilla, Meriania majalis, called Flor de Mayo, being a beautiful shrub with large purple flowers, Palicourea popayanensis, Escallonia caracasana, Cinchona pubescens or "Palo requeson," a tree from 20 to 30 feet in height producing sweet scented
flowers, Loranthus catacarpus, Cerasus opaca, Quercus Humboldtiana, forming a large forest tree, and occupying a range from 7,000 to 8,000 feet, Gaultheria anastomosans, Siphocampylus cordifolius, lanatus, and Columne, Befaria phillyreafolia, an evergreen shrub of striking beauty, producing rose-coloured flowers in abundance at the points of the shoots; in the more elevated parts, Fuchsia canescens, and corollata, Macleania pubiflora, Thibaudia hirtiflora, and parvifolia, Ribes leptostachyum, Linochilus floribundus, Ceratostemma rigidum, Vaccinium densiflorum, and acuminatum, Espeletia grandiflora, Lobelia rupestris, and andina, Myrtus oxycoccoides, Valeriana bracteata and Apium glaucescens. The Cinchona woods of Pitayo, which are famous on account of the bark they produce, lie about forty miles N.E. of Popayan in the Central Cordillera, at an elevation of 8,000 feet; the species which abounds there is Cinchona lanceolata, called "Red bark," a tree between 40 and 50 feet in height, the bark of this, is however, considered inferior to the " Orange bark," the produce of Lisyanthus densiflorus which is a shrub with large shining leaves and yellow flowers, belonging to the natural order Gentianacea. Here I collected Mikania rufa, Coffea marginata, the large scarlet flowering Mutisia grandiflora, Begonia trachyptera, Spigelia pedunculata, the leaves of which prove fatal to dogs, Viscum clavatum, and squamigerum, Clethra bicolor, Gaultheria cordifolia, Thibaudia pubescens, and pendula, Vaccinium epacridifolium, and several minute Orchidacea.

The western Cordillera seldom attains more than 9,000 feet of an elevation and terminates abruptly towards the coast, presenting a boundless uninhabited forest. The principal objects derived from this expedition were four species of Palms, among which was the "Chontadura," having a slender prickly stem between 40 and 60 feet in height, with a raceme of flowers eighteen inches in length, and producing from 150 to 200 yellow nuts about the size of a large green walnut. The thick rind surrounding the seed of these,
when boiled resembles in flavour a Spanish Chesnut ; in boiling, the rind yields an oil which may be used for culinary purposes or for burning.

Towards the middle of December after packing up what I had collected about Popayan, I proceeded with my collections to Bogota. Passing over the Central Cordillera by the Paramo de Guanacas, I entered the valley of the Upper Magdalena river at the village of La Plata, and following the arid banks of that river I arrived on the 1st of January 1843, in Bogota, after a fatiguing journey of twenty-days. The sudden change of temperature from the warm valley of the Magdalena to the cold table-land of Bogota, was probably the cause of my contracting a fever and ague, from which I suffered during the month of January, and which prevented me from following my occupation during that time.

The town of Bogota being built at the foot of the western Cordillera, at an elevation of nearly 9,000 feet enjoys a mean temperature of 56° and notwithstanding the swampy plain in front, through which the river Bogota slowly winds, the town is considered healthy.
The aspect of the vegetation round Bogota is at first glance anything but encouraging for a botanical collector; upon a closer inspection, however, I found that the apparently barren mountains were covered with some very interesting plants, and particularly the ravine which descends the Cordillera, and whose clear stream supplies the town with water ; here I found Gaultheria ramosissima, and conferta, Gaylussacia buxifolia, Chatogastra microphylla, with small yellow flowers, Spirea argentea, Thibaudia floribunda, with a large fleshy root, Fuchsia petiolaris, an Oncidium with yellow flowers supported on a stem three feet in height, and a half-climbing Begonia with large scarlet flowers adorning the rocks with gay colours. Following the steep ascent to the Paramo, I observed Linochilus rosmarinifolius, Palicourea vaginata, Eupatorium amplum, vacciniafolium, and latipes, Drymis granatensis, called
"Palo de aji," or pepperwood, in allusion to its sharp pungent bark, which tastes like a Capsicum, Berberis glauca, Gentiana corymbosa, and Swertia plantaginea.

Crossing the plain of Bogota to the south west and passing the Paramo de San Fortunato, where I found Cestrum buxifolium, Siphocampylus asper, Baccharis microphylla, Lupinus bogotensis and the shrubby L. interruptus, I descended to the more temperate regions towards Fusagasuga and Pandi; here among Aracea and Piperacea, I found Fuchsia verrucosa, a dwarf shrub with small scarlet flowers, \boldsymbol{F}. hirtella, whose slender half-climbing stems elevate themselves to the height of 25 feet, seeking support from other shrubs, Siphocampylus hispidus, Centropogon oblongus, Calycophyllum coccineum, a shrub with large scarlet bracts, Cinchona nitida, a middle sized tree with a panicle of white sweet scented flowers resembling a Lilac, Ficus prinoides, or India rubber-tree, Vernonia rubricaulis, Stevia compacta, several species of Ferns and some Orchidacea, amongst which were the tallgrowing Cyrtopodium punctatum, and the large crimson flowering Cattleya maxima.

On my journey to Zypaguira (celebrated for its inexhaustible salt-mine), and from thence to Pacho, I observed Symplocos Alstonia, Alnus fervuginea, Tagetes zypaguirensis, Castilleja fissifolia, Viburnum triphyllum, and molle, several Melastomacea, and Orchidacea, among which were an Oncidium with a twining flower stem, and Odontoglossum crispum, having a spike two and a half feet in length, and producing from 20 to 27 large white flowers, with a pinkish hue on the outside of the sepals, and orange spots on the lip.

Having here received instructions to return to Europe with my collections, I left Bogota about the middle of April for Honda, where 1 was to embark in the Magdalena. A few days' delay at Guadias, occasioned by the difficulty of procuring fresh mules, afforder me an opportunity of examining the flora; here I pro-

cured Rondeletia brevipes, reflexa, eriantha, Mikania leiostachya, and caudata, Daphne cestrifolia, with yellow berries which are poisonous to cattle, Spigelia hamelioides, and Brownea, the latter forming a tree with large heads of crimson flowers which develop themselves for several weeks in succession. Ascending the wooded heights in the East, I found in a forest of the Wax Palm, (Ceroxylon andicola, Gustavia speciosa, Caliphruria Hartwegiana a bulbous plant with white flowers, Peristeria elata and Achimenes picta, which is another valuable addition to that interesting genus. In its native habitat this Achimenes prefers dry rocky ground, in places not much shaded, where it scarcely attains more than five inches in height, seldom producing above two or three of its finely mottled bright orange flowers upon a stem. The accompanying figure was taken from one of the first specimens that flowered in the garden of the Horticultural Society.
Soon after my arrival in Honda, having readily procured a boat capable of holding my collections, I embarked on the Magdalena for Barranca, and crossed from thence by land to Carthagena. The rapid descent on the Magdalena afforded me but little opportunity of examining its wooded banks, for the boatmen being hired to convey me to my place of destination, it was their interest to make the journey with as little delay as possible.

Finally leaving the mainland about the middle of May for Jamaica, where, during some days delay, I added a few things from the Port Royal mountains to my collection, I embarked for London on the 3rd of June, and arrived safely on the 24th of July 1843, after an absence of six years and ten months.
The following is a list of the plants, as far as their names can at present be ascertained, that have been introduced from Co lumbia :

> Canna glauca Catasetum latilabre - ochraceum

Caliphruria Hartwegiana
Cattleya maxima
Ceratostemma Salapa

- lanceolatum

Ceroxylon andicola
Cereus sepium
Conium Arracacha
Cyrtopodium punctatum
Epidendrum ceratistes
Gesnera Lindleyana vistita
Habrothamnus cyaneus
Helcia sanguinolenta
Ipomæa codonantha
Liparis elata
Lupinus bogotensis

- arvensis
- interruptus
- pubescens
- ramosissimus
- semperflorens
- Tauris

Lycaste lanipes
Maxillaria bractescens

- scabrilinguis

Musa (Pacifico)
Odontoglossum crispum
Oncidium rupestre
Peristeria elata
Phædranassa chloracra - obtusa

Pilumna laxa
Rubus glaucus
Stanhopea Bucephalus
Stenomesson aurantiacum
Hartwegii
Tacsonia manicata

- mollissima

Thibaudia floribunda.
From Jamaica :
Aristolochia grandiflora Bletia hyacinthina
Calanthe veratrifolia
Crinum Commelini
Epidendrum fuscatum
Garrya Macfadyenii
Hymenocallis Barringtoniæ
Oncidium luridum.

$\therefore=$ $B=0$

VII. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick during the year 1842. By Mr. Robert Thompson.

This Journal has been kept on the same plan as the preceding.

[164

JANUARY.

JANUARY.

FEBRUARY.

FEBRUARY.

Temperature.					Wind.		Rain.	Remarks.
Pays	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
	46504542	26	56	23	NW		. 02	The mean temperature was about the average. The barometer averaged a little higher than usual ; and the quantity of
		40	51	37	W			meter averaged a little higher than usual ; and the quantity of rain was somewhat less. South winds were prevalent. It is
		37	50	30	NW	Ditto Ditto		
		30	45	27	E	Ditto Ditto		markable instance of the contrary occurred in the period be-
	${ }_{38}^{42}$	27 26	43	22 23		Ditto	.06.	
	40	31	41	30	-	Ditto		very high, with the wind from south and south-west. It was even brisk from south on the 1 ith and two following days.
	46	28	50	25		Ditto	. 06	
	51	43	62	40	S	Ditto		
	52	45	52	41		Ditto		Men Pressure from the 3 dily observations 29.942 inches.
	54	30	57	26		Ditto	. 04	- Temperature Ditto $4^{11^{\circ} .76}$ ——Dew Point Ditto $40^{\circ} .69$ —— Degree of Dryness Ditto $1^{10.07}$
	52	28	53	26				
	54	38 40	62 60	33 38	SW	Little		
	53	33	56	32	-	Ditto	. 02	\qquad Force of Vapour Ditto 288 inch. Least observed degree of Moisture710
	49	25	49	21	S	Ditto		
	47	24	48	20	NW	Ditto		Minimum Temperature in ditto $23^{\circ}{ }^{\circ}$.
	40	31	49	25 25	SW	Ditto		Maximum Temperature in the $\begin{aligned} & \text { Minimum of Terrestrial Radiation } 18^{\circ} .\end{aligned}$ Mean Temperature of External Air $40^{\circ} .03$
	48	27	48	23		Brisk	. 16	
	50	34	52	31	S	Little		
	47	33	56 47	38		Brisk		Winds.
	45	23	59	18	W	Brisk Ditto Strong Brisk	. 11	North oday ${ }^{\text {N. East..... . } 0 \text { days }}$
	4	30 36	65	28			. 07	South12.. S. East....... ${ }^{\text {.. }}$
	51	42	6	$\begin{aligned} & 33 \\ & 41 \end{aligned}$	S		. 33	
								28 days.
	47.71	32.96	51.78	29.71			1.32	Amount of Rain..

MARCH.

MARCH.

Temperature					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	51	34	53	30	W	Little	. 02	About half an inch above the usual quantity of rain fell in
2	52	49	52	48	SW	Brisk	.41	this month, but the dryness of the air in intervals was conside-
3	57	41	60	38	W	Ditto	. 11	rable. West and south-west winds were prevalent; and the
4	48	29	65	26	W	Little		mean temperature was in consequence 2° above the average.
6	54	27	75	21		Ditto		At the end of the month, vegetation was in a very forward state; the common Hawthorn was then in leaf, a fortnight
6	54 54	26	59	22 43	SE	Ditto	. 02	earlier than usual, and a month earlier than in some late
8	57	35	78	32	SW	Little	.17	seasons. d
9	48	37	62	35		Brisk	. 47	The 2nd was stormy and wet, with south-west wind, the
10	47	31	62	24	NW	Ditto	. 01	latter maintaining the temperature at night to within 3° of its
11	50	27	57	24	S	Ditto		maximum through the day. The 9th was stormy with hail
12	58	40	72	36	SW	Little	. 06	showers, followed by very heavy rain, the wind increasing to a hurricane at night.
13	57	37	74	32	W	Brisk		
	- 49	45	62	44	S	Little	. 02	Mean Pressure from the 3 daily observations 29.821 inches.
16	56	44	58	42	-	Ditto		- Dew Point Ditto $43^{\circ} 3^{\circ} 98$
17	56	43	61	39		Ditto	. 05	- Degree of Dryness ... Ditto $\mathrm{2}^{0} .31$
	52	35	55	32	W	Brisk		- Degree of Moisture . . Ditto 921
19 20	46	40	50	37	SW	Strong		- Force of Vapour Ditto 327 inch.
	48	38	55	34	NW	Brisk	. 10	Least observed degree of Moisture ${ }^{\text {. } 636}$
22	48	34	64	30	N	Ditto	. 08	Maximum Temperature in the Shade . . . $60^{\circ}{ }^{\circ}$
23	46	38 28	5	25 23		Ditto Ditto	. 08	Minimum Temperature in ditto ${ }^{26} 6^{\circ}$.
24	46	34	63	31	W	Little		Minimum of Terrestrial Radiation 211°.
25 26 26	54	36	63	32		Brisk	. 07	Mean Temperature of External Air $44^{\circ} \cdot 9^{8}$
27	50	29	69	25	NW	Ditto	. 01	Winds.
28	52 60	41	60	40	W	Ditto	. 02	North 3 days ${ }^{\text {N. East...... } \text { o days }}$
29	59	47	70 65	46		Ditto		South 3 .. S. East...... 1 ..
30 31	59 56	42	65	40	SW	Brisk	. 05	
31	56	43	56	39		Strong	.13	
	52.48	$37 \cdot 48$	61.03	34.29			1.81	Amount of Rain. 1.81 inch.

[170]

APRIL.

APRIL.

Temperature.					Wind.		Rain.	Remarks.
Deng.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
				28	N	Little	. 02	This was a very dry month; in fact the driest of any for the last sixteen years at least. A small quantity of rain fell on the
2	47	31	6	27		Brisk	. 02	13 th, and only slight depositions on four other days. With the
3	47	35	55	32		Ditto		exception of one day, the wind was either from north, or from
4	47	27	50	20	NE	Ditto		easterly points throughout the whole of the month. The heat
5	50	23	74	17		Little		of the sun's rays was considerable; but their effert wationed.
7	54 58	37 35	60	32 30		Brisk		Sharp frosts occurred on the nights of the 4th, 5 th, $8 \mathrm{th}, 19^{\text {th }}$,
8	58	27	80	21	E	Ditto		and even so late as the 27 th. These, with the dry cold winds,
9	57	34	70	27	-	Ditto		were unfavourable to vegetation, especially as the latter was
10	46	29	52	25	-	Ditto		rendered susceptible from having been previously far ${ }^{\text {a }}$,
112	49	34	52	30	NE	Little	. 01	The 16th was very clear, with Aurora Borealis at mig.
13	47	36	48	29 34	NE	Ditto	. 08	Mean Pressure from the 3 daily observations 30.022 inches.
14	52	39	55	36	-	Ditto	. 01	
$1 \begin{aligned} & 15 \\ & 16\end{aligned}$	51	36	60	32		Ditto		- Dew Point Dryness Ditto $6^{\circ} \cdot 47$
17	51	31 41	60 60	25 40		Ditto		-_ Degree of Moisture . . Ditto 784
18	47	40	58	38	-	Little		- Force of Vapour. Ditto284 inch.
19 20	63	26	69	20	E	Ditto		Least observed degree of Moisture $75^{.441}$
21	64	33	70	27	E	Ditto		Maximum Temperature in ditto 23°.
22	66	43 36	65	39	NE	Ditt		Maximum Temperature in the Sun 98°.
${ }^{2} 3$	75	37	85	32	NW	Ditto		Minimum of Terrestrial Radiation $17^{\circ}{ }^{\circ}$. ${ }^{\text {a }}$
24	75	37	80	39	SE	Ditto	. 1	Mean Temperature of External Air .
25	73 66	42	98	37	E	Ditto		Winds.
27	63	39 31	90 80	34 26		Brisk		North..... 3 days N. East....... 13 S. East....... 2 days
28 29	72	35	93	31	SE	Little		East........11 ... N. West..... I
30	71 74	$\begin{array}{r}43 \\ 41 \\ \hline\end{array}$	$\begin{array}{r}75 \\ 81 \\ \hline\end{array}$	$\begin{aligned} & 39 \\ & 34 \end{aligned}$	E	Ditto Brisk		West........ $\circ .$.
	57.70	34.86	67.06	30.46			0.15	Amount of Rain. 0.15 inc

MAY.

Morning.						Noon.					Night.				
1842.	宫 Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weathes.
S.	129.933	58	49	9	Clear and dry	29.939	68	36	32	Clear, very dry Ditto	30.007	50	50	5	Clear \& fine Ditto
d M.	230.022	55	45	10	Ditto	-.962	65	34	31		29.990	45	40	5	Cloudy, rain
W.	329.967	49	44		Very Fine	-. 888	67	45	22	Fine	-. 854	53	53	-	Clear \& fine
W.	$4-.907$	53	50	3	Light clouds	-. 902	61	39	22	Ditto	-.892	48	48	-	Heavy rain
Th.	$5-.886$	55	50	5	Ditto	-. 777	62	57	5	Cloudy	-. 530	52	52	-	Cloudy, fine
F.	$6-423$	53	53		Fine	-. 376	58	58	-	Showery	-. 410	50	50	-	Stormy shower
S.	$7-.322$ $8-.382$	51	51	-	Rain	-. 258	60	60	-	Ditto	6	49	49	-	Clear
M.	$8-.382$ $9-.892$	55	52	3	Cloudy	-. 516	49	49	-	Ditto stormy	-30.084	57	45	-	Cloudy
T.	1030.172	4.9	49	-	Clear	-. 968	48	48	19	Very Fine	-. 068	42	42	-	Clear
W.	1129.966	58	50	8	Fine	29.905	63	40	23	Ditto	29.842	50	50	-	Cloudy
Th.	$12-.920$	47	47	-	Rain	$-.951$	49	49	-	Drizzly	$-.984$	49	49	-	Ditto
F.	1330.033	53	50	3	Slight haze	30.043	64	46	18	Very Fine	30.078	52	52	-	Fine
S.	$14-.138$	52	52	-	Ditto	-. 170	66	52	14	Ditto	-. 230	54	54	-	Clear
S.	$15-350$	55	32	3	Ditto and Fine	-.341	68	54	14	Ditto	-.387	49	49		Ditto
M.	$16-390$	59	53	6	Very Fine	-. 358	70	55	25	Ditto	-. 307	49	49	-	Ditto
D T .	17 -. 278	52	52	-	Overcast	-. 239	62	52	10	Ditto	-. 139	49	49		Ditto
W.	$18-.046$	52	52	-	Ditto	-. 000	59	54	5	Do. Overcast	29.911	53	53		
Th.	1929.807	55	52	3	Cloudy \& Fine	29.748	62	55	7	Densely overcast	-. 711	45	45		
F.	$20-647$	55	52	3	Densely clouded	-. 646	59	50	9	Cloudy	-. 658	52	52		
S.	$21-.676$	61	55	6	Cloudy \& Fine	-. 692	66	50	16	Do. \& Fine	-. 724	51	51		Slight Rain
S.	$22-.748$	58	55	3	Ditto	-. 674	61	56	5	Ditto	-. 727	52	52	-	Cloudy
T.	$23-.785$	59	50	9	Ditto	-.812	65	44	21	Ditto	-. 857	49	41	8	Cloudy
$\bigcirc \mathrm{T}$.	$24-838$	54	54	-	Rain	-.825	60	60	-	Rain	-. 790	48	48		
W.	$25-.847$	56	56	-	Ditto	-. 854	60	58	2	Cloudy	-. 845	52	50	2	Clear
Th.	$26-.767$	56	56	-	Ditto	$-.772$	62	60	2	Ditto	-.823	52	52		
P。	$27-.929$	57	56	1	Cloudy \& Fine	$-.937$	67	57	10	Do. \& Fine	-.911	59	59	-	
S.	$28-.988$	57	57	-	Overcast	30.018	64	45	19	Very Fine	30.066	53	53		Ditto
S.	29.30 .124	62	55	7	Clear \& Fine	-. 046	70	48	22	Clear \& Do.	29.991	60	56	4	Ditto
1.	30.118	60	50	10	Ditto	30.126	70	44	26	Fine	-. 155	56	56		
	29.911	55.16	1.51	3.64		29.898	62.38	49.67	12.71		29.900	50.93	50.12	0.81	

MAY.

Temperature.					Wind.		Rain.	Remarks.
Dayd	Max	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1 1 2 3 3 4 5 5 6 7 8 8 9 10 10 11 12 13 13 14 15 16 16 17 18 19 19 20 21 22 23 24 24 25 25 27 27 28 29 30 30 13	73	44	80	40	W	Brisk		
		30	73	24	NE	Ditto		This month was more favourable than the preceding for
		46	81	42	NW	Little	. 02	vegetation, with the exception of a frost on the night of the
	65 63	33 46	74 75	25 43	$\stackrel{\mathrm{N}}{\mathrm{S}}$	Ditto	.16	2nd. This frost aftected the late blossoming kinds of fruit
	60	47	66	4	W	Ditto	12	trees to some injurious extent, the young frat, wher wanted;
	63	46	67	43	sw	Strong	. 22	and a moderate supply fell in the course of the month. The
	63	41	71	38	W	Brisk	20	mean temperature was about $1 \frac{\mathrm{l}}{\text { deg }} \mathrm{del}$ below the average. On
	60	32	70	26	N	Ditto	. 10	the ist and 2nd the air was clear and excessively dry.
	64	35	75	29	NW	Little		
	65	44	76	40	S	Brisk	. 26	
	51	37	52	31	N	Little	. 02	
	72	36 38	80	29 36	W	Ditto		Mean Pressure from the 3 daily observations 29.903 inches
	67	36	73	31	NE	Ditto		- Temperature Ditto... $5^{56.15}$
	68	42	74	37		Ditto		- Degree of Dryness. Ditto... $5^{0} .72$
	69	40	76	34		Ditto		- Degree of Moisture Ditto... ${ }^{\text {- }} 896$ Dith
	65	36	78	29	SW	Ditto	. 04	- Force of Vapour Ditto... 40707 inch.
	${ }_{6}{ }_{1}$	49	73	45	-	Brisk		Least observed degree of Moisture $73^{\circ}{ }^{\circ}$. ${ }^{\text {a }}$
	65	41	68	38	S	Little		Maximum Temperature in ditto $3^{0} 0^{\circ}$.
	64	43	73	36		Brisk	. 01	Maximum Temperature in the Sun $84^{\circ}{ }^{\circ}$.
	65	40	74	36	SW	Ditto	20	Minimum of Terrestrial Radiation ${ }^{24} 4^{\circ}{ }^{\circ}$.
	63	48	71	46		Brisk	.23	Mean Temperature of External Air 53.73
	68	47	72	42		Ditto	. 01	Winds. ${ }^{\text {days }}$
	70	51	75	49	S	Little	$\cdot 13$	North...... 3 days N. East.... 5 days
	71	46	80 80	34 41	W	Ditto		
	73	46	83	41 41	W	Ditto		West....... 6 .. ${ }^{\text {a }}$ S. West.... 6 ..
	73	41	84	38	NW	Ditto		
	65.97	41.52	72.51	36.77			1.73	Amount of Rain1. 73 inch.

JUNE．

Morning．						Noon．					Night．				
1842．	Barom．	Hygrometer．			Weather．	Barom．	Hygrometer．			Weather	Barom．	Hygrometer．			Westber．
${ }^{\text {c }}$ W．	30.211 -.169	65 68	53	6	Very Fine	30.171	74	52	22	Fine	30.125	60	55	5	Cloudy
F．	－． 296	62	4	6	Overcast	$-.216$	71	53	18	Very Fine	－． 265	54	51	3	Clear \＆Fine
S．	－．112	63	5	10	Ditto	218	74	5	24	Ditto ${ }^{\text {dry }}$	－． 60	58	53	5	Ditto
S．	29.953	70	54	16	Fine，lt．clouds	29.905	81	53	28	Ditto	－	60	59	1	Cloudy
M．	－．915	68	63	5	Do．dry haze	－．945	78	55	23	Ditto	30.038	60	58	2	Ditto
W．	730.167	66	59	7	Fine	30.163	73	53	20	Ditto	－．217	61	61	－	Clear \＆Fine
W．	8 －． 244	69	63	6	Ditto	－． 204	80	65	15	Ditto	－． 221	62	62	－	Ditto
Th．${ }_{\text {F }}$	9 －． 218	64	55	9	Ditto	－． 165	75	61	14	Ditto	－． 103	64	60	4	Ditto
F． 10	－	67	57	10	Clear	－． 064	79	55	24	Ditto	－． 083	65	61	4	Ditto
S．${ }_{\text {S }} 11$	1 2 2	69	64	5	Very Fine	－． 150	85	70	15	Ditto	－． 180	65	65	－	Ditto
M．${ }^{3}$	3 －． 293	66	6	4	Ditto	－ 244	85 81	60	25	Ditto	－． 256	67	62	5	Cloudy
T． 1	－． 094	71	65	6	Hot \＆dry	－．．028	85	65	20	Ditto	－．153	67	64	3	Do．very fine
${ }^{\text {D W W．W．}} 15$	$5-.039$	64	58	6	Fine	－． 048	75	57	18	Fine，light clouds	29.989	67	63	4	Ditto
F． 17	629.989	65	56	9	Ditto	29.995	71	57	14	Overcast	－．992	63	60	3	Ditto
F． 18	730.062	68	54	14	Eine，but dry	30.058	67	55	12	Ditto	30.084	58	55	3	Ditto
S． 18	8－29．041	64	51	13	Slightly Over－	29.971	63	63	－	Heavy showers	29.888	57	57		Showers
M． 20	－．734	65	65	－	Cloudy	－． 688	68	68	－	Cloudy	－．691	57	57	－	Ditts
$\bigcirc{ }^{\text {T．}}$ W． 21	－． 640	67	65	2	Ditto	－．665	72	78	4	Ditto \＆Fine	$\begin{aligned} & -.682 \\ & -.670 \end{aligned}$	57	57	二	Ditto
O Th． 22	． 767	65	57	8	Very Fine	－． 725	71	50	21	Cloudy	$-.737$	56	56	－	Cloudy
F． 2	－．823	61	55	6	Ditto	－．820	71	48	23	Very Fine	－．767	59	59	二	Overcast
S． 25	－． 806	62 62	62	－	Slight rain	－． 654	73	67	6	Cloudy，Ditto	－． 420	59	59	二	Ditto
S． 22	－6．674	61	56	5	Fine	－．753	70	66	4	Cloudy，windy	－． 585	60	55	12	Clear \＆dry
T．${ }^{28}$	30.143	62	52	10	Clear	30．197	70	47	23	Fine	30.213	58	53	5	Clear，Fine
W． 29	274	65	56	9	Ditto	－． 201	76	56	20	Ditto	－．128	65	60	5	Ditto
（ Th． 30	－29．933	68 66	66	－	Fine Slight rain	－． 044	76	54	22	Hot \＆Dry	29.989	67	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	5	$\begin{aligned} & \text { Ditto } \\ & \text { Rain } \end{aligned}$
					Slight rain	29.871	71	71	－	Overcast	－．791				
	30.013	65.47	58.44	7.03		29.993	74.43	58.10	16.33		29.970	61.16	58.66	2.50	

$175]$

JUNE.

[176]

JULY.

JULY.

Temperature.					Wind.		Rain.	Remarks.
Daya	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
12234567889101112131415161718192021222324252526272829293031	70	50	86	47	W	Little	. 05	It was remarked that in the preceding month the mean tempe-
	69	46	86	42	-	Brisk		rature was so much higher than usual, that it more than equalled
	75	55	89	54	SW	Little	. 01	the average of July. In the present month the temperature, on
	76	59	91	56	SW	Brisk		the contrary, was so much lower than usual as to correspond
	70	46	90	42	W	Ditto	. 11	with the usual mean of June. The amount of rain was nearly
	72	40	go	33		Little		an inch below the average.
	62	50	70	47	S	Ditto	. 09	The 4th was boisterous at night; the 20th was showery, with
	66	48	90	46	SW	Brisk	.43	lightning at night. Lightning and rain occurred likewise on the
	72	49	91	46	W	Ditto	. 03	night of the 27 th. Early on the morning of the 28th, there was
	73 78	50 53	92 95	47 50	SW	Ditto	. 02	much thunder, lightning and rain ; the storm became most violent
	75	49	100	46		Ditto		between 5 and 6 A.m.
	73	48	100	44	W	Ditto		Mean Pressure from the 3 daily observations 29.941 inches.
	76	45	100	42	W	Ditto		- TemperatureDitto. $623^{\circ} \cdot 93$
	74	46	90	41	NE	Little		-_ Dew Point Ditto. $57^{\circ} \cdot 57$
	75	55	99	51	E	Bris		_- Degree of Dryness Ditto. 5 $5^{\circ} .36$
	81	57	105 106	48	SW	Ditto	. 02	-- Degree of Moisture. . . Ditto....... 848 . 818 inch.
	73	52	105	50	SE	Little	. 01	- Force of Vapour Ditto. 518
	73	50	90	49	S	Ditto	.12	Least observed degree of Moisture. $84^{\circ}{ }^{\circ}{ }^{\text {. }}$
	65	47	73	41	N	Ditto		Minimum Temperature in Ditto. 40 40°.
	70	46	78	40	-	Ditto	. 02	Maximum Temperature in the Sun 107°.
	84	42	90	36	-	Ditto		Minimum of Terrestrial Radiation 33°.
	77	49	107	44	NE	Ditto		Mean Temperature of External Air....... $60^{\circ} .80$
	73	48	95	39	L	Little	. 02	
	75	55	100	51	SE	Ditto	. 56	Winds
	75	55	99	49	NW	Ditto	. 03	North...... 6 days N. East . . . 2 day
	65 65	45	78	39	N	Ditto		South22 2 . ${ }^{\text {d }}$. West....1
	68	52 47	75 75	45 42		Ditto Ditto		West 7 . ${ }^{\text {a }}$ S. West 7
	72.29	$49 \cdot 32$	91.29	46.67			1.52	Amount of kain 31 days.

AUGUST．

Morning．						Noon．					Night．				
1842.	E Barom．	Hygrometer．			eathe	Barom．	Hygrometer．			Weather．	Ba	Hygrometer．			Weather．
M．	130.277 2.183	59	56	3	Overcast	30.263 -.094	70	54	16	Very Fine Sultry	30.218	55	55		Clear \＆Fine
W．	$2-183$ 32.950	62 67	57 65	2	Do．light haze Do．and sultry	－． 094	74 82	60 67	14	Sultry ${ }^{\text {Very }}$ Fine	29.979 -889	58 64	58 64 6	＝	Ditto
Th．	$4-856$	71	66	5	Very Fine	－．828	84	62	22	Sultry	－． 902	63	63	－	Ditto
F．	$5-.928$	69	66	3	Overcast	－． 930	76	70		Cloudy，Fine	－－．904	64	64	－	Cloudy，Fine
S．	$6-.844$	70	70	－	Cloudy	－． 918	70	70	－		－． 937	58	58	－	lear，Fine
S．	7－．859	65	58	7	Very Fine	－． 940	76	60	16	Clear	－． 963	60	60		Ditto
M．	830.025	65	65		Clear	30.026	79	60	19	Hot and Dry	30.029	59	59		Ditto
T．	$9-.029$	71	65	6	Ditto	29.957	82	60	22	Ditto	29.884	64	64		$\begin{aligned} & \text { Ditto der } \\ & \text { Heavy rain, thun } \end{aligned}$
W．	1029.737	81 64	69 64	12	Sultry	－．620	89	59	30	Ditto	－． 772	66	66	工	Clear \＆Fine
F．	1230.257	67	63	－	Clear，very fine	30．024	76	52 65 6	116	Clear \＆Fine	30.131 -.200	58	5	二	Ditt
D S．	$13-379$	67	67	－	Hazy	－． 399	77	72	5	Overcast	－． 395	59	59	－	Ditto
	14－．359	73	66	7	Very Fine	－． 342	81	70	11	Sultry	－． 214	61	61	－	Ditto
M．	15－204	70	68	2	Ditto	－． 157	85	65	20	Very hot	－． 153	66	66		Ditto
W．	16－．162	71 66	65	6	Ditto	－． 149	85	60	25	Ditto	． 130	64	64		Ditto
Th．	$17-112$ 1829.939	70		1	Slight haze Do．heavy dew	－． $29.92{ }^{2}$	77 88	70 71	17	Ditto	－． 29.82	64	64	8	Cloudy，light
F．	19－．896	69	67	2	Overcast	29．901	75	75	17	Cloudy	29．830	62	62		Clear，very fin
	20－．981	67	63	4	Ditto	－．993	70	62	8	Ditto \＆Fine	30.038	60	60		Ditto
（－）S．	$21-.981$	68	61	7	Very Fine	－． 943	70	60	10	Ditto	29.943		59		Ditto
M．	22－．929	69	58	11	Ditto	－．913	81	61	20	Hot \＆Dry	－．926	65	65		Ditto
T．	23－．888	70	66	4	Cloudless	－． 869	82	67	15	Ditto	－． 879	57	57		Ditto
W．	$24-840$	62	60		Fine	－． 777	67	45	22	Ditto［cast	－． 725		59		Rain
Th．	$25-.702$	61	61	－	Overcast	－． 698	68	68	－	Densely over－	－． 725	63	63	－	Cloudy
	26－．916	65	63	－	Hazy	－． 818	76	60	16	Sultry	－．884	60	60		Clear \＆Fine
	$27-940$	66	63	3	Overcast	－． 936	72	63	9	Cloudy，fine	－． 933	63	63		Ditto
（ ${ }^{\mathbf{M}}$ ．	28 29	62 63	62 63			－．916	70	69	1	Ditto	－．977	62	62		Ditto
T．	3030.007	63	63	二	Foggy	－0．959	74 69	70	4	Slight haze	－．956	59	59		Overcas
S．	$31-.137$	57	54	3	ear	－． 147	61	48	13	Fine	－．151	53			Clear \＆Fin
	30.002	66.77		3.19		29.991	3.67		． 58		29.988	61.38	61.12	Q． 26	

AUGUST.

Temperature.					Wind.		Rain.	Remarks.
Dayh	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
12345678910111213141516171819202122232425262728293031	72	43	80	38	NE	Little		This month was excessively hot, the temperature exceeding
	79	55	92	50	E	Ditto		that of any corresponding month for at least 16 years previous.
	83	52	100	50	NE	Ditto		The maximum temperature in the shade averaged nearly 80°.
	86	62	100	57	W	Ditto		On the 10th, with a very dry state of the air, the thermometer
	70	59	90	55	SW	Ditto		indicated 93° in the shade, and on the 15 th and 18 th, 92°. The
	72	53	90	49	W	Ditto		excessively hot and dry condition of the air on the 10 th was fol-
	78	48	90	44	SW	Ditto		lowed by slight rain, with distant thunder in the afternoon, and
	82 86	51	98	45	S	Ditto	. 15	a heavy thunder storm towards midnight, with rain in torrents,
	93	60	100 110	49	SE	Brisk	. 6	multry with thunder, lightning, and rain at nights. On the 29th
	71	47	90	42	W	Brisk	1.06	heavy thunders commenced early, A. M. followed by bright sun-
	78	55	92	52	SW	Ditto		shine with a few large drops of rain occasionally; and a violent
	73	56	80	53		Little		thunder storm with heavy rain in the afternoon.
	85 92	48	90	52	NE	Ditto		Mean Pressure from the 3 daily observations 29.993 inches.
	92 89	52	105	46	E	Ditto		- Temperature Ditto. $677^{\circ} .27$
	80	57	106	52		Ditto		- Dew Point Ditto 61.93
	92	62	102 120	55	-	Brisk		- Degree of Dryness.... Ditto...... 5.34
	73	61	90	57	SW	Ditto	. 01	-_ Force of Vapour Ditto...... ${ }^{\text {- }}$. 592 inch.
	73	57	89	52	W	Ditto		Least observed degree of Moisture. 453
	77 83	55	110	51	SW	Ditto		Maximum Temperature in the Shade. . . $93{ }^{\circ}$.
	83 85	58	115	53	E	Ditto		Minimum Temperature in ditto. 43°.
	70	46	120	40	S	Ditto		Maximum Temperature in the Sun 120°
	71		96	54	NE	Ditto	. 22	Minimum of Terrestrial Radiation 38°
	80	57	75	55	N	Ditto	. 28	Mean Temperature of External Air $66^{\circ} .27$
	74	57	118	53	E	Ditto		Winds.
	72	56	100	53	NE	Ditto	. 20	North I days ${ }^{\text {N. East..... } 7 \text { days }}$
	74	55	90	54		Ditto	.14	South...... 3 .. S. East...... 1 ..
	70 64	46	92	41	W	Ditto	,	$\begin{array}{llll}\text { East. } & 7 & \text {.. } & \text { N. West } \\ \text { W. West. . . } 6 . & 6 & \text {.. }\end{array}$
		50	80	45	NW	Ditto	. 22	West...... 5 .. S. West.....
	78.29	54.25	97	2			2.81	$3!$ days.

[180]

SEPTEMBER.

SEPTEMBER.

OCTOBER.

OCTOBER.

$184]$

NOVEMBER.

Morning.							Noon.					Night.				
1842.	${ }_{\sim}^{\infty}$	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer			Weather.	Barom.	Hygrometer.			Weather.
	130.216		43	43	-	Fine	30.161	53	48	5	Cloudless	30.114	36	$\begin{aligned} & 36 \\ & 46 \end{aligned}$	-	Foggy Ditto
		-. 106	4441				-. 084	$\begin{aligned} & 49 \\ & 46 \end{aligned}$	4946	-	FoggyHazy	-. 126	46		-	
				41	-	Hazy	29.934					29.955	38	38	-	Clear \& Fi
	29.983 4 30.169		42	35	7	Cloudy		42	42	-	Shower	30.151	37			Clear
		-. 177	38	38	-	Overca	-. 105	46	39	7	Ditto	-. 104	40	$\begin{aligned} & 37 \\ & 40 \end{aligned}$		- Sleet
		-. 122	42	40	-	Slight showers	-. 131	43	39	4	Cloudy	-. 148	40	40 40	-	Overcast
	-. 100			42	-	OvercastDitto	$\left\lvert\, \begin{aligned} & -.099 \\ & -.089 \end{aligned}\right.$	$\begin{aligned} & 47 \\ & 46 \end{aligned}$	40	7	Ditto	-. 131	41	41	-	Dit
		-. 126	42	42						11	Ditto	29.959	41	41 -	-	Ditto
		929.790	42	40	2	Ditto	$\left\|\begin{array}{\|c} -.089 \\ 29.693 \end{array}\right\|$	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 35 \\ & 44 \end{aligned}$	-	Densely Overcast	-. 634	45	45 -	-	Stormy, rain Rain
		-. 651	49	49		Ra	-. 600		44	$-$		-. 494	44	44 -	-	
F.		- 194	48	48	-		-. 089	55	55	-	Cloudy Rain	-. 548	51	51 --	--	Cloud
S.	2	-. 050	51	51	-	Stormy \& wet	-. 238	55	55	-	Rain Cloudy \& fine	-. 516	42	42 -	-	Clear
S.		-. 457	52	52	-	Cloudy Overcast	-. 284	52	52	-	Boisterous, rain	-. 290	50	50	-	oisterous, nin
M.		-. 696	46	46	-		$-.763$	48	48	-	Fine	$-.675$	46	46		
T.		$-.631$	44	44	-	Stormy \& wet Rain	$-.614$	46	46	-	Rain	-. 624	47	47	-	Dull \& foggy
W.	16	-. 717	44	44	-		-. 733	45	45	-	Drizzly	$-.896$	39	39	-	Clear Cloudy, fine Ditto
Th.	173	30.182	40	38	2	Overcast Ditto	30.291	45	39	6	Overcast	30.451	39	39	-	
$\bigcirc \mathrm{F}$.		-. 532	35	33	2		-. 512	44	38	6	Cloudy	-.419	33	33	-	
S.		-. 100	42	42	-	Rain	-. 084	47	47	-	Rain	29.732	51	51	-	Overcast, heary
S.	20	29.778	42	42	-	Cloudy	29.733	50	43	7	Ovezcast, fine	$-.717$	43	43	-	Overcast ${ }^{\text {aim }}$
M.		-.785	34	34		Clear	-. 799	44	42	2	Clear	$-.677$	35	35		Ditto
T.		-. 268	36	36	-	Rain	-. 283	37	37	-	Rain and sleet	-. 409	36	36	-	Clear
W.		-. 485	35	35	-	Lightly overcast	-. 432	47	47	-	Lightly overcast	-. 152	45	45		
© Th	24	28.890	44	44	-	Ditto	28.793	47	47	-	Fine	28.876	42	42	-	Lightning, nim
		-. 86	41	41	-	Overcast	-.816	44	44	-	Heavy Rain	-. 988	44	44		
S.	26	29.660	41	41	-	Clear	29.119	49	45	4	Lightly overcast	29.208	38	38	-	Ditto
S.	27	-. 344	39	39	-	Fine	$-.170$	54	54	-	Fine	-. 069	47	47		Stormy with niv
M.	28	28.928	50	50	-	Cloudy	28.893	54	54	-	Rain	-. 266	43	43	-	Fine
T.	29	29.519	43	43	-	Very Fine	29.527	51	49	2	Very Fine	-. 523	45	45	-	Overcast Clear
W.	30	-. 602	42	42	-	Fine	-.761	46	46	-	Fine	-. 975	32	32		Clear
		29.684	40	. 97	0.43		29.663	$47 \cdot 56$. 53	2.03		29.694	. 8	. 86	0.0	

NOVEMBER.

DECEMBER.

DECEMBER.

$188]$

Monthly Mean Pressure, Temperature, and Dew Point, \&c. of 1842 ; deduced from the Observations recorded in the preceding Journal.

VIII. On the Exhaustion of Soils. By Edward Solly, Esq., F. R.S., F. L. S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.

(Communicated by the Chemical Committee.)

Alithough it is well known that some plants take more from the soil than others do, some requiring a large quantity of inorganic matters, such as Alkalies and the earthy Phosphates, whilst other plants require a comparatively small quantity, and hence in growing do not exhaust or impoverish the soil to so great an extent; yet there are many points connected with the subject, and having immediate reference to practical operations, which are by no means so clear as could be wished. The following observations relate to one of these questions in particular, viz. what is the maximum and minimum of exhaustion, for any given plant. In a previous paper it has been shown, that the same plant grown in the same soil but differently manured, exposed to the influence of particular substances, or placed under different conditions, contains variable proportions of inorganic matter. This naturally leads to the question of how far these conditions are under our controul, because if they are so to any extent, it is evident that that mode of cultivation must be most desirable, in which the largest amount of vegetable matter is formed, at the least expence of inorganic matter.
The plant selected for some experiments on this subject was the Red Mangel Wurzel, which was cultivated in rich soil, abundantly supplied with animal manure. A fair average plant was examined
from week to week, to note the ratio existing between the vegetable matter formed, and the inorganic matter abstracted from the soil. In the early part of the experiment the rate of growth was very regular, so that by weighing a few plants from time to time the increase in weight of the roots every day might be readily ascertained. The experiment was commenced in July when the roots weighed about 3 oz . each, and were then increasing at the rate of nearly an ounce a day; this rate of increase appeared to continue pretty regularly, for about six weeks, after which the plants grew far less regularly, an effect in part due to the unsettled state of the weather. The following Table shows the composition of the roots examined, during fifteen consecutive weeks, and also the composition of the seeds previous to germination.

The results of this series of experiments exhibit less regularity than might have been expected; the conclusions to be drawn from them as regards the degree of exhaustion are arranged in the following Table.

		Hoots.		Leaves.	
		Inorg, matt. in 10000 parts dry.	Organ.matt. $=100$ parts inorganic.	Inorg. matt. in 10000 pts . dry.	$\begin{aligned} & \text { Organ. matt. } \\ & \text { = } 100 \text { parts } \\ & \text { inorganic. } \end{aligned}$
1st week	-	1354	639	2409	314
2d Do.	-	987	919	2301	335
3d Do.	.	1134	787	1497	572
4 th Do.	-	760	1234	2533	294
5th Do.	.	1067	837	2186	359
6th Do.	.	1565	542	2689	265
7 7h Do.	。	1209	728	2913	243
8th Do.		1486	575	2713	269
9th Do.	.	1203	732	2024	397
10th Do.	-	1220	722	2102	375
11th Do.		784	1169	2311	302
12th Do.	-	1025	926	2592	285
13th Do.	.	1015	990	2389	320
14th Do.	-	1129	786	1316	661
15th Do.	-	876	1144	1748	472

It is worthy of note that in examining this series of plants it was observed that the young roots for the first two weeks contained small traces of Nitric acid, whilst for the three first weeks the leaves contained a very large quantity ; in the third and fourth week the roots contained a considerable portion of Nitric acid, but after that little or none could be detected ; from the fourth to the eleventh week the leaves also contained a considerable quantity, but during the three last weeks of the experiment the leaves like the roots were quite destitute of any Nitrates.

At the same time with these experiments a similar examination was made of the experimental Mangel Wurzel roots, which formed the subject of the experiment already described (p. 86 of this volume). The following is the relative composition of this series of plants.

Manure applied.	Water.	Organic matter.	Inorganic matter.	Inorg. matt in 10000 part dry.
1. Muriate of Lime	9075	837	98	1092
2. Phosphate of Ammonia	9090	817	93	1029
3. Sulphate of Potash .	9032	854	114	1110
4. Muriate of Ammonia	9085	814	101	984
3. Nitrate of Potash.	9014	889	97	975
6. Common Salt	8991	911	98	1014
7. No Manure -	8858	1027	115	878
8. Muriate of Potash	8935	972	93 98	1047
9. Nitrate of Soda .	9064	838	98 111	1163
10. Sulphate of Magnesia	9039	850	1104	1242
11. Sulphate of Soda .	9154	742 568	100	1496
12. Superphosphate of Lime	9332	568	96	917
13. Carbonate of Soda :	8941	963 766	92	1076
14. Sulphate of Ammonia	9142	766	169	1326
15. Phosphate of Soda	9179 8945	712 947	108	1024
16. Rotten Dung	8945	947		

By comparing these numbers with those already given (p. 86), as expressing the weights of the several crops, it is easy to calculate the relative value of each crop as expressed by the effect produced in deteriorating the soil. Hence we at once get a reply to the question, whether the largest crop exhausts the soil more, or less, than the smaller ones, in proportion to the amount of food or vegetable matter formed. This is shewn in the following Table which contains the weight of the crop per acre, the quantity of inorganic matter removed from the soil by each crop, the quantity of dry organic matter equivalent to 100 parts of the inorganic matter thus abstracted, and the assumed effect produced by each crop, arranged in the order of their exhausting effects.

	Weight of Crop. cwt.	Inorg. matter in Crop. lbs.	$\begin{gathered} \text { Dry. organic } \\ \text { matt }=100 \text { pts. } \\ \text { inorg. } \end{gathered}$	$\begin{gathered} \text { Assumed } \\ \text { relative } \\ \text { exhaustion. } \end{gathered}$
12. Superphosphate of Lime	530	594	568	1839
15. Phosphate of Soda	513	626	653	1583
11. Sulphate of Soda	647	753	713	1465
3. Sulphate of Potash	754	963	749	1395
10. Sulphate of Magnesia	627	929	765	1366
4. Muriate of Ammonia	658	745	805	1298
14. Sulphate of Ammonia	457	471	832	1256
1. Muriate of Lime	939	1032	854	1223
9. Nitrate of Soda	682	682	855	1222
16. Rotten dung . -	676	820	876	1192
2. Phosphate of Ammonia	715	745	878	1190
7. No manure	617	805	892	1171
5. Nitrate of Potash	736	800	916	1140
6. Common salt	774	850	929	1124
13. Carbonate of Soda	653	702	1031	1001
8. Muriate of Potash	696	725	1045	1000

It is evident then from this Table, that the rate of exhaustion is quite independent of the weight of the crop. Thus for example, taking Phosphate of Ammonia as a standard of comparison, it appears that Sulphate of Ammonia produced a smaller, and Muriate of Lime a larger crop; yet, both of these crops exhausted the soil more than the standard, just in the proportion that 1256 and 1223 are more than 1190. Again no manure produced a smaller, and common salt a larger crop, than Phosphate of Ammonia did, but both of them, in proportion exhausted the soil less than the standard in the ratio of 1171 and 1124 to 1190 . In arriving at this
conclusion, however, it must be remembered that as the nature of the inorganic substances absorbed by plants, varies as well as their quantity, it does not follow that that plant which takes up most earthy matter does most injury to the soil. It is in fact more probable that the amount of Phosphoric acid taken up by the crop would be a fairer standard of exhaustion; but even this does not seem to be quite accurate in all cases, because though in some experiments it was found that the earthy matter bore a smaller relation to the organic matter, just in proportion to the quantity of Phosphoric acid it contained; yet there were so many exceptions to this rule, as to render its applicability very questionable.

Previous experiments had made it appear probable that some relation existed between the rapidity of growth, and the proportion of earthy matters existing in the plants. In the experimental Peas (p. 86) very little effect was produced by the various manures employed; Common Salt and Nitrate of Soda slightly improved the growth of the plants, they were rather larger and more flourishing than the other ten squares, but the produce in seed was rather less. In July, when the seeds were fully formed, but still quite soft and green, they were examined; the following Table shews their composition, and the relation of inorganic to organic matter at this time.

	Water.	Organic matter.	Inorganic matter.	Inorg. matt. in 10090 parts dry.	Organic matt. $=100$ parts. inorg, dry.	Assumed relatice exhaustion.
Nitrate of Soda	7383	2526	91	347	2775	1228
Phosphate of Ammonia	7288	2625	87	323	2982	1142
Muriate of Ammonia .	7068	2838	94	323	2987	1140
Sulphate of Potash	7105	2803	92	319	3025	1126 1116
Sulphate of Soda.	7080	2830	90	317	3052	1097
Common Salt	7042	2868	90	312	3105	1097
Phosphate of Lime	7135	2778	87	306	3160 3190	1068
Sulphate of Lime	7180	2735	85	309	3190 3195	$\begin{aligned} & 1068 \\ & 1066 \end{aligned}$
Muriate of Potash	6893	3013	94	303	3195 3300	1032
No manure -	7073	2837	90	308	3360	1014
Sulphate of Magnesia	6639	3264	97	289	3360 3408	1000
Sulphate of Ammonia	6921	2992	87	285	3408	100

Three months later, when the Peas were perfectly ripe, and had been gathered in and weighed, they were a second time examined;
and though still very uniform in composition, the proportion of inorganic manner, differed a good deal from that in the green Peas. The results of this second series of experiments, which bear more immediately on the subject of inquiry, are contained in the following Table.

	Ripe Peas.						
	Water.	Organic matter.	Inorganic matter.	Inorg. matt. per 10000 pts . dry.	Crop, per acre.	Dry organic matt. $=100$ pts. inorgan.	Assumed relative exhaustion.
Common Salt	1110	8610	280	316	cwt. lbs. $17 \quad 76$	3063	1127
Sulphate of Lime	1057	8670	273	305	$18 \quad 75$	3171	1092
Nitrate of Soda .	1090	8640	270	303	$16 \quad 54$	3200	1079
Sulphate of Soda .	997	8833	270	299	1864	3234	1068
Phosphate of Lime	957	8777	266	295	2184	3291	1049
Sulphate of Potash	1044	8693	263	294	$19 \quad 19$	3301	1046
Muriate of Ammonia	1014	8723	263	293	2261	3312	1043
Sulphate of Ammonia	1000	8737	263	292	$19 \quad 52$	3317	1041
No manure . .	927	8810	263	292	21104	3345	1032
Sulphate of Magnesia	1024	8716	260	291	$18 \quad 97$	3352	1030
Phosphate of Ammonia	860	8880	260	248	1831	3415	1011
Muriate of Potash .	874	8870	256	281	2151	3455	1000

From this Table it is clear that the crops which at first grew most vigorously, and seemed most benefited by the manures, namely, those to which common Salt and Nitrate of Soda had been applied, absorbed in consequence a considerably larger proportion of earthy matters; as from the numbers in the last column it appears, that in those plants the relation of inorganic to organic matter, is bigher than in most of the others. The experiments already described on Mangel Wurzel are on the other hand opposed to this view, and the following examination of the Experimental Potatoes likewise leads to very different conclusions, because in place of finding that those plants which grew most vigorously, or yielded the largest return of produce, contained most inorganic matter, we find that set of plants which grew most luxuriantly and produced the largest crop, was also that in which the smallest proportion of inorganic matter was contained ; a result which is further borne out by the experiments on Potatoes, of the previous year, described at p. 48.

In experiments of this kind, considerable variations have been found in the composition of the inorganic substances which plants contain, when thus cultivated under different circumstances; and therefore we must not at once conclude that such results are rigorously correct. From these, however, and a number of other experiments, I have no doubt that a large and healthy crop does really in proportion exhaust the soil less than a smaller and less flourishing one; nay, even, that under certain circumstances a moderate crop will take more out of a soil, or be more exhausting to it, than a larger one.

Bedford Row, 15th January, 1845.

[197]

IX.-On Seed-Steeping. By Edward Solly, Esq., F. R. S., F. L. S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.
(Communicated by the Chemical Committee.)

From very early times it has been a favourite idea with the followers of husbandry, that the produce of the ground might be greatly increased by causing the seed to undergo some process of preparation previous to its being sown. On looking over the various writings of those who have made agriculture their study, one cannot but observe how very frequently, great importance is attributed to the preparation of the seed; and considering the multitude of books which have been written, and the number of experiments made by succeeding generations, it is not a little remarkable that even at the present day it should still be open to inquiry whether the steeping or preparation of the seed, does or does not, to any extent supply the necessity of manure. We are told by Virgil;

> Semina vidi equidem multos medicare serentes, Et nitro prius, et nigrâ perfundere amurcâ, Grandior ut feetus siliquis fallacibus esset.
and we are told at the present time that by steeping the seeds of corn, $\&$ c., in certain solutions, of nitre and other salts, a small quantity will be absorbed, which will greatly increase the vigour and luxuriance of young plants, and ensure without further manure a much larger and more plentiful harvest, than could possibly be obtained without the previous steeping.

I will not attempt to give any sketch of what has been written on the subject of seed-steeping, which would necessarily lead to long and tedious details, but I shall content myself with a few brief
quotations from the writings of some of the most ingenious men of their times, as an introduction to my own experiments.

The writings of many of the agriculturists of the seventeenth century display a remarkable spirit of inquiry, associated with a correctness of reasoning, hardly to be expected in such early days, and almost free from the narrow-minded fear of innovation which characterises many of the writers of the last century. In the writings of Plattes for example, there are suggestions which may be studied with advantage even at the present day. The following remarks on the steeping of seeds are from his "Discovery of hidden Treasure," published in 1639, and follow some good observations on liquid manure. "When the sun hath exhaled the greater part of the dung-water, and that it groweth thickish and fat, then reserve a good pit full thereof well bottomed with clay, that will hold water, and at seed-time steep your seed-corn in it, but put the fat water to it by little and little as it drinketh it up; that at the last it may be almost dry of itself: but before it be full dry, sift a small quantity of lime amongst it, that so it may grow dry with the lime, and grow like comfits, then with this seed sow or set your most remote ground from your dunghills, and by this means you will save ten times as much labour in carriage of your dung, so far as this labour cometh too, and as for your crop, though you shall not have so much increase as some, have mountebanklike reported of it, yet you shall have a good material increase, for one crop only.
"And I have sometimes spritted the corn a little, as they use to do for malt, and then have sown it, and it came up speedily and got the predomination of the weeds at first, and so kept the same, whereby I had far greater increase than ordinary. Also I found sometimes when a dry season came upon the sowing, that my corn thus ordered took root far better than other mens' corn who would not take this small pains to steep it and sprit it."

About this period attention was drawn to seed-steeping by Lord Bacon, who made a number of experiments on the subject, which
possess considerable interest. The following account of them is from the fifth century of his Sylva Sylvarum, or Natural History, published in 1664, after his death.
" There were sown in a bed turnip seed, raddish seed, wheat, cucumber seed, and peas. The bed we call a hot bed, and the manner of it is this. There was taken horse-dung, old and well rotted; this was laid upon a bank half a foot high, and supported round about with planks, and upon the top was cast sifted earth some two fingers deep, and then the seed sprinkled upon it, having been steeped all night in water mixed with cow-dung.
"The turnip seed and the wheat came up half an inch above ground within ten days after, without any watering: the rest the third day. The experiment was made in October ; and it may be, in the Spring the acceleration would have been the speedier. This is a noble experiment, for without this help they would have been four times as long in coming up. But there doth not occur to me at this present, any use thereof for profit, except it should be for sowing of peas which have their price very much increased by the early coming. It may be tried also with cherries, strawberries, and other fruit which are dearest when they come early.
"'There was wheat steeped in water mixed with cow-dung; others in water mixed with horse-dung; in water mixed with pigeon's dung; in human urine; in water mixed with chalk powdered; in water mixed with soot; in water mixed with ashes; in water mixed with bay salt; in claret wine; in malmsey wine; and others in spirit of wine. The proportion of the mixture was a fourth part of the ingredients to the water, save that there was not of the salt above one-eighth. The urine, wines, and spirit were simple, without mixture of water. The time of steeping was twelve hours, the time of the year October. There was also other wheat sown unsteeped but watered twice a day with warm water. There was also other wheat sown simple to compare with the rest. The event was that those which were in the mixture of dung, urine, soot, chalk,
ashes, and salt came up within six days, and those that afterwards proved the highest, thickest, and most lusty, were first the urine, then the dungs, next the chalk, next the soot, next the ashes, next the salt, next the wheat simple, next that watered twice a day with warm water, next the claret wine. So that those three last were slower than ordinary wheat itself, and this culture did rather retard than advance. As for those that were steeped in malmsey and spirit of wine, they came not up at all. This is a rich experiment for profit; for the most of the steepings are cheap things and the goodness of the crop is a great matter of gain ; if the goodness of the crop answer the earliness of the coming up, as it is like it will ; both being from the vigour of the seed, which also partly appeared in the former experiment, as hath been said."

The experiments of Bacon and the good opinion which he seems to have had of the value of seed-steeping caused many to take up the subject; various solutions were recommended; and as various was the success which attended their use. The following cautious observations of Blith (1649), are interesting in connexion with the preceding account of Bacon's experiments.
"Sir Francis Bacon is of opinion that salt mingled with corn hath a very good operation, being sowed with the corn, which possibly may, because brackishness is fruitful to the land, also that chalk and lime sowed with the corn is very helpful and that steeping of your corn in fat water, lime-water, or dunghill-water, hath a wonderful effect to work strange things, of all which myself having not made full experience, can find no more advantage therein than just so much as is added to the corn either of the chalk or lime in substance, or so much as is added of the soil or fatness of either of the waters and no more. For having made a thorough trial thereof found no otherwise, nor nothing of that great advantage promised; but let me not prejudice any ingenious trials of the same, others may find more, possibly I might miss in the manner of my application."

On reading over the opinions of those who stated that they had tried the process of seed-steeping, it will be observed that they are for the most part unfavourable, though generally qualified by a modest doubt of the accuracy of their conclusions, and the decisiveness of their experiments. This is illustrated in the observations of Blith, and also in the following remarks of Sir Hugh Plat (1653). "Now a word or two of those conceited practices, which I promised before. I have heard some studient practisers very confidently affirm, that if you steep your corn in water, the space of certain hours (but I could never yet find them all agree in one time; for some limit, twelve hours, some eighteen, and some thirty-six hours, you may prove them all and keep the best) in water, wherein good store of cow-dung hath lain in imbibition for certain days, (which times you must also search, if you mean to be an exact master) every day stirring the same once or twice together before you lay in your corn, and after this preparation you sow the same (though in barren ground) that so you shall purchase a most rich and plentiful crop with an easy charge. But this kind of practice, I have heard both maintained and impugned as well by reason as by experience, and that by men of good judgment on both sides, although if I would set down my own experience herein, I must needs confess I could never yet attain to any truth in this secret, or to make any apparent difference between the corn that was husbanded in this manner and that which grew of itself without any such help (yet will I not for the credit of the reporters) altogether discredit the invention, for that peradventure I might fail in the nature of the grain or in the time of imbibition."
He then proceeds to relate a successful experiment in which corn was mixed with dung and water, the whole being well stirred together for one hour; after standing some hours it was again stirred for half an hour, and then left at rest all night. On the following morning the water was permitted to drain away, and the corn and dung together then sown on very poor barren soil ; the crop
obtained was most plentiful, as if the ground itself had been well manured. This experiment however can hardly be fairly classed amongst those on seed-steeping, though at the same time it is probable that the effects produced were in great part similarly caused to those which from time to time have been produced by mere steeping.

Within the last three or four years public attention has been again drawn to the subject of seed-steeping by reports of the wonderful crops obtained from steeped seeds. In Germany M. Bickes and M. Victor, and Mr. Campbell in our own country, have described the surprising effects on vegetation produced by various steeps; indeed, the accounts published by the German authors are so marvellous, and the deductions made by them from the results of their experiments so startling, that they could not fail to excite curiosity and induce experiment, though on consideration we feel assured that the authors must have either been greatly deceived themselves, or willing to exaggerate their results a little in order to excite the attention of their readers. The experiments of these authors are so well known that it is unnecessary here to recapitulate them further, than to observe that the principle put forth was the same as that advanced so long since by Bacon and others, that by manuring the seed previous to sowing it, a far better harvest would be obtained; the plants would grow with greater vigour and luxuriance, and in consequence would be less liable to blights and the ravages of insects. Some of the recent advocates of seed-steeping have gone much further than this, and have asserted that by properly preparing the seed, it may be made to absorb such a quantity of those substances which growing plants require, that, when placed in the ground it will contain within itself such a store of inorganic food, as to be quite independent of the soil, and therefore in growing not exhaust the latter at all.

The object, contemplated in the following series of experiments made at the Garden of the Horticultural Society in the Spring of

1844, was to ascertain whether any and what effect would be produced by steeping various seeds in certain simple solutions previous to sowing, and to submit the plants subsequently to chemical examination should any differences be observed which might render such a proceeding desirable.
The ground selected for the experiments was uniform and had not been previously used for chemical experiments, its composition was very nearly the same as that of the ground employed in the experiments of last year (see p. 36 of this volume). The seeds were all good, being selected on purpose, and the whole of each kind of seed was sown at the same time. Saturated solutions of pure nitrate of soda, chloride of calcium, sulphate of magnesia, muriate of ammonia, phosphate of ammonia, and common salt were made, and these diluted by the addition of nine times as much pure water; enough of each steep was taken to cover entirely the portion of seeds to be steeped, the quantity of solution being invariably two fluid ounces; the seeds were left in the solution until they had swelled considerably, and it became evident that in a little time more they would sprout, when they were withdrawn from the solutions, drained on paper, and then sown. During the whole time of steeping they were kept in the dark. Besides the six portions of seeds steeped in the above mentioned solutions, two others were sown, one of which had been soaked a corresponding time in water alone, and one which had not been steeped at all; thus the effect would be observed, of steeping in water alone as distinguished from the additional effect produced by each salt employed. The beds intended for each particular sort of seed were divided into forty rows, and each of the eight parcels of seed was subdivided into five portions, so as to allow one to each row. Thus the first eight rows received each of them a portion of the same sort of seed differently prepared, the series of eight being repeated five times over, the first, ninth, seventeenth, twenty-fifth, and thirty-third row containing seeds similarly prepared; each row having in fact four more rows like itself, but separated from each
other as widely as possible, so as to ensure fair average results by diminishing the chance of any local circumstances interfering with the experiments. Each row contained thirty seeds, so that there were 150 seeds of each sort, for each steep; the seeds were sown early in April. The experiment was under the care of Mr. Thompson.

1. Wheat. At first these seeds exhibited considerable differences in the time required for germination, after a little time, however, they came up pretty generally but grew irregularly, and did not form good ears, the following table shows the number of young plants up:

Nitrate of Soda .	Eleven Days after Sowing.					Total.
	0	3	2	1	1	7
Chloride of Calcium .	0	4	1	1	4	10
Sulphate of Magnesia	11	4	3	4	8	30
Muriate of Ammonia	0	4	1	1	3	
Nothing . . .	,		3	1	4	12
Phosphate of Ammonia	7	,	2	11	9	30
Water .	0	1	2	-2	3	8
Common Salt .	2		1	3	0	8

2. Barley. The experiments with barley succeeded better than those with wheat, two of the solutions appeared to have done some good, for the seeds steeped in them at first had rather the advantage over the others; this difference, however, very soon disappeared, and in a short time when the plants had attained a height of six inches no difference could be perceived. The plants spread and formed abundance of ears, the grain in which ripened well, but no marked differences could be perceived amongst them:

Nitrate of Soda	Ten Days after Sowing.					Total.	Twelve Days after Sowing.					Total.	Whole Produce.		Grain.		Stıav.	
	0	0	1	1	0	2	0	3	3	1	2	9	1 l.					11
Chloride of Calcium .	0	0	0	0	3	3	0	5	3	3	5	16		12	3			1
Sulphate of Magnesia	12	4	3	1	3	23	17	4	4	6	9	40		13		4		2
Muriate of Ammonia	0	3	1	0	0	4	2	4	1	1	4	12	7	8	3	1		12
Nothing . .	3	0	2	0	1	6	5	2	7	1	5	20	8	9	3	6	4	
Phosphate of Ammonia	5	,	2	10	8	26	8	1	3	12	9	33	7	12	3	3		14
Water -	0	1	0		2	4	4	4	3	2	4	17	8	3		3		
Common Salt	0	0	0	0	0	0	3	2	2	4	0	11	8	7	3	3	4	

3. Oats. Oats germinated and came up with very great regularity; the following table shows the whole number up in seventeen days after sowing, and also the weight of the crop produced by each steeping :

	Total Young Plants after 17 Days.	Produce.	
		Grain.	Straw.
		lbs. oz.	1b. oz.
Nitrate of Soda	125	17	34
Chloride of Calcium .	120	23	50
Sulphate of Magnesia	126	113	$3 \quad 15$
Muriate of Ammonia	126	22	43
Nothing .	133	114	41
Phosphate of Ammonia	119	21	312
Water . . .	128	22	41
Common Salt .	123	14	45

In this experiment no appreciable difference was perceptible in the time when the different rows of seed came up; they germinated at nearly the same time, and at no period of their growth did the plants exhibit any differences in appearance.
4. Rye. These seeds came up with far more irregularity than the oats, all the steeps more or less retarding the germination of the seeds. As the plants did not shoot into ear regularly, no account of the weight of the produce could be kept. The following table shows the number of plants above ground in the tenth and twelfth day after sowing :

Nitrate of Soda Chloride of Calcium	Ten Days after Sowing.					Total.	Twelve Days after Sowing.					rota.
	0	0	0	0	0	0	0	0	6	7	1	14
	0	4	0	4	1	9	0	7	5	5	3	20
Sulphate of Magnesia	3	4	0	3	8	18	7	5	0	3	14	29
Muriate of Ammonia	0	0	0	0	5	5	2	0	0	0	9	11
Nothing .	8	0	8	5	18	39	13	3	13	11	22	62
Phosphate of Ammonia	0	0	2	0	5	7	3	1	4	1	7	16
Water . . .	2	0	0	11	0	13	3	0	4	9	2	18
Common Salt	3	0	0	1	0	4	3	1	0	2	0	6

5. Peas. Out of the eight series of peas sown only three germinated, the remaining five were evidently destroyed by the steeps.

The three which came up were those not prepared at all, those merely soaked in water, and those steeped in sulphate of magnesia. The following was the result of this experiment :

	Seventeen Days after Sowing.	Green Crops.	Seed.	Straw.
		lbs.	lbs. oz.	lbs. oz.
Nitrate of Soda	0	0	00	00
Chloride of Calcium .	0	0	00	00
Sulphate of Magnesia	65	19	43	36
Muriate of Ammonia	0	0	0 0	00
Nothing . .	94	18	52	312
Phosphate of Ammonia	0	0	00	00
Water . . .	106	19	$5 \quad 7$	42
Common Salt .	1	0	00	00

6. Turnips. The seeds steeped in water were the first to come up. Unfortunately the fly took the greater number of the young plants and destroyed the experiment eight days after sowing. The following were the number of plants up :

7. Mustard and 8. Cress.

Nitrate of Soda Chloride of Calcium Sulphate of Magnesia Muriate of Ammonia Nothing	Mustard.		Cress.	
	Eight Day after Sowing.	Twelve Days after Sowing.	Eight Days after Sowing.	Twelve Days after Sowing.
	0	3	1	2
	6	12	2	8
	6	9	7	7
	1	1	1	2
	20	20	10	14
Phosphate of Ammonia	0	0	1	2
Water * *	22	22	- 5	5
Common Salt .	8	12	1	4

9. Lettuces and 10. Beans.

	Lettuces.	Beans.
	Twelve Days after Sowing.	Fourteen Days after Sowing.
Nitrate of Soda	25	0
Chloride of Calcium.	35	0
Sulphate of Magnesia	30	13
Muriate of Ammonia	27	0
Nothing . .	21	2
Phosphate of Ammonia	20	1
Water	25	56
Common Salt :	39	0

The whole series of experiments was made in rather unfavourable weather, being a period of unusual drought; this greatly checked the germination of the seeds, and in some instances retarded it for some weeks. The beans, No. 10, mostly came up in the course of the following fortnight, but those which had first come up, which had been steeped in water, retained their superiority to the last. The general results of these experiments, as far as they may be trusted, are rather against seed-steeping. As regards the wheat, barley and lettuces, it certainly seems as if the salts employed did accelerate germination, because in two cases, namely sulphate of magnesia and phosphate of ammonia, more than twice as many plants had come up than where no steeping or only water had been employed; we may therefore conclude that in these cases, the salts and not the water, produced the effect which was observed. In all the other experiments, however, the salts appear to have done more or less harm ; at least the seeds which were steeped germinated less rapidly than those not steeped in saline solutions. In the case of the oats, peas, and mustard, the unsteeped seeds and those steeped in water alone, germinated most rapidly, the latter rather having the start of the former. In the rye and cress the unsteeped seeds germinated most rapidly, whilst those steeped in water were beaten by some of the saline solutions, and in the turnips and beans, those steeped in water came up first, whilst some of those prepared with saline solutions germinated sooner than the unprepared seeds.
The different salts acted differently on the various seeds employed : thus in the case of wheat and barley, sulphate of magnesia, and phosphate of ammonia, produced the best effect of all the salts employed; with turnips, lettuces and mustard, common salt and chloride of calcium acted best; with peas and beans, sulphate of magnesia had the greatest effect ; with rye and cress, chloride of calcium and sulphate of magnesia were most advantageous; whilst with oats, all the salts employed, produced very little effect. It
is remarkable that throughout, nitrate of soda and muriate of ammonia decidedly retarded germination.

In these experiments the seeds were all left in steep the longest time which it was considered could be safely done; as it was however very desirable, also to make trial of the effects of steeping for different periods, the following experiment was made under the superintendence of Mr. Donald. One hundred and twenty-five seeds of Lupinus Hartwegii were divided into twenty-five parcels of five each, and each parcel differently prepared previous to sowing. One parcel was kept unsteeped; twelve were steeped for longer or shorter periods in a solution of phosphate of ammonia, formed by mixing one part of the saturated solution of the salt with four parts of water; and the remaining twelve in a solution of just half the strength, consisting of one part of the saturated solution diluted with nine parts of water. The following table shows the result of this experiment, the seeds being all sown on the same day.

Strength of Solution.	Hours in Steep.	Number Raised.	Days after Sowing.	Remarks.
	0	5	2	Very healthy
1 in 5 water.	6	2	2	Very weak
1 in 5 do. .	12	2	2	Do. do.
1 in 5 do. . .	18	1	3	Do. do.
1 in 5 do. .	24	2	3	Do. do.
1 in 5 do. . .	30	1	3	Do. do.
1 lm 5 do. .	36	1	2	Do. do. died 2 days after
1 in 5 din 5 do.	42	2	4	weak
1 in 5 do.	48 52	2	3	do.
1 in 5 do.	52 58	0		
1 in 5 do. .	64	0		
1 in 5 do. .	168	0		
1 in 10 do. . .	6	3		
1 in 10 do. . .	12	1	5	weak
1 in 10 do. .	18	1	4	do.
1 in 10 do. . .	24	1	3	- do.
1 in 10 do. ...	30	0		
1 in 10 do. .	36	2	4	weak
1 in 10 do.	42	1	5	do.
1 in 10 do.	48	0		
1 in 10 do.	52	0		
1 in 10 do. . .	58	0		
1 in 10 do. .	64	0		
1 in 10 do. .	168	0		

This experiment, unlike those previously described, is certainly not in favour of the value of phosphate of ammonia as a steep; it is
however worthy of remark, that of the first series of Lupine seed steeped in the strong solution, 13 came up out of 60 , whilst in the second series of those steeped in the weaker solution, only 9 came up out of 60 . It is remarkable that the smaller quantity of the salt, seemed to do more harm than the larger.

Two distinct operations are very frequently spoken of under the general name of seed-steeping; the one consists in sinking the seeds in a considerable quantity of some liquid, the excess of which is poured off when it is judged the seeds have absorbed as much as is desirable; the second, when the seeds are soaked in a very small quantity of the solution, not more being used than they are able to absorb, so that there subsequently does not remain any liquid to be drained off, a quantity of dry lime or other powder being sifted upon the seeds and stirred up with them so as to dry the surface partially. It is evident that these two are very different operations and calculated to produce very different effects. By an operation of the first sort, light, blighted, and worthless grains which rise to the surface may be readily separated from the sound seeds, and the eggs of insects may be destroyed, which if sown with the seed might soon hatch and destroy the young plants. In the second process these effects are not attained ; the seeds as in the first-mentioned plan absorb a certain quantity of a solution, and in addition are externally coated with a small quantity of lime, or some other dry substance, which in a soil deficient in the substance employed may constitute a useful and valuable manure; whilst at the same time when lime is employed, it will probably defend the seeds from any insects in the soil.
It is evident that the value of any steep or process of preparing seed, will in great part depend on the nature of the soil where the seed is sown, and the weather or peculiar conditions of the season when it is used. It must always be remembered that no process of steeping can possibly replace the use of manure; if by steeping the seed we are enabled to obtain from the soil a larger crop than
we should otherwise have had, it is certain that the crop of the next year will suffer in proportion. The only chemical effect of seedsteeping must be to cause germination to proceed more rapidly and give increased vigour to the young plant, and consequently to require a larger supply of earthy matters from the soil. The experiments made this year at the Gardens of the Society, must be received with some allowance, as having been carried on in a peculiarly unfavourable season; they possess however considerable interest, and as far as they go may be relied on as accurate.

X. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswich during the year 1843. By Mr. Robert Thompson.

This Journal has been kept on the same plan as the preceding.

JANUARY.

JANUARY.

Temperature.					Wind.		Rain.	Remarks.
Dasa.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
112334567789101112131414151617181920212223242526272829303131	41	25	46	21	N	Little		The temperature of this month was about $3 \frac{1}{\frac{1}{2}}$ degrees above
	38	19	40	13	NW	Ditto		the average. The barometer was exceedingly low between the
	43	27	43	22	SW	Ditto		10 th and 15th. On the 13th the pressure of the atmosphere
	43	29	43	25	W	Ditto	12	balanced little more than 28 inches of mercury. The day was
	41	31 34	44	26	-	Brisk		very boisterous and there was a violent hurricane at night; but,
	46	34 36 36	41	30 34		Little	. 01	considering the circumstances, the quantity of rain was com-
	42	30	43	34 25	SW	Brisk Ditto	.14	paratively little. The total amount of rain during the month was also below the average, and did not correspond as usual
	47	32	47	31		Little	:09	with the lowness of the barometer. West and south west winds
	42	30	44	26	W	Strong	.06	were prevalent.
	40	31	43	29	SW	Little	. 16	
	43	23	42	19	N	Ditto	. 29	
	39	28	48	31 24	SW	Strong	. 04	29.766
	40	26	40	23	W	Little		—— Dew Point Ditto...... $40^{\circ} .31$
	42	30	44	26	NW	Brisk		- Degree of Dryness Ditto...... $0^{\circ} .36$
	42 49	37	42	35	SW	Ditto	. 03	-- Degree of Moisture Ditto...... . 973
	44	33 34	50	31		Little		- Force of Vapour Ditto...... $\quad .253$ inch.
	39	29	44 43	33 25	E	Ditto	. 01	
	41	34	42	28	S	Ditto		Minimum Temperature in ditto 199°.
	44	34	46	30	SW	Ditto	. 02	Maximum Temperature in the Sun 59°.
	48	43	52	41	S	Ditto	. 05	Minimum of Terrestrial Radiation 13°.
	49	39 44	48	36	SW	Ditto	. 02	Mean Temperature of External Air $39^{\circ} .67$.
	51	44 45	50	42		Ditto		
	53	50	54	43		Ditto		Winds.
	56	45	58	43	W	Brisk	02	North...... 2 days N. East...... o days
	55 55	48 36	57	46		Ditto		South...... 3 .. East....... 11
	5	36 44	59	33		Ditto		East.......1. West..... 9
					SW	Ditto	. 07	
	45.09	34.25	43.51	31.00			1.33	Amount of Rain 1.33 inch.

FEBRUARY．

Morning．						Noon．					Night．				
1843 窝	Barom．	Hygrometer．			Weather．	Barom．	Hygrometer．			Weather．	Bar	Hygrometer．			Wea
W． 1	29.902	44	44	－	Very Fine	29.894	52	50	2	Cloudy	29.833	48	48	－	
Th．	． 612	44	44	－	Heavy rain		45	45		Drizz					Bois
F．${ }_{\text {S．}}{ }^{3}$	－． 517	39	39	二	Showery	－． 192	36	36	二	Stormy showers	－． 138	33	33		Stormy
S． 5	$-.840$	31	${ }^{37}$		Clear，frosty	－． 798	38	${ }_{29}$	9	Clear，frosty	－．854	31	31	－	Clear
M． 6	－． 868	32	30		Overcast	－．736	39	39	－	Cloudy	－． 818	34	34		Overcast
D T． 7	－． 960	33	33	－	Hazy	－．993	39	39	－	Hazy	－．890	34	34		
W． 8	30.024	35	35		Dense fog	30.038	38	38	－	Ditto \＆cold	30.025	3^{8}	${ }^{38}$		Ditto Densely orerat
Th．${ }_{\text {F }} 10$	－29．966	37	37	二	Hazy	29.956	40	40	－	Easterly haze	29.892	37			den
S． 11	－	35	${ }_{36}^{35}$	－	${ }_{\text {Cloudy }}$	－．838	$4{ }_{4}^{40}$	33 40	7	Dense clouds	－．831	35	39	－	Very fine
S． 12	30.040	35	35		Slight drizzle	30.030	41	40	1	Ditto	30.040	38	38	－	
M． 13	－．010	30	30		Frosty	29.952	39	34	5	Ditto	29.873				${ }^{\text {Frosty }}$ Oyercast
O T． 14	23．721	27	27	－	Sharp frost	－．646		39		Cloudy	－． 613	29	29		Overcast
W．${ }_{\text {Th．}} 16$	－ 56.470	24 24 24	20 15	4	Do．and overcast	－． 395	29	29	－	Snow flakes	－． 294	26	29	二	Onercast
F． 17	7－．470	25	20	5	Clear and Do．	－． 502	37	19	${ }_{12}^{13}$	Very fine	－． 234	33	33	－	Stormy
S． 18	8－．400	32	32	－	Stormy	－． 410	34	34	－	Drifting snow	－． 425	34	34	－	Ditto
S． 19	9－． 417	33	33	－	Overcast	－． 355	36	36	－	Stormy，rain	－． 311		37		Heavy rain
（ ${ }^{\text {M．}}$ ． 20	－．267	37	37 38		Rain	－． 261	40	40	－	Hazy	－． 324	38	${ }^{38}$		Foggy
${ }^{4}$ W． 22	2－．377	38 44 4	38 44	－	$\stackrel{\text { Foggy }}{\text { Slight rain }}$	-.362 -.298		49	－	Fine	－． 326				Cloudy
Th． 23	3－449	44	44	－	Cloudy	－． 455	51	51 50	－	Very fine	－．351	4	4		Overcast
F． 2	4－．612	3^{8}	38		Foggy	－． 624		41	－	Easterly haze	－． 640	38	38		Hazy
S．${ }^{\text {S }} 2$	56－619	35	35	－	Overcast	－． 596	38	38	－	Slight drizzle	－． 609				Very strmmy Slight drizzle
M．${ }^{2}$	27－68．931	35	$\begin{array}{r}35 \\ 36 \\ \hline\end{array}$	－	Sleet Rain	-.533 28.848	$4{ }_{41}^{39}$	${ }_{41}^{39}$		Overcast	-.326 28.869	35	35		
T． 28	28．29．004	39	39	－	Cloudy	29.163	42	42	－	Cloudy	29.434	38	38	－	Overcast
	29.582	34.89	34	8		29.569	． 21	3.3	1.82		29.584	33.78	33.78	0.0	

FEBRUARY.

[216]

MARCH.

Morning.						Noon.					Night.				
1843.	$\square^{\text {a }}$	Hygr	ometer.		Weather.	Barom.		gromete		Weather.	Barom.		romet		Weather.
$\begin{array}{r}\text { W. } \\ \hline \text { Th. } \\ \text { T. } \\ \text { S. } \\ \text { S. } \\ \text { S. } \\ \text { M. } \\ \text { T. } \\ \text { W. } \\ \hline\end{array}$	129.676	32	32	二	Clear	29.779	38	38	-	Snow flakes	29.851	33	33	-	Cloudy
	330.072	32	32	1	Overcast	30.970	40	38	12	Clear \& ditto	30.029	33	33		
	4-.298	33	33	-	Ditto	-. 347	41	33		Cloudy, fine	-.159	27	27	-	Clear \& frosty
	$5-.360$	28	28	-	Sharp frost	-. 370	43	30	13	Ditto	-.331	34	33	1	Cloudy
	6-.269	36	34	2	Overcast	-. 245	43	40		Cloudy	-. 231	33	33	-	Clear
	7-.295	27	27	-	Frosty \& foggy	-. 182	42	42	-	Easterly haze	-. 197	32	32	-	Foggy
	8-. 264	35	35	-	Light clouds	-. 289	43	33	10	Fine	-. 328	31	31	-	Clear \& frosty
$\mathrm{D} \mathrm{Th} .$	9-.380	35	32	3	Dry haze	-. 348	39	35	4	Hazy	-. 318	30	30	-	Frosty
	10-.176	36	36	-	Hazy	-. 096	43	42	1	Overcast	-. 050	38	38	-	Overcast
S.	$11-.134$	40	30	10	Slight haze	-. 153	47	34	13	Ditto	-. 086	41	41	-	Ditto \& fine
S.	1229.943	42	42	-	Uniformly overcast	29.854	51	45	6	Ditto	29.700	47	47	-	Ditto
M.	13 -. 725	39	39		Clear	-. 698	50	42	8	Cloudy \& fine	-. 585	45	44	1	Ditto
W.	${ }_{15}^{14}$-. 426	49	49	-	Fine	-. 513	54	54		Cloudy	-. 605	48	48	-	Ditto
$\bigcirc \mathrm{Th}$.	16-.986	51	51	-	Do. and mild	-.852	53	47 50	8	Very Fine	-. 924	49	49	二	${ }_{\text {Clear and }}$ finc
F.	17-.891	38	38	-	Foggy	$-.858$	60	53	7	Clear and do.	-. ${ }^{\text {- }} 36$	40	40	-	Ditto
S.	18-.844	38	38	-	Ditto	$-.848$	60	49	11	Very Fine	-. 86	46	46	-	Slight fog
	19-.771	45	45	-	Ditto	-. 867	50	50	-	Foggy	-.816	44	44	-	Overcast
M.	20-.667	43	43	-	Ditto	-. 563	60	58	2	Very Fine	$-.473$	52	52	-	Rain
(W .	$21-.467$	49	49	-	Fine	--.421	56	56	-	Ditto	-. 379	51	51	-	Very Fine
Th.	22 -. 379	51	51	-	Hazy	-. 409	ϵ_{2}	62	-	Ditto	-.341	52	52	-	Ditto
	23 -. 416	52	52	-	Cloudy	-. 517	56	50	6	Cloudy \& mild	-. 555	47	47		Clear and finc
	538	56	51	-	Light clouds	$-.563$	61	50	11	Fine	-. 699	49	49	8	Clear
S.	26-.756	42	32	10	Cold \& dry	710	48	34	10	Clear and do	-. 713	44	34	6	Ditto
	27-.719	38	33	5	Dry cold haze	-.715	43	35	8	Cloudy \& cold	200	38	36	2	Overcast
	28-.722	42	40	2	Hazy clouds	745	49	35	14	Cold \& cloudy	. 822	33	33		Clear, frosty
	29-.932	39	38	1	Clear	-.950	54	39	15	Dry cold haze	-. 950	39	39		Clear
	$30-848$	45	43	2	Hazy	-.768	57	53	4	Overcast and fine	-. 602	51	51	-	Overcast
	$31-451$	53	53		Cloudy, Fine	-. 384	58	58	-	Cloudy	-. 455	49	49		Clear and
	29.865	40.90	39.64	+1.26		29.862	50.00	43.68	6.32		9090	0. 77	0.19	0.	

MARCI.

218]

APRIL.

Morning.						Noon.					Night.				
1843.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Wenther.
S.	29.484	51	51		Rain	29.490	58	5^{8}	-	Cloudy	29500			-	Overcast
S.	-. 452	54	54	-	Cloudy	-. 500	58	58	-	Ditto	-. 649	50	50	-	Clear and fine
M.	-.768	54	54	-	Slight rain	-. 798	61	55	6	Ditto \& fine	-. 572	49	49	-	Ditto
T.	-. 379	52	52	-	Rain	-. 305	58	58	-	Rain	-. 553	48	48	-	Cloudy, windy
W.	5 -.702	49	48	1	Fine	-. 772	52	52	-	Cloudy	-. 917	44	44	-	Clear
Th.	$6-.843$	49	49	-	Overcast	$-.707$	56	56	-	Ditto	-. 646	51	51	-	Slight rain
D F .	7 -.563	53	53	-	Rain	-. 520	61	59	2	Ditto	-. 436	50	50		Clear and tine
	-. 544	48	48	-	Clear	-. 553	55	45	10	Fine	-. 573	45	45	-	Ditto
	9 - . 598	46	41	5	Easterly haze	-. 598	45	42	3	Overcast	-. 703	38	38	-	Clou
${ }^{\text {M. }}$. ${ }^{1}$	$10-.892$	39	33		Clear	-.898	42	42	-	Fine	-.921	34	34		${ }_{\text {Clear }}$
W.	$12-.949$	37	33	4	Clear	-. 971	46	24	22	Clear \& dry	-.983	31	31		Ditto
Th.	$13-797$	36	36	-	Snow clouds	-. 848	45	25 33	12	Ditto \& fine	-.829	31	31	-	Ditto
\bigcirc F. 1	14 -.914	43	38	5	Uniformly overcast	-. 950	58	58	-	Ditto	30.006	48	48	-	Overca
S. 1	1530.101	51	51	-	Hazy	30.091	60	45	15	Overcast	-. 108	52	51	1	Do. \& mil
	1629.992	54	50	4	Light haze	29.854	59	50		Hazy, fine	29.818	51	51	-	Overcast
	17-854	51	48	3	Ditto	-.889	63	50	13	Very fine	30.048	49	49		Clear and fine
W.	1830.140	52	47	5	Ditto	30.079	63	37	26	Very dry	29.980	50	48	2	Ditto
Th.	1929.959	46	46		Ditto	29.884	58	41	17	Dry haze	-. 766	48	48		Ditto
(1) F.	$21-.846$	59	55	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	Very Fine	-. 711	67	59	8	Very fine	-. 778	51	5		Dito
	$22-.815$	54	5	-	Ditto	-. 849	64	48	16	Ditto	-. 833	50	5		lear
	2330.043	49	45	4	Light Clouds	-. 894	50	50	-	Showery	-.989	51	43		Ditto
	$24-.012$	50	45	5	Ditto \& fine	29.990	54	42	12	Cloudy, fine	30.025	33	33		Ditto
W.	2529.759	46	46	-	Thickly overcast	30.070	48	48	-	Rain	-. 648	40	40	-	Ditto
Th.	-.626	39	39	-	Cold rain	29.677	51	36	15	Very fine	-. 644	40	40		Rain
F.	28-.798	45	45	-	Cloudy	-. 674	54	40	14	Cloudy, fine	-. 892	43	43		Clear
S.	29-681	49	48		Overcast Ditto	-.707	52	52	-	Slight rain	-. 669	48	48		
	30-6. 784	57	50	7	Fine	$-.838$	65	45 53	11	Cloudy, fine	-.729 -.929	$\begin{aligned} & 49 \\ & 54 \end{aligned}$	$\begin{aligned} & 49 \\ & 49 \end{aligned}$	5	Clear and dry
	29.791	48.50	46.26	04				6.4	8.63		820	44.88	44.60	26	

APRIL.

Temperature.				Wind.		Rain.	Remarks.
Days. Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
59	50	62	47	SW	Brisk	.18	The mean temperature was a little above the average; but
59	48	68	45		Ditto	. 05	frosts at night were of frequent occurrence. On the night of
61	46	71	42		Ditto	. 22	the inth the thermometer indicated 10° below rreezing. Plums
4 5 5	41	67	35	S	Little	.23	and cherries were then in full flower, as were likewise some of
$\begin{array}{lll}5 & 56 \\ 6 & 55\end{array}$	38	72	34	W	Brisk	. 02	the early flowering varieties of Pears. The liaves however were
$\begin{array}{lll}6 & 55 \\ 7 & 62\end{array}$	51	58	49	SW	Ditto	. 01	so far advanced as to afford the blossoms a little protection, and
8 8	44 39	71	42		Brisk	. 35	enough was saved for a crop. Bere late frosts. Between the
$9 \quad 47$	32	52	33 27	E	Little	. 01	very dry, as is usually the were also frosty, but not so severe as
10.50	26	60	20	N	Brisk	. 01	to do any material injury to vegetation. There was a heavy
11149	22	60	16		Ditto		shower of hail on the afternoon of the 5 th.
12 48 13 48	28	62	23	NE	Little	. 04	
13 48 14 48 15 54	24	55	18	N	Ditto		Mean Pressure from the 3 daily observations 29.801 inches.
14 54 15 58	42 47	58 61	39 46	NE	Ditto		
16 63 19 65	47	70	46	SW	Ditto		- Dew Point Ditto $3^{\circ} .64$
$\begin{array}{ll}19 & 65 \\ 18 & 67\end{array}$	33	78	28	NE	Ditto		- Degree of Moisture . . Ditto 878
$\begin{array}{ll}18 & 67 \\ 19 & 63\end{array}$	35	74	29	E	Ditto		_- Force of Vapour. . . . Ditto 310 inch.
19 6 20	41	70	37		Ditto		Least observed degree of Moisture $0_{0} 0^{.394}$
21 65	36	80	32	SW	Ditto		Maximum Temperature in the Shade $70^{\circ}{ }^{\circ}$
22 59 23 69	26	80	41		Ditto	. 05	Minimum Temperature in ditto 22.80°.
23 23 60 24 60	28	70	21	S	Little	. 0	Maximum Temperaturial Radiation 16°.
2j 60 25 56	27	69	20	E	Ditto		Mean Temperature of External Air $47^{\circ} .88$
25 5 27	34	60	32	S	Ditto	.30	Winds.
27 50 28 51	34	63	32	W	Ditto	. 08	North.... 3 days \mid N. East..... 4 days
$\begin{array}{l:l}28 \\ 28 & 54 \\ 29 & 59\end{array}$	33 40	70	27	S	Ditto		South...... 4 .. S. East....... $0 .$.
29 59 30 69	43	70	36	SE	Brisk	. 04	East...... 6 .. N . West. . . . $0.0 .$.
30-69	49	75	45	E	Brisk		West...... $4 \cdots$ S. West...... 9 . ${ }^{\text {, }}$
58.30	37.47	67.10	33.10			1.62	Amount of Rain. 1.62 tuch.

MAY.

MAY.

Temperature.					Wind.		Rain.	Remarks.
Doy.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1 2 3 3 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 15 16 17 18 19 20 20 21 22 23 23 24 25 25 26 29 28 29	70	42	80	36	E	Brisk		
	69	40	85	35		Little		This month was excessively wet, almost sunless, with a tem-
		44	80	39	NE	Ditto	. 06	perature more than 3 degrees below the average. There were
		45	72	41	SW	Ditto	.16	only 5 days on which rain did not fall. The quantity which
	${ }_{5}^{63}$	42	70	36		Brisk	1.26	fell on the 5 th, fully $1 \frac{1}{4}$ inch, was greater than had fallen at the
		32 29	55 65	27	W	Little	. 38	garden in any one day since the register was kept; and the
	49	29 42	49	38	E	Ditto	. 05	total amount exceeded that in any month since July 1834.
	54	39	66	34	NE	Ditto	. 57	The barometer averaged very low. Lightning, and very heavy
	57	33	65	28	E	Ditto		night of the 25 th was very clear, and a greater number of
		34	70	28	NE	Ditto		shooting stars were observed than is usual at this period of the
	66	42	73	43	SW	Ditto	. 02	season.
	64	50	72	48	W	Ditto	. 18	Mean Pressure from the 3 daily observations 29.750 inches
	${ }^{6} 5$	47	71	45	SW	Brisk	.14	- Temperature Ditto... $54^{0} .24$
		50	71	47	NE	Little	. 7	- Dew PointDitto... $51^{\circ} .90$
	${ }^{52}$	43	50	40		Ditto	. 20	- Degree of Dryness.......... Ditto... $2^{0} .34$
	48 60	45 46	51 66	42	-	Ditto	. 04	- Degree of Moisture Ditto... 919
	62	48	65	42		Brisk	$\bigcirc 2$	- Force of Vapour Ditto... 380 inch.
	64	39	68	47	E	Ditto	. 44	Least observed degree of Moisture ${ }^{\text {a }}$. 0^{497}
	56	45	68	34	SW	Little	. 05	Minimum Temperature in ditto 29°.
	68	52	70	50	SE	Ditto	. 53	Maximum Temperature in the Sun $85^{\circ}{ }^{\circ}$
		44	74	42	S	Ditto	. 06	Minimum of Terrestrial Radiation 26°.
	66	41	75	37	SW	Ditto	. 03	Mean Temperature of External Air $52^{\circ} \mathrm{O}$. ${ }^{\text {a }}$
	63	45 43	75 68	41	-	Brisk	. 20	Winds.
	65	44	72	41		Ditto	. 14	North...... 0 days ${ }^{\text {N. East.... } 7 \text { days }}$
	54	44 34	72 54	39	W	Little	.16	South..... 5 .. S. East 1 . ${ }^{\text {a }}$
	64 67	48	54 72	32 48	E	Ditto	$\cdot 30$	East........ 6 ... N.West.... 0_{8}. ${ }^{\text {c }}$
		54	70	51	W	Ditto	. 06	$\underbrace{\text { West...... } 4 \text {. } 4 \text { S. West.... } 8 \text { \% }}$
		42.83	68.19	39.00			5.26	Amount of Rain 5. ${ }^{31}$ days. inche

[222]

JUNE.

JUNE.

JULY.

JULY.

Temperature.					Wind.		Rain.	Remarks.
Drys	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1 1 2 3 4 5 6 7 7 8 9 10 10 11 12 13 14 15 15 16 17 18 19 20 21 21 22 23 24 25 25 25 27 28 29 30 31	69	52	81	49	E	Little		
	73	58	88	55	SW	Brisk		
	76	59	96	58		Ditto		The weather in this month was much more favourable for vege-
		53	101	51	S	Little		tation than it was in the two preceding months. The mean tem-
		55	115	55	SE	Ditto	.16	perature was about a degree below the average; but there was
	73	51 53	110	46	SW	Ditto		a bundance of sunshine, and a moderate quantity of rain. The
	62	45	70	42	SE	Ditto	.14	5th was very sultry, with a remarkaty duskepearance, as is usually
	73	47	101	42	N	Ditto	. 02	the case. Heavy rain fell on the 18th. The 23rd was squally,
	69	55	100	55	NW	Brisk		with cold showers.
		52 56	68	51	N	Little		
	67	56	109 76	53	NW	Ditto		Mean Pressure from the 3 daily observations 29.928 inches.
	76	53	95	54 50 50	NE	Ditto	. 07	- Temperature Ditto. $6 \mathbf{6 2}^{\circ} .69$
	${ }_{80}^{77}$	56	89	53	SW	Ditto		- Dew Point Ditto. $59^{\circ} \cdot 21$
	81	58	96	56	W	Ditto		- Degree of Moisture. . . . Ditto. 886
	75	49	85	55	SW	Ditto		- Force of Vapour......Ditto....... . 501 inch.
		44	78	40	W	Little	. 02	Least observed degree of Moisture....... ${ }^{\text {a }}$ 880 ${ }^{.555}$
	66	54	80	53	SW	Brisk	OI	Maximum Temperature in Temperature in Ditto.......... 40 $^{40}{ }^{\circ}$.
	65	55	78	53	W	Ditto		Maximum Temperature in the Sun 115°.
	64	52 40	72	51	SW	Little	. 08	Minimum of Terrestrial Radiation 36°.
	65	40 42	80 78	36	W	Brisk	. 08	Mean Temperature of External Air....... $611^{\circ} .88$
	${ }^{72}$	47	81	44	SW	Ditto		Winds.
	72	56	82	53		Ditto	. 10	
	73	54 58 58	88	50	W	Ditto	. 02	North......2 days N. East....1 days
	71	53	91 80	55	SW	Ditto	. 06	
	71 69	49	84	47	W	Little	. 07	West99 .. ${ }^{\text {E }}$, West ... 13
				43	SW	Ditto	. 03	
	71.64	52.12	87.77	49.58			1.67	Amount of Rain 1.67 inch.

AUGUST.

AUGUST.

Temperature.					Wind.		Rain.	Remarks.
Diyl	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
11834456788910111212131415161718181920212222232425252627282829303131	72	46	81	43	SW	Little		
	62	52	72	50	-	Ditto	. 02	This month was very favourable for the growth of vegetation.
	62	54	72	51		Ditto	1.03	The mean temperature was a degree above the average. The
	68	46	71	45		Brisk	. 18	amount of rain was upwards of an inch above the usual quantity.
	72	53	75	50	W	Little	. 02	It fell for the most part in large quantities at a time. The 3 d
	70	42	83	39		Ditto		was boisterous and showery, with some hail in the forenoon;
	75 80	58	78	42	SW	Ditto		thunder, and heavy rain commenced at $2 \mathrm{P} . \mathrm{M}$. and continued till
	82	57	98	56	S	Ditto		upwards of an inch had fallen. Nearly as much fell on the 23d,
	68	44	76	40	NE	Ditto		with wind sometimes boisterous. The
	72	46	90	44	N	Ditto		vivid lightning on the night of the gth. There was also thunder
	77	47	93	42	SE	Ditto		on the 15 th, 16th, and much lightning on the night of the 25 th.
	78	60	90	58	SE	Ditto		
	79	59	90	56	E	Ditto		Mean Pressure from the 3 daily observations 29.931 inches.
	82 74	60	93	54	S	Ditto	. 61	- Temperature. Ditto. $6 . .640^{\circ}{ }^{\circ} .60$
	74 80 80	55	98 100	54	SW	Ditto	. 16	- Dew PoinDitto. $3^{\circ} .76$
	84	59	100	56	E	Ditto		— Degree of Moisture. . Ditto...... . 877
	84	61	103	58		Ditto	. 01	-_Force of Vapour Ditto...... 524 inch.
	72	47	88	43	S	Ditto		Least observed degree of Moisture..... $0_{0} .514$
	71	49	91	45	NW	Ditto	. 02	Maximum Temperature in the Shade. . . $84{ }^{\circ}$
	62	45	66	42	S	Strong	. 22	Minimum Temperature in ditto. $42^{\circ}{ }^{\circ}$
	69 73	53	84	52	-	Little	. 95	Maximum Temperature in the Sun $103{ }^{\circ}$
	71	46	89	42	W	Ditto		Minimum of Terrestrial Radiation ${ }^{\text {a }}$ ($3^{\circ}{ }^{\circ} .36$
	75	56	94	54	S	Ditto		Mean Temperature of Externa Air
	75	47	94	42	SW	Brisk	. 01	Winds.
	71	59	94	44	NW	Little		North 3 days N. East..... 1 days
	74	59	90	5	SW	Ditto	. 05	
	77 82	61	94	58	-	Ditto		East. West 3
		56	103	53	SE	Ditto		West....... 3 \|
	73.96	52.77	88.00				3.28	Amount of Rain 3.28 inches.

SEPTEMBER.

SEPTEMBER.

OCTOBER.

OCTOBER.

NOVEMBER.

NOVEMBER.

DECEMBER.

DECEMBER.

Monthly Mean Pressure, Temperature, and Dew Point, \&c. of 1843; deduced from the Observations recorded in the preceding Journal.

1843. Months.	Pressure.								Temperature.											
					Mean at			Mean of the three Observations.	In the Sbade.			Mean at			Mean of the three Observs	In Sun's Rays.		Terrestrial Radiation.		Mat
	Max	Min.	Med.	m.	Morn.	Noon.	Night.		Max.	Min.	Med.	Morn.	Noon,	Night.		Max.	Min.	Max.	Min.	Rup.
Jan.	30.502	28.1812	29.755	2.321	29.779	29.771	29.750	$29 \cdot 766$	56	19	39.67	$38 \cdot 38$	$43 \cdot 58$	t0.06	40.67	59	40	48		37.81
Feb.	30.040	28.848	29.585	1.192	29.582	$29 \cdot 569$	29. 5^{84}	29.578	54	16	36.28	34.89	40.213	33.78	36.35	61	31	44	10	60
March	30.380	$29 \cdot 3412$	29.862	1.039	29.865	29.862	29.859	29.852	67	18	43.20	40.90	50.00	40.77	$43 \cdot 91$	78	39	45	12	62
April	30.140	29.305,	29.800	0.835	29.791	29.792	29.820	29.801	70	22	47.88	48.50	55.10	44.88	$49 \cdot 42$	80	52	49	16	. 19
May .	30.	29.258	29.749	0.926	29.750	29.747	29.754	29.750	70	29	52.23	54.00	$59 \cdot 74$	49.00	54.24	85	49	54	26	.59\%
June.	30.160	29.223	29.810	0.937	29.817	29.815	29.805	29.812	76	38	56.85	58.53	64.03	54.06	58.87	100	56	57	3	
July.	30.249	$29 \cdot 457$	29.934	0.792	29.922	29.928	29.934	29.928	88	40	61.88	62.54	469.32	56.22	62.69	115	68	58	36	1.67
Aug.	30.23	29.412	29.935	0.825	29.909	29.952	29.933	29.931	84	42	$63 \cdot 36$	63.64	41.09	58.35	$64 \cdot 36$	103	71	59	39	$\text { -9 } 9$
Sept.	30.50	29.681	30.116	0.828	30.134	30.119	30.106	30.120	85	32	61.90	59.20	09.43	56.53	61.72	104	71	61		
Oct.	30.343	29.090	29.708	1.253	29.709	29.702	29.707	29.706	73	22	48.49	$47 \cdot 35$	554.90	45.03	49.09	95	45		16	
Nov.	30.381	29.275	29.819	1.106	29.823	29.807	29.824	29.818	59	21	43.63	42.03	347.50	41.10	$43 \cdot 54$	73	44	53	17	
Dec	30.49^{8}	29.664	30.31	0.834	30.331	30.311	30.305	30.315	58	27	43.82	42.45	$547 \cdot 48$	13.03	$44 \cdot 32$	66	44	48		
Aver.	30.301	29.227	29.865	1.074	29.867	29.864	429.865	29.865	70.0	27.16	$49 \cdot 92$	$49 \cdot 37$	756.03	36.87	50.76	84.	0.	52.66	2	

$1843 .$ Vonths.	Hygrometer indicating Dew Point.								Scale of the Winds.									Rain
	Mean Dew Puint at			Mean Dew Point	Mean Force of Vapour.	Mean degree of Dryness.	Mean degree of Moisture.	Least degree of Muisture.	N.	N. E.	E.	S. E.	S.	S. W.,	w.	N.W.	Days*	Ia. Pis
	Morn.	Noon.	Night.															
Jan.	38.19	42.68	40.06	40.31	. 253	0.36	973	800	2	\bigcirc	1	\bigcirc	3	14	9	2	31	. 33
Feb.	34.00	38.39	33.78	$35 \cdot 39$. 211	0.90	968	600	4	11	7	1	1	1	3	0	28	2.58
March	39.64	43.68	40.19	41.17	. 261	2.74	903	577	2	3	8	1	9	6	1	1	31	0.4 1.62
April	46.26	46.47	44.50	45.78	. 310	3.64	878	394	3	4	6	\bigcirc	4	9	4	0	30	5.26
May .	52.78	54.26	48.68	51.90	. 368	2.34	919	497	\bigcirc	7	6	1	5	8	4	0	31	1.68
June.	54.63	56.33	53.96	54.97	. 430	3.90	870	306	2	10	3	1	2	7	3	2	30	1.6\%
July -	59.74	61.74	56.16	59.21	. 501	3.48	886	555	2	1	1	2	1	13	9	2	31	
Aug.	61.38	62.13,	. 58.29	60.60	- 524	3.76	877	14	3	1	3	2	7	10	3	2	31	0.93
Sept.	58.57	60.36	56.33	58.42	. 487	3.30	893	503	3	4	4	1	5	3	2	8	30	0.9 4.19
Ocr.	47.26	50.26	45.03	47.51	-330	1.58	994	471	0	4	1	-	4	11	8	6	31	2.13
Nov.	$4^{1.63}$	4580	41.10	42.84	.278	0.70	975	661	6	1	3	2	1	10	5	2	30	0.58
Dec. .	42.45	46.74	43.03	44.07	. 290	0.24	972	829	1	\bigcirc	-	2	6	14	7	1	31	
Aver.	48.04	50.73	46.77	48.51	. 353	2.24	925	558	28	43	43	13	48	106	58	26	365	

XI. A Calendar, for four months, of the Weather, Natural History and Country Operations, at Foo-chow-foo. - By G. Tradescant Lay, Esq., Her Majesty's Acting Consul at that place.
(Communicated by the Rt. Hon. The Earl of Aberdeen.)

For the following document the Society is indebted to Her Majesty's Secretary of State for Foreign affairs, to whom it was transmitted by His Excellency J. S. Davis, Governor of Hong Kong.

In the present state of our communications with China all facts relating to the climate and natural productions of that empire are of great interest ; and most especially to the Horticultural Society, now that Mr. Fortune has been stationed in China for the purpose of collecting seeds and plants.
It is only necessary to add that the Calendars are printed exactly as they were received, with the exception of a few verbal errors of no importance.

for July, 1844.

OBSERVATIONS ON HUSBANDRY.	FRUITS, FLOWERS AND VEGETABLES IN SEASON.	ANIMAL KINGDOM.	EVENTS AND GENERAL REMARKS.
In the early part of the month the unreaped crops of rice are shorn down. The sickle is short, of small curvatare and compared with that of the mglish, very ineffectual. It is wielded by females as well as males.	The assortment of fruit small. The plums of a rich purple and of a most grateful taste, are now in season, and cover the stalls and benches in profusion. Pines are brought hither chiefly it is said from Formosa. Po. megranates serve now to deck the table, but are of small size and little flavour.	The voice of the "Hwang pong chow," or Red-winged pie is heard among the fir-trees, and is so peculiar that it is difficult to find a similitude. It is something compounded of a sob, a howl and the dying beats of a bell. When displeased it utters a peculiar clucking mixed with the scolding of a cat.	1st. Arrive at Foo chow, take up our quarters at the office of a salt monopolist on leit bank of river. 3. Meet the Superintendent of Trade.
The setting out of the second crop of rice continues till nearly the close of the month. The blades and precocions ears are cut of and thrown down by the roots.	The Jasminum Grandiflorum, or " Mo le wah," is now in its prime, culti. vated in ridges for a garniture of tables. The Vegetable most abundant now is the Convolvulus reptans, or "Oungtsy" of the natives. It is grown not in water as at Canton, but on beds, where it yields many a snowwhite blossom. It is very wholesome and relished by all. The large "Tung-kwa," or vegetable marrow is abundant and very large, some. times a foot and a half in length and about a third in diameter. The Luffa acutangnla is now in prime. These are grown over Leeks on a kind of roofing. Leeks shaded by the Goards are plentiful, being ent three or four times a year.	A large forked-tailed fly-catcher, with his mate, perches on the topmost shoots of a tall tree, and from time to time soars aloft in quest of in. sects and then with a sweep returns back to his mate. A Hawk which seems to be ídentical with the Kestrel, utters a note which resembles that of the wry-neck, while it darts from the tall-trees to tease the fishing hawk, whose cry may always be heard, but mostly in the moraing. Dragon-fies of red, green and blue tints, skim over pools of water, or flutter along the fences. A member of the Day-fly, or Hemerobius family, with long antennæ, is seen among dragon-fies, which it much resembles in external appearance. It is new to me. The field spider (Tagenaira) spreads its net, an inverted cone, among the long grass everywhere.	8. Remove to salt monopolist's resisidence on left bank above the bridge. 13. Met the Governcr General. Saw fishing Cormorants on rafts for first time.
87. Saw a peasant turning in the stabble with the "Lonk toak," or "kah 100 ," a roller armed with rows of wooden teeth or pins, like the bar. ret of a hand-organ. Men employed haming "Yay Moy," or oily grain mong Tobacco and other spots, in a treach opened by a hoe or mattock.			.
Nouthen hard by employed in storing ad loouling salt for the interior. th that accompanies working of the feall.			

Day of month.	Therm.	Barom.	Hygrometric state.	Wind.	SKY, CLOUDS, MISTS, RAIN AND ELECTRIC PHENOMENA.
1	max. 911°	29.49	Very dry	S. East	Cumuli or fleecy clouds, with mists, which are clouds conching over the city.
${ }^{2}$	a 91 $\quad 93$	-. 43		\cdots	
4	\because $\therefore \quad 93$	--. 56		\cdots	Rain fell in the night.
5	- 93	-. 66	Less dry	..	Nimbose clouds.
6	. 88	-. 60		.	Showery in the afternoon.
8	$\begin{array}{r}\text { - } 92 \\ \hdashline \quad 92\end{array}$	-60 -.60	Very dry	\because	Cloudy. Morning bright.
8	a $\therefore \quad 92$ $\therefore \quad 92$	-.60		\cdots	In the morning, rainbow over the city; day showery.
10*	$\left\|\begin{array}{c} 89 \\ \text { * Min. ob- } \\ \text { served this } \\ \text { night, } 83^{\circ} . \end{array}\right\|$	-. 56		Morning, S. East. Evening, N. East.	Morning bright; afternoon cloudy. In an evening walk noticed large massive clouds, brooding over the valley, on this side the southern range of hills. On a sudden the wind, then southerly, veered to the north, and huge volumes of sable coloured vapour made their appearance over the city. A stagation ensued, which lasted a few minutes, as if the atmospheric columns were vibrating between a double and opposite course; a shower followed, but did not last long. In the night the rain fell in torrents and the wind blew tempestuonsly. The air was chill, but had not a portable thermometer to as. certain the temperature, which I regret.
11		$\begin{array}{\|l\|} -.36 \\ -.38 \\ -.38 \\ -.43 \\ \text { Fall in } \\ \text { Barom. } \\ \text { followed } \\ \text { the gale. } \end{array}$	Noapparent change in dryness.	North	Sky, at sunrise, hazy and nimbose, black clouds skirting the hills behind the city. Wind strong and gusty. At 80^{\prime} clock, A. M., rain had ceased. 10 A. M., rain, with a mist over the city. P. M., nim, with blinks and gleams of sunshine. Air cold to sense; wiad hushed. Thunder and lightaing in the night; chilly.
12		$\begin{aligned} & -.61 \\ & -.67 \end{aligned}$			Haze; detached fragments and sheets of cloud invest the sky. The largest and most sombre mases overhang the city, the focus and centre, around which atmospheric charges seem to play.
13	Sunrise 82 P. M. 90	-. 67			Morning, gray dew on the grass. Calm and massy clouds in the evening. Much foam foating dowa the river.
15	Not at	home.			
16	Mora. 94	-. 69	Very dry		Clouds threaten rain, being of a nimbose character.
17	94	-. 73			Sultry in the morning, succeeded by a haze; clear at noon.
18	92	-. 69			Day fine and sultry.
10	94	-. 62			P. M., a shower. Clouds red at sunset; evening fine.
21	$\begin{gathered} \text { A. } \\ \text { (M. } \\ \text { M. } 89 \\ \hline \end{gathered}$	$\begin{aligned} & -.36 \\ & -.51 \end{aligned}$	Draught of theairscalds the face.		Morning gray and sultry. At noon a shower, during which the barometer and fell, which is unusual, as showers are so local, that they affect not these columns, in general, at the place. Evening showery.
22	A. M. 69	-. 45		N. East	Day ushered in by a drizzling shower; afterwards intermitting between subshine and Evening showery.
23	A. M. 82 stationary	$\overline{\mathrm{fell}} \frac{41}{100}$		S., gusty	Much rain hadfallen in the night. Day throughout rainy.
24	A. M. 81	-. 65		Calm At sunset N. East.	Had rained steadily in a calm night. The nimbose sheet parting a little in the sonth, through between seven and eight. Afternoon fine; heavy shower at sunset, and shift of wiod.
25	Sunrise 82 P. M. 88	-82		S. Eust	Fine, breeze refreshing.
26	Subrise 82 Noon 90	-.72		8. East	Morning fine; breeze fresh; shower in the evening.
27	Noon 87	Station ary		S. East	Morning showery. Rainbows, primary and secondary, bestriding the city. green.
$\begin{gathered} 28 \\ 39 \\ 30 \end{gathered}$	P. M. 89 Not at P. M. 90	home.			Morning hazy; day hot and clear.
31	P. M. 90				

for August, 1844.

OBSERVATIONS OF HUSBANDRY AND GARDENING.	FRUITS AND FLOWERS IN SEASON.	ANIMAL KINGDOM.	EVENTS AND GENERAL REMARKS.
Peamants employed about the Rice crop; the women on hoeing, the men it replanting where it has failed, thinning where the tafts are too dease, in stirring the soil around the root, and wrapping it up in decayed straw: the last is very laborious, as the workman kneels the while in the mad and water. The water-whee, for irrigation, complains of an ungreased axle, in counds that fill every corner of the ralley.			During the storm, a house, ignited by the falling down of a lantern, spread the flames till thirty shared the same fate. The buildings being of wood, no small effort on the part of the ml . litary, who comprise a Fire Brigade, to extinguish the flames, was required. Fires are infrequent; a remarkable fact, as the houses are chiefly timber, the air dry, and the people crowded.
Tobacco cut, and dried by interlacing the leares in hurdles to keep them tat. The stump of the plant is left to throw ont a few shoots. The olly grain in flower. It needs the boe but little, as few weeds venture to apring up near it. The sogar cane in foll luxuriance. The gourds and melons mentioned in	Longans, much esteemed and pientiful, now begin to shew themselver at table. Plums continue, but disappear towards the close of the month.	A black silky Ant, with its thorax armed with spines, and the free mid. riff joint, with three prongs, like a Chinese halberd, is seen coursing over the shrubs and bushes in search of glandular juices or the cutaneous excretion of the Coccus. Its nest, made of paper, compounded of mashed fibre, saliva and leaves and sticks, hangs on trees and fences.	Visited the highest hill within the bason-like valley of Foo-chow, and observed that the rock is porphyritic, chiefly of felspar, which, disintegrating, crumbles into a fine red clay. The "Gazelle," sent by Capt. Gribble, to enquire for our welfare arrives. She had experienced very heavy weather, and witnessed great fluctuations in the barometer during the gale.
in the foregoing month, continue with the Momordica charantia.	A small green fruit, which the natives call Yew kang, is seen on stalls, (from Amoy). The Indian Shot, very common here, is now in flower, as is also a species of Mirabilis. Pears may be seen upon the trees in here and there an enclosure, but they are small, hard and tasteless. A large kind serves to adorn the greengrocer's board, which, it is said, are from the South, but they are scarcely to be eaten by a foreigner. Towards the end of the month Guavas are gathered green and ripen on the benches.	The white Crane, very common, with several of a veined plumage. The former amuses itself by catching the flies, which settle upon Cows while at pasture.	"Gazelle" starts. The Chinese spinsters pray " New Lang" to bestow on them ingenuity, and in order to know whether the divinity listens to their vows, each strives to thread a needle behind her head. If she chance to hit the eye of the needle, her parents and friends congratulate her; if she misses, they think the opening talents of the young maid will fall short of their wishes. In Se-chuen young ladies put a spider into a box and hold it while they recite a prayer to New Lang. If the spider has in the meantime begun to spin a web, they deem it a good omen. Music and processions at night. The " Petrel," belonging to Messrs. Dent and Co, anchors at the Lo sing Pagoda. Mr. Braine arriver at Foo.chow, with a view of making enquiries as to the prospects of trade.

Outlines of Calendar

Day of month.	Therm.		Barom.	Hygrometric state.	Wind.	SKY, CLOUDS, RAIN, MISTS, AND ELECTRIC PHENOMENA,
	Min.	Max.				
1	82	90	29.72	Dry	N. East	Morning and day clear
2	82	90	-. 72	-•	-•	Morning clear, in the evening clouds rose in the North and followed each other in quick ancceraion. Wind at that time easterly. A gentleman remarked that it was going to blow from the South agin.
- 3	83	89	-. 63	-•	-	A fresh breeze has been blowing all night from the South, which accounts for the Therm. being at sunrise 2 degrecs above its usual average, 82 . The sky bore a nimbose aspect all day. Wind gusty in the Evening. The night cloudy, but not so as to obscure the moon.
4	86	88	-. 60	\cdots	A calm S. East	Sun breaking from between the clouds in the Morning. In the Afternoon, heavy rain with thuader and lightning.
3	84	88	-. 66	-•	S. East	Morn, clouds dispersing and the sun shining. In the Afternoon, a shower, evening, fine.
6	84	88	$-.68$	-	..	Morn, fine, at first clouded agreeably, as clouds by their interposition screen the earth.
7	80	81	$-.70$	-	Newly calm S. East	Day cloudy. Is the unnsual coolness of this day owing to the clouds? Night cool, sky overcast with dark motionless clouds.
8	78	Not obsvd.	$-.74$	\cdots	S. East	Day cloudy. This fall in the Therm. and rise in the Barom. betokens a Northerly wind. Moletare fell in the night.
9	-	89	$-.78$	-	-	Day throughout with sky overcast, but no rain fell.
10	Not	at	home.	-	N. East	Rainy and cold on the ridge of the hills.
11	-	78	$-.78$	-	N. and NE.	No rain at Foo.chow. Sky cloudy. The clouds of the cold-region wind, that is, strato-cumali lone above, even below, menace rain without falling into a rain cloud-
12	74	-	-0.78	-	N. East	Sky overcast. The foam and color of the water indicate that rain has fallen up the bason of the rives Min, i. e. on the hills to the westward.
13	Not	at	home.	-•	-	Rain, clouds, and piping winds at the Monastery.
14	-	80	-. 78	\cdots	-	Day, a mixture of fine and cloudy.
15	75	-	$-.78$	\cdots	-	Morn overcast. Breeze fresh and cool.
16	-	86	$-.76$	-	S. East	Morn, sky covered with hard-seeming clouds, clear as the day sprang up.
$\begin{aligned} & 17 \\ & \text { to } \\ & 20 \end{aligned}$	-	83	$-.76$	-	N. East	Sky clear with occasional variations of that dark-stoned and apparently solid mantle, which is pecalisu to the N. wind in northern latitudes, as it is to the S. in southern latitudes.
21	-	82	$-.78$	\cdots	-	Morn, light rain accompanied a cloudy dawn, or, the cloud was so low as to couch upon the sarfice of the earth. Day hot and misty.
29	Not	obser	red.	\cdots	-	Day very hot and misty.
23	-	89	$-.79$	*	**	Day, very hot and multry.
20	-	88	$-.78$	*	*	Weather fine and cheerly. The North-East Monsoon fairly set in.
28	84	88	-. 79	\cdots	**	Day, fine and sultry.
29	84	88	$-.79$	-	\cdots	Day, fine and sultry.
30	180	84	-. 89			Day fine.

for September, 1844.

OBSERVATIONS
 OF HUSBANDRY AND GARDENING.

If this month the beds of the Convolvulus reptans, or Oung-tsy of this phec are cleared and the soil turned up for planting the "pak tsae," or Chinese Turnip.
These are first sown and then transplanted, as are all vegetables belongiog to the Cruciferous family.

The stakes and roofings as substitutes for trellis work which supported the difterent kinds of gourds and melons are cleared away and the Leeks, which they shaded, begin to lose their freshneas and beauty.

The fields of rice that formed such an object of solicitude in the preceding months, are now comparatively quiet, rejoicing in one conthaity of the richest green.
still the farmers are not asleep, men and women are seen in the fields rarching for weeds that may spring up unawares.
The hooing of sweet potatoes and the training of their stems form a part of the husbandman's business now.
To water the roots and stir the euth has an obvious tendency to nune the tabers, while the care bestowed on the tops is with a reference to their usefulness in affording provasder for pigs.
The Bleocharis tuberosa blossoms in them month. It jointed rushlike them inakes it appear unique amongst phatations of rice.
White awned and red awned rice in the ther, these are planted later than comint to the of rice, and are later in combat to the sickle. They are called "sook" by the natives; the latter crop just beginning to open. This is whed "wang ching me;" or, otherWhe, "tew," the Fochow pronunJob's tea the Mandarin "trou." lob's tears, grown here for the sake ot the Involucres, or enamelledsheath Notes very charminge some of the rice once in fryit charmingly, as it is at are softy turne flower. The leaves are softly turned and luxuriant; the menceral forms. These bodding their then's own torning These beads of nahusis own tarning are in yequest for
thatits.

FRUITS AND FLOWERS IN SEASON.

The Longans are gathered in this month and are met with in profusion every where.
The zeal and joy that accompanied the plucking of this fruit remind one of greater things; the Autumn at home; and, the Grape gatherings in the East. A fortnight, or three weeks before they are plucked, lodges are built to guard them from thieves, props are placed under their boughs and their trunks surrounded with a ruff of thorns.
The Guavas are gathered generally before they are ripe, for the sake of economy. When taken from the tree with a nice attention to their color and form, they prove very acceptable, but if bought from the stall they are little esteemed.

Various kinds of Toad-stools are gathered among the Fir-trees by the peasantry, their color is yellow, with a mixture of red.
They are dried before they are fit to eat.

Leeks are very abundant. The piktsae is fit for the table, as is also the sweet potatoe.

The po-tsy, or Spinach appears.
The Brinjal is grown here, but is not remarkable for size or goodness.

ANIMAL KINGDOM.

Magpies monlt in the early part of this month and are consequently seen moping in silence, or uttering a plaint or two as if heart-sick. In about afortnight they overcome their indisposition, gain a new suit of feathers and hold their noisy levees on the sides of the hills with great spirit and fire.

The calls of the Shrike or Butcher bird are heard occasionally.
Soon after Sunrise he indulges the feathered tribes with a song, but he is so shy of letting his powers be known that 1 am not aware any Naturalist, except the writer, ever noticed it.

The white Herons assemble and wheel round as if mustering their numbers for an aery jaunt, though it is not apparent that all leave for Southern regions. The fishing hawks assemble at day-fall and wheel round in 2 kind of social pastime, or a trial of their powers, as they soar to a great elevation. Swallows begin to meditate a migratory journey.
In this month, the Cicadx, seated upon the Fir-trees make the groves and copses resound. As the old ones die, younger ones emerging from their humble condition in holes of the ground, leave their last garments behind and after a few hours climb to the tops of the trees.
Song of the Throstle, "Osheput" of Canton, and "Ching chow" of this place is heard at day-spring. The notes are mellow and heart-cheering. They may be set down in diatonic scale thus.
Song of the Chinese Throstle.

I am told that there is a current of old Spanish Dollars running from Chin. chew or Chean chow at the rate of $1 \frac{1}{2}$ lac per month; some hoards must have been ransacked to supply this stream. Mr. Braine starts for the Pagoda, to join the " Petrel."
The fleet of Junks, from Ningpo and other places on the Coast, begins to diminish, as the Shipmen are wishful to save some of the Monsoon.

Started a fine hare amongst the firtrees.

Yisit the Monastery of Koo-shan seated in a romantic spot.
(20) Pablic examination in the Four Books takes place to day. The Candidates assemble to write essays at night. Other classice on each alternate day till the 29th.
Emperor's birth-day; but little etir about it in vicinity. "Proserpine" Steamer arrives.
"Proserpine" leaven to take her station at the mouth of the Min, to await the arrival of the "Castor" with His Excellency the Chief Superintendent.

Day of month.	Therm.		Barom.	Hygrometric state.	Wind.	SKY, CLOUDS, MISTS, RAIN AND ELECTRIC PHENOMENA.
	Min.	Max				
1	-	77	29.35	Dry	N. East	Cloudy with light showers.
$\underset{3}{2}$	\} Not	at	home.	-•	.	Weather fine; wind strong, which at times brought clouds from the North.
4	-	84	-. 83	-•	-	Day îne.
$\begin{aligned} & 3 \\ & 6 \\ & 7 \end{aligned}$	$\}$ Not	at	home.	..	-	Weather bright and fair at the entrance of the River, where the Proserpine is lying.
8	-	86	-. 60	-	-	Sky overcast doring the day.
9	Not	at	home.	-	-	
10	-	80	$-.93$	Very dry	-	City enveloped in mist all day.
11	Not	taken		.	.	
12	Not	taken.		-	-	Sky overcast at various times during the day.
13	Not	taken.		Dry	.	
14	-	81	-. 87	-	-	Day cloudy.
13	-	81	-.87	-	-	Ditto.
16	-	81	$-.83$	-	-•	Ditto.
17	-	80	-. 83	Very dry	.	The sky clearer today. The surrounding hills seem to cause that prevalence of haze so common bere in this month.
18	-	80	-. 81	-	.	Sky during the day, alternating between fine and cloudy.
19	-	84	-.79	\cdots	\cdots	Day fine.
20	-	83	-. 83	.	$\begin{aligned} & \text { Noon, NE. } \\ & \text { and E. } \end{aligned}$	Dark clouds with their edges colored red, usher in the sunrise. Sky clear and cool throughout the tef. Strong southerly breezes at noon.
21	-	78	-. 83	-	N. East	
22	$\begin{aligned} & \text { (Sun } \\ & \% 1 \end{aligned}$	$\begin{aligned} & \text { (rise) } \\ & i 0 \end{aligned}$	-. 83	-	-	4. AM. Showery. The weather feels cold to sense. Cloudy.
23	-	83	$-.82$	-•	-	Dew on the grass. Day fine, clear, and warm.
24	-	89	-. 84	-	-•	Dew on the grans at sunrise. Midday fine. PM. Sky overcast with a cloud that reached to the grow Night clear and cold. Wind rising: the couching vapour merely the forerunner of a colder shard breeze.
25	64	72	-.87	-	\cdots	Day cloudy; evening sombre, followed by a cloudy night.
86	-	72	-. 87	Less dry	-	Day fine; cloady at night; about midnight, rain.
${ }^{97}$	70	71	-.87	-	\cdots	Air less chilly in the morning: night very mild, fine.
28	-	82	-84	-•	-	Day fine mist over the City. Evening, clouds threatened rain, but it was only the precurser
99	-	33	-83	-	-•	A fog in the morning. Fiue and sultry, mid-day. Showery at day-fall.
30	72	2	-36	-	-	Day cold and overcast. Mist heavy and cheeriess over the city.
91	72	80			S. East	A sense of warmeth in the atmosphere and the previous night was mild. Noon and afternooa cheerly.

for October, 1844.

XII. Notes made in the Garden of the Horticultural Society upon the rate of growth by plants at different periods of the day.

 Second Series. - By John Lindley, Ph. D., F. R. S.I
I_{N} a previous part of this Volume has been given a detailed account of certain observations upon the growth of plants, and of the inferences which appeared to be deducible from them. Those observations were however made upon plants placed in the atmosphere of a stove, and therefore it appeared desirable to institute a similar enquiry into the rate of growth in the open air, under the ordinary conditions to which vegetation is exposed in this climate.
For this purpose one specimen of each of the following species, viz., the Hop, Vine, Sweet Willow, Scarlet Running Kidney Bean, Fig, Jerusalem Artichoke, and Gourd, was planted in front of a vinery in a sheltered situation favourable for their quiet growth, and their increase in length was noted three times daily. The periods for the observations were fixed at 4 o'clock in the morning so as to ascertain the growth during darkness, at noon so as to obtain the growth in the cooler part of the day, and at 8 P. M., up to which period the plants would have been exposed to the influence of the hottest and driest part of the 24 hours.

The duty of watching the experiments was intrusted to Mr. Joseph Holmes who examined the plants most carefully for two months, during which time 1011 observations were collected. It has not however appeared necessary to print at length the August observations, because they convey no information beyond what is furnished by the July experiments, as detailed in the following tables.

Observations on the growth of the Hop，taken at 4 A．M．（Night）， 12 Noon （Morning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{\dot{\infty}}$	号		Remarks on the Weather at 4 A．M．	部		Remarls on the Weather at 12 Noon．	涼		Remarks on the Weather at $8 \mathrm{P} . \mathrm{M}$ ．
Jul.	In．			In．	．．		In． .95		Overcast
3	1.33	$56 \frac{1}{4}$	Cloudy	． 95	59	Cloudy，little wind	． 26	60	Ditto，calm
4	． 49	$56 \frac{1}{2}$	Rainy	． 91	61	Ditto，brisk wind	1.13	$63 \frac{1}{2}$	Cloudy
5	． 63	$59 \frac{1}{2}$	Overcast	． 85	62 $\frac{1}{2}$	Ditto，little wind	3.32	62	Ditto
6	． 95	55	Cloudy	． 55	60	Ditto，calm	1.04	$63 \frac{1}{3}$	Ditto，mild
7	． 78	59	Overcast，mild	． 90	621	Overcast，calm	3.94	63	Rain
8	． 70	57	Ditto	． 95	$62 \frac{1}{2}$	Clear at intervals	2.08	$66 \frac{1}{2}$	Clear，fine，calm
9	1.35	61娄	Cloudy，calm	3.08	65	Very fine sun，little wind	2.52	$67 \frac{1}{2}$	Ditto，ditto，mild
10	． 63	$60 \frac{1}{2}$	Clear，fine，（dew）	． 70	58	Ditto and light clouds	2.18	67 ？	Cloudy，mild
11	3.15	63	Clear，mild	1.55	66	Ditto	1.85	$67 \frac{1}{2}$	Ditto
12	． 92	601	Cloudy	． 94	60	Showery，brisk wind	2.80	$60 \frac{1}{3}$	Cloudy，showery
13	1.35	57	Ditto	1.00	$60 \frac{1}{2}$	Ditto	1.37	62 $\frac{1}{3}$	Rain
14	1.20	60	Clear，brisk wind	1.15	$61 \frac{1}{2}$	Clear，brisk wind	3.30	61	Clear and fine
15	1.28	57	Clear，very fine	1.44	$62 \frac{1}{2}$	Clear and dry，little wind	1.83	65	Ditto
16	． 44	55	Slightly overcast	． 83	56	Overcast，little wind	1.78	61	Ditto
17	． 77	54	Clear	1.64	60\％	Slight haze，little wind	1.43	65	Cloudy，fine
18	． 59	56	Cloudy，calm	204	62	Very fine，little wind	2.97	62	Clear
19	． 80	52	Ditto	1.22	$65 \frac{1}{2}$	Fine，thunder shower	1.14	60	Cloudy，mild
20	． 63	521	Clear	． 78	59	Clear and hot，little wind	1.80	64 $\frac{1}{3}$	Clear，calm
21	． 73	54，	Ditto，calm	． 66	612	Ditto	1.96	641 $\frac{1}{3}$	Ditto
22	2.80	55	Ditto	2.26	66	Bright sun，sultry	2.21	72	Bright sun，sultry
23	2.75	$62 \frac{1}{2}$	Ditto	2.97	$70 \frac{1}{2}$	Ditto	2.70	$75 \frac{1}{2}$	Clear，fine，sultry
24	2.14	$65 \frac{1}{2}$	Very fine，mild	1.51	711	Hot，sultry，slight haze	2.85	$74 \frac{1}{2}$	Clear，calm
25	． 98	62	Foggy，mild	1.68	69	Ditto	2.52	$76 \frac{1}{2}$	Cloudy，mild
26	3.63	$66 \frac{1}{2}$	Cloudy，calm	1.55	66娄	Cloudy，little wind	1.23	66	Clear，fine
27	2.40	59 咅	Cloudy	1.30	$65 \frac{1}{2}$	Clear，very fine，dry	3.55	671 ${ }^{\frac{1}{2}}$	Ditto
28	3.30	$59 \frac{1}{2}$	Clear，calm	3.38	$67 \frac{1}{2}$	Firse，little wind	1.36	67	Cloudy，mild
29	2.85	$58 \frac{1}{2}$	Cloudy，slight rain	1.39	63	Hot and dry，brisk wind	1.72	63	Clear，fine
30	1.75	56	Cloudy	． 88	581 $\frac{1}{2}$	Overcast，brisk wind	1.07	61	Showery，cold
31	． 70	571	Cloudy，cold wind	1.06	$61 \frac{1}{3}$	Cloudy，brisk wind	1.55	$60 \frac{1}{2}$	Fine，brisk wind
	42.02 Total．	54.81 Average		$\begin{aligned} & 40.12 \\ & \text { Total } \end{aligned}$	62.62 Average		60.41 Total.	$\begin{gathered} 65.17 \\ \text { Average } \end{gathered}$	

Greatest night growth on the 26th．
Least

Greatest morning growth on the 28th．
Least

Greatest afternoon growth on the 7th． Least

Average night growth	1.44
morning growth	1.38
	afternoon growth

Observations on the growth of the Vine，＊taken at 4 A．M．（Night）， 12 Noon（Morning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{\underset{\sim}{\infty}}$			Remarks on the Weather at A．M．	咅		Remarks on the Weather at 12 Noon．	药		Remarks on the Weather at 8．P．M．
Jul	In．			In．			$\begin{aligned} & \text { In, } \\ & .13 \end{aligned}$		Overcast
3	． 09	$56 \frac{1}{2}$	Cloudy	． 05	59	Cloudy，little wind	． 06	60	Ditto，calm
4	． 04	561	Rainy	． 09	61	Ditto，brisk wind	． 03	63，${ }^{\frac{1}{2}}$	Cloudy
5	． 06	$59 \frac{1}{2}$	Overcast	． 06	621	Ditto，little wind	． 04	62	Ditto
6	． 07	55	Cloudy	09	60	Ditto，calm	． 04	$63 \frac{1}{3}$	Ditto，mild
7	． 09	59	Overcast，mild	． 07	$62 \frac{1}{2}$	Overcast，calm	． 08	63	Rain
8	． 08	57	Ditto	． 05	$62 \frac{1}{3}$	Clear at intervals	． 08	$66 \frac{1}{2}$	Clear，fine，calm
9	． 06	61委	Cloudy，calm	． 07	65	Very fine sun，little wind	． 08	$67 \frac{1}{2}$	Ditto，ditto，mild
10	． 09	$60 \frac{1}{3}$	Clear，fine，（dew）	． 05	58	Ditto and light clouds	． 03	$67 \frac{1}{2}$	Cloudy，mild
11	． 08	63	Clear，mild	． 06	66	Ditto	． 07	$67 \frac{1}{}$	Ditto
12	． 10	$60 \frac{1}{2}$	Cloudy	． 09	60	Showery，brisk wind	． 08	$60 \frac{1}{2}$	Cloudy，showery
13	． 10	57	Ditto	． 08	$60 \frac{1}{2}$	Ditto	． 05	621	Rain
14	． 11	60	Clear，brisk wind	． 08	612	Clear，brisk wind	． 04	61	Clear and fine
15	． 12	57	Clear，very fine	． 04	$62 \frac{1}{2}$	Clear and dry，little wind	． 03	65	Ditto
16	． 08	55	Slightly overcast	． 07	56	Overcast，little wind	． 06	61	Ditto
17	． 07	54	Clear	． 04	60를	Slight haze，little wind	． 03	65	Cloudy，fine
18	． 02	56	Cloudy，calm	． 04	62	Very fine，little wind	． 04	62	Clear
19	． 04	52	Ditto	． 04	$65 \frac{1}{2}$	Fine，thunder shower	． 02	60	Cloudy，mild
20	． 09	523	Clear	． 04	59	Clear and hot，little wind	． 03	$64 \frac{1}{2}$	Clear，calm
21	． 02	$54 \frac{1}{3}$	Ditto，calm	． 03	$61 \frac{1}{2}$	Ditto	． 04	64난	Ditto
22	． 04	55	Ditto	． 09	66	Bright sun，sultry	． 07	72	Bright sun，sultry
23	． 07	621 $\frac{1}{2}$	Ditto	． 09	7012	Ditto	． 10	$75 \frac{1}{2}$	Clear，fine，sultry
24	． 08	651	Very fine，mild	． 07	$71 \frac{1}{2}$	Hot，sultry，slight haze	． 11	74爯	Clear，calm
25	． 13	62	Foggy，mild	． 11	69	Ditto ．	． 16	$76 \frac{1}{3}$	Cloudy，mild
26	． 16	$66 \frac{1}{2}$	Cloudy，calm	． 18	$66 \frac{1}{2}$	Cloudy，little wind	． 10	66	Clear，fine
27	． 11	$59 \frac{1}{2}$	Cloudy	． 07	$65 \frac{1}{2}$	Clear，very fine，dry	． 20	67	Ditto
23	． 13	$59 \frac{1}{2}$	Clear，calm	． 08	$67 \frac{1}{2}$	Fine，little wind	． 20	67	Cloudy，mild
29	． 11	581	Cloudy，slight rain	． 11	$63{ }^{2}$	Hot and dry，brisk wind	． 09	63	Clear，fine
30	． 08	56	Cloudy	． 05	$58 \frac{1}{2}$	Overcast，brisk wind	． 04	61	Showery，cold
31	． 02	571	Cloudy，cold wind	． 05	$61 \frac{1}{2}$	Cloudy，brisk wind	． 03	601	Fine，brisk wind
	234 Total	54.81 Average．		$\begin{aligned} & 2.04 \\ & \text { Total } \end{aligned}$	$\begin{gathered} 62.62 \\ \text { Average } \end{gathered}$		$\begin{aligned} & 2.16 \\ & \text { Total. } \end{aligned}$	65.17 Average．	

Greatest night growth on the 26 th．Greatest morning growth on the 26 th．Greatest afternoon growth on the $27 t h, 23$ th Least 18 th， 21 st and 31 st．Least 21 st．Least

19th．

Average night growth	.08
morning growth	.07
afternoon growth	.07

[^12]
Observations on the growth of the Sweet Willow，taken at 4 A．M．（Night）， 12 Noon（Morning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{ \pm}$	蔀		Remarks on the Weather at A．A．M	营		Remarks on the Weather at 12 Noon．	䂞		Remarks on the Weather at $8 \mathrm{P}, \mathrm{M}$ ．
Jul.	In．			In．	．		In．		Overcast
3	． 11	$56 \frac{1}{2}$	Cloudy	． 16	59	Cloudy，little wind	． 20	60	Ditto，calm
4	． 17	$56 \frac{1}{2}$	Rainy	． 24	61	Ditto，brisk wind	． 07	631 ${ }^{\frac{1}{3}}$	Cloudy
5	． 15	$59 \frac{1}{2}$	Overcast	． 10	621	Ditto，little wind	． 16	62	Ditto
6	． 14	55	Cloudy	． 14	60	Ditto，calm	． 15	$63 \frac{1}{3}$	Ditto，mild
7	.13	59	Overcast，mild	， 16	623	Overcast，calm	． 19	63	Rain
8	． 14	57	Ditta	． 24	$62 \frac{1}{2}$	Clear at intervals	． 24	$66 \frac{1}{2}$	Clear，fine，calm
9	． 13	612	Cloudy，calm	． 17	65	Very fine sun，little wind	． 25	675	Ditto，ditto，mild
10	． 16	601	Clear，fine，（dew）	． 21	58	Ditto and light clouds	． 17	$67 \frac{1}{2}$	Cloudy，mild
11	． 16	63	Clear，mild	，28	16	Ditto	． 41	$67 \frac{1}{2}$	Ditto
12	． 17	60놀	Cloudy	． 12	60	Showery，brisk wind	． 17	$60 \frac{1}{3}$	Cloudy，showery
13	． 12	57	Ditto	． 33	$60 \frac{1}{2}$	Ditto	． 15	62 ${ }^{\frac{1}{2}}$	Rain
14	． 13	60	Clear，brisk wind	． 13	$61 \frac{1}{3}$	Clear，brisk wind	． 11	61	Clear and fine
15	． 11	57	Clear，very fine	． 12	$62 \frac{1}{2}$	Clear and dry，little wind	． 35	65	Ditto
16	． 18	55	Slightly overcast	． 18	56	Overcast，little wind	． 14	61	Ditto
17	． 13	54	Clear	． 12	601	Slight haze，little wind	． 12	65	Cloudy，fine
18	． 10	56	Cloudy，calm	． 11	62	Very fine，little wind	． 10	62	Clear
19	． 10	52	Ditto	． 22	$65 \frac{1}{3}$	Fine，thunder shower	． 11	60	Cloudy，mild
20	． 09	$52 \frac{1}{2}$	Clear	． 12	59	Clear and hot，little wind	． 10	64 $\frac{1}{2}$	Clear，calm
21	． 13	$54 \frac{1}{2}$	Ditto，calm	． 13	$61 \frac{1}{2}$	Ditto	． 08	$64 \frac{1}{2}$	Ditto
22	． 07	55	Ditto	． 14	66	Bright sun，sultry	． 23	72	Bright sun，sultry
23	． 12	62.	Ditto	． 21	$70 \frac{1}{2}$	Ditto	． 26	75 ${ }^{\frac{1}{2}}$	Clear，fine，sultry
24	． 23	$65 \frac{1}{2}$	Very fine，mild	． 10	$71 \frac{1}{2}$	Hot，sultry，slight haze	． 10	74 $\frac{1}{2}$	Clear，calm
25	． 15	62	Foggy，mild	． 13	69	Ditto	． 10	$76 \frac{1}{3}$	Cloudy，mild
26	． 09	661	Cloudy，calm	． 13	$66 \frac{1}{2}$	Cloudy，little wind	． 13	66	Clear，fine
27	． 10	597	Cloudy	． 10	65.	Clear，very fine，dry	． 13	$62 \frac{1}{3}$	Ditto
28	． 15	593	Clear，calm	． 24	67.	Fine，little wind	． 26	67	Cloudy，mild
99	． 14	$58 \frac{1}{2}$	Cloudy，slight rain	． 15	63	Hot and dry，brisk wind	． 21	63	Clear，fine
30	． 10	56	Cloudy	． 20	581	Overcast，brisk wind	． 17	61	Showery，cold
31	． 08	571	Cloudy，cold wind	． 13	$61 \frac{1}{2}$	Cloudy，brisk wind	.10	$60 \frac{1}{3}$	Fine，brisk wind
	3.77 Total	54.81 Average		4.81 Total	62.62 Average．		5.13 Total	$\begin{gathered} 65.17 \\ \text { Average. } \end{gathered}$	

Greatest night growth on the 24th．
Least

Greatest morning growth on the 13th． Least ．．5th，24th and 27th．

Greatest afternoon growth on the 11 th Least
\square

Average night growth	.13
morning growth	.16
afternoon growth	.17

Observations on the growth of the Scarlet Runner，taken at 4 A．M．（Night）， 12 Noon（Morning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{\dot{W}}$	咅		Remarks on the Weather at 4 A ．M．	总		Remariss on the Weather at 12 Noon．	兌		Remarks on the Weather at 8 P．M．
Jul.	In．	－		In．			In． .34		Overcast
3	． 29	$56 \frac{1}{2}$	Cloudy	． 36	59	Cloudy，little wind	． 52	60	Ditto，calm
4	． 72	$56 \frac{1}{2}$	Rainy	1.80	61	Ditto，brisk wind	1.72	$63 \frac{1}{2}$	Cloudy
5	． 66	592	Overcast	3.10	$62 \frac{1}{2}$	Ditto，little wind	． 22	62	Ditto
6	． 51	55	Cloudy	． 85	60	Ditto，calm	． 60	$63 \frac{1}{2}$	Ditto，mild
7	． 40	59	Overcast，mild	． 28	$62 \frac{1}{2}$	Overcast，calm	3.15	63	Rain
8	． 72	57	Ditto	． 47	$62 \frac{1}{2}$	Clear at intervals	3.37	$66 \frac{1}{2}$	Clear，fine，calm
9	． 86	$61 \frac{1}{2}$	Cloudy，calm	2.91	65	Very fine sun，little wind	1.27	$67 \frac{1}{2}$	Ditto，ditto，mild
10	． 65	$60 \frac{1}{2}$	Clear，fine，（dew）	． 71	58	Ditto and light clouds	1.63	$67 \frac{1}{2}$	Cloudy，mild
11	2.95	63	Clear，mild	． 80	66	Ditto	1.55	$67 \frac{1}{3}$	Ditto
12	1.22	$60 \frac{1}{3}$	Cloudy	． 55	60	Showery，brisk wind	1.10	$60 \frac{1}{2}$	Cloudy，showery
13	． 75	57	Ditto	． 92	60롤	Ditto	． 48	$62 \frac{1}{2}$	Rain
14	． 56	60	Clear，brisk wind	2.43	$61 \frac{1}{2}$	Clear，brisk wind	． 75	61	Clear and fine
15	． 98	57	Clear，very fine	． 74	62 $\frac{1}{2}$	Clear and dry，little wind	． 82	65	Ditto
16	． 62	55	Slightly overcast	2.91	56	Overcast，little wind	． 67	61	Ditto
17	． 58	54	Clear	2.69	601 $\frac{1}{2}$	Slight haze，little wind	． 83	65	Cloudy，fine
18	． 70	56	Cloudy，calm	3.04	62	Very fine，little wind	． 74	62	Clear
19	． 68	52	Ditto	2.54	$65 \frac{1}{2}$	Fine，thunder shower	． 85	60	Cloudy，mild
20	． 52	521	Clear	3.04	59	Clear and hot，little wind	． 95	$64 \frac{1}{2}$	Clear，calm
21	． 32	54 $\frac{1}{2}$	Ditto，calm	． 65	$61 \frac{1}{2}$	Ditto	3.54	$64 \frac{1}{2}$	Ditto
22	． 74	55	Ditto	2.98	66	Bright sun，sultry	1.97	72	Bright sun，sultry
23	． 64	621	Ditto	2.91	$70 \frac{1}{2}$	Ditto	1.42	$75 \frac{1}{2}$	Clear，fine，sultry
24	． 75	$65 \frac{1}{2}$	Very fine，mild	2.75	$71 \frac{1}{2}$	Hot，sultry，slight haze	2.10	$74 \frac{1}{2}$	Clear，calm
25	． 65	62	Foggy，mild	3.40	69	Ditto	1.77	$76 \frac{1}{3}$	Cloudy，mild
26	． 75	$66 \frac{1}{2}$	Cloudy，calm	3.00	$66 \frac{1}{2}$	Cloudy，little wind	2.14	66	Clear，fine
27	1.12	$59 \frac{1}{3}$	Cloudy	． 85	$65 \frac{1}{2}$	Clear，vers fine，dry	3.93	673	Ditto
28	． 74	$59 \frac{1}{2}$	Clear，calm	． 67	$67 \frac{1}{2}$	Fine，little wind	3.59	67	Cloudy，mild
29	1.68	$58 \frac{1}{2}$	Cloudy，slight rain	． 87	$63{ }^{2}$	Hot and dry，brisk wind	3.87	63	Clear，fine
30	． 70	56	Cloudy	． 97	$58 \frac{1}{2}$	Overcast，brisk wind	． 96	61	Showery，cold
31	． 65	571	Cloudy，cold wind	． 92	61咅	Cloudy，brisk wind	． 66	601	Fine，brisk wind
	23.11 Total	54.81 verage		50.21 Total．	62.62 verage.		47.51 Total.	65.17 verage	

	Greatest morning growth on the 25th．	G
Lenst ．．．3rd．	Least ．．．．7th．	Leas

Average night growth	.79
	1.73
	afterning growth

Observations on the growth of the Fig，＊taken at 4 A．M．（Night）， 12 Noon， （Morning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{\dot{x}}$	竜		Remarks on the Weathe at 4 A．M．	言		Remarks on the Weather at 12 Noon．	躴		Remarks on the Weather at 8 P．M．
$\begin{gathered} \text { Jul. } \\ 2 \end{gathered}$	In．			In．			$\begin{gathered} \text { In. } \\ .25 \end{gathered}$		Overcast
3	． 04	$\ddot{56}$	Cloudy	． 37	59	Cloudy，little wind	． 35	60	Ditto，calm
	． 03	$56 \frac{1}{2}$	Rainy	． 31	61	Ditto，brisk wind	． 08	631	Cloudy
6	． 16	591 55	Overcast Cloudy	.31 .27	${ }_{60}^{62} \frac{1}{2}$	Ditto，little wind Ditto，calm	.07 .14	${ }_{63}^{62}$	${ }_{\text {Ditto }}$
7	． 09	59	Overcast，mild	． 07	62 살	Overcast，calm	． 06	63	Rain
8	． 08	57	Ditto	． 08	$62 \frac{1}{2}$	Clear at intervals	． 12	$66 \frac{1}{2}$	Clear，fine，calm
9	． 05	$61 \frac{1}{2}$	Cloudy，calm	． 06	65	Very fine sun，little wind	． 02	$67 \frac{1}{2}$	Ditto，ditto，mild
10		$60 \frac{1}{2}$	Clear，fine，（dew）	． 18	58	Ditto and light clouds	． 05	67	Cloudy，mild
11	． 10	63	Clear，mild	． 10	66	Ditto	． 06	67	Ditto Cloudy，showery
12	． 03	$60 \frac{1}{2}$	Cloudy	． 16	60	Showery，brisk wind	． 05	$60 \pm$	Cloudy，showery
13	． 04	57 60	Ditto ${ }_{\text {Clear，brisk }}$	． 13	601	Ditto Clear ，brisk wind	． 09	${ }_{61}^{62 \frac{1}{5}}$	$\stackrel{\text { Rain }}{\text { Clear and fine }}$
15	． 13	60 57	Clear，very fine	． 05	612	Clear and dry，little wind	． 05	65	Ditto
16	． 08	55	Slightly overcast	． 04	56	Overcast，little wind	． 17	61	Ditto
17	． 09	54	Clear	． 08	$60 \frac{1}{2}$	Slight haze，little wind	． 03	65	Cloudy，fine
18	． 03	56	Cloudy，calm	． 03	62	Very fine，little wind	． 02	62	Clear
19		52	Ditto	． 02	651	Fine，thunder showers	． 03	60	Cloudy，mild
20	\because	521	Clear	． 03	59	Clear and hot，little wind	． 03	644	${ }_{\text {Clear，}}$ Calm
21	． 01	$54 \frac{1}{2}$	Ditto，calm	． 03	$61 \frac{1}{2}$	Ditto	． 02	64t	
22	． 06	55	Ditto	． 02	66	Bright sun，sultry		72	Bright sun，sultry
23 24	.09 .16	${ }_{651}^{62}$	Ditto ${ }^{\text {Very fine，mild }}$	． 13	$770 \frac{1}{8}$	Ditto Hot sultry，slight haze	． 04	751 $74{ }^{1}$	Clear，calm
25	． 06	62	Foggy mild	． 10	69	Hitto sulty，slight haze	． 05	$76 \frac{1}{3}$	Cloudy，mild
26	． 04	$66 \frac{1}{2}$	Cloudy，calm	． 16	$66 \frac{1}{2}$	Cloudy，little wind	． 02	66	Clear，fine
27	． 04	592	Cloudy	． 05	65.	Clear，very fine，dry	． 04	${ }_{67} 67$	
28	． 04	$59 \frac{1}{2}$	Clear，calm	． 07	${ }_{67} 67$	Fine，little wind	． 06	67 63	Cloudy，mild Clear，fine
$\begin{aligned} & 29 \\ & 30 \end{aligned}$	． 03	${ }_{56}^{58 \frac{1}{2}}$	Cloudy，slight rain Cloudy	． 12	63 581	Hot，and dry，brisk wind Overcast，brisk wind	． 05	63 61	Showery, cold
31	．	571	Cloudy，cold wind	． 06	$61 \frac{1}{3}$	Cloudy，brisk wind	． 05	$60 \frac{1}{2}$	Fine brisk wind
	$\begin{aligned} & 1.63 \\ & \text { Total. } \end{aligned}$	54.81 Average		$\begin{array}{\|l\|l} 3.16 \\ \text { Total. } \end{array}$	62.62. Average		$\begin{array}{\|l\|l\|} \hline 2.12 \\ \text { Total } \end{array}$	$\begin{gathered} 65.17 \\ \text { Average } \end{gathered}$	

Least ．．．．．．24th

Average night growth	.05
morning growth	.10
	afternoon growth

＊The Fig having been recently planted，and the Season being very dry，this Experiment is not so conclusive as it othervise would have proved．

Observations on the growth of the Jerusalem Artichoke taken at 4 A．M． （Night）， 12 Noon（Morning），and 8 P．M．（Afternoon），during July 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\sim}{\underset{\sim}{x}}$			Remarks on the Weather at 4 A ．M．	范		Remarks on the Weather at 12 Noon．	莒		Remarks on the Weather at 8 P．M，
Jul．	In			In．			In．		
2							． 37		Overcast
3	． 26	$56 \frac{1}{3}$	Cloudy	． 69	59	Cloudy，little wind	． 38	60	Ditto，calm
4	． 36	$56 \frac{1}{2}$	Rainy	． 92	61	Ditto，brisk wind	． 48	631	Cloudy
5	． 58	59를	Overcast	． 63	$62 \frac{1}{3}$	Ditto，little wind	． 41	62	Ditto
6	． 47	55	Cloudy	． 75	60	Ditto，calm	． 45	$63 \frac{1}{2}$	Ditto，mild
7	． 62	59	Overcast，mild	． 38	62 $\frac{1}{3}$	Overcast，calm	． 78	$63{ }^{2}$	Rain
8	． 36	57	Ditto	． 40	$62 \frac{1}{3}$	Clear at intervals	． 56	$66 \frac{1}{2}$	Clear，fine，calm
9	． 51	61 委	Cloudy，calm	． 40	65	Very fine sun，little wind	． 42	$67 \frac{1}{2}$	Ditto，Ditto，mild
10	． 27	$60 \frac{1}{2}$	Clear，fine（dew）	． 67	58	Ditto and light clouds	． 31	$67 \frac{1}{3}$	Cloudy，mild
11	． 29	63	Clear，mild	． 37	66	Ditto	． 36	$67 \frac{1}{3}$	Ditto
12	． 18	$60 \frac{1}{2}$	Cloudy	． 34	60	Showery，brisk wind	． 29	$60 \frac{1}{2}$	Cloudy，showery
13	． 23	57	Ditto	． 24	$60 \frac{1}{2}$	Ditto	． 30	$62 \frac{1}{2}$	Rain
14	． 33	60	Clear，brisk wind	． 41	$61 \frac{1}{3}$	Clear，brisk wind	． 43	61	Clear and fine
16	． 21	57	Clear，very fine	． 14	$62 \frac{1}{2}$	Clear and dry，little wind	． 10	65	Ditto
17	． 12	55	Slightly overcast	． 40	56	Overcast，little wind	． 16	61	Ditto fine
18	.11	56	Cloardy，calm	． 26	$60{ }^{2}$	Slight haze，little wind	． 19	65	Cloudy，fine
19	． 07	52	Ditto	． 19	62	Very fine，little wind Fine thunder shower	． 19	62	Cloudy，mild
20	． 10	521	Clear	． 21	59	Clear and hot，little wind	． 07	64 ${ }^{1}$	Clear，calm
21	． 05	$54 \frac{1}{2}$	Ditto，calm	． 15	$61 \frac{1}{2}$	Ditto	.36	$64 \frac{1}{2}$	Ditto
22	． 11	55	Ditto	． 40	66	Bright sun，sultry	． 19	72	Bright sun，sultry
23	． 25	$62 \frac{1}{2}$	Ditto	． 31	$70 \frac{1}{2}$	Ditto	． 13	753	Clear，fine，sutlry
24	． 14	$65 \frac{1}{2}$	Very fine，mild	． 36	$71 \frac{1}{3}$	Hot，sultry，slight haze	． 37	742	Clear，calm
25	． 16	62	Foggy，mild	． 49	69	Ditto	． 44	76	Cloudy，mild
26 27	.55	$66 \frac{1}{2}$	Cloudy，calm	1.06	$66 \frac{1}{2}$	Cloudy，little wind	． 34	66	Clear，fine
27 28	． 29	593	Cloudy	． 78	$65 \frac{1}{2}$	Clear，very fine，dry	． 33	671	Ditto
29	． 54	$59 \frac{1}{2}$	Clear，calm	． 43	$67 \frac{1}{3}$	Fine，little wind	． 76	67	Cloudy，mild
30	． 33	586	Cloudy，slight rain Cloudy	． 41	63	Hot and dry，brisk wind	． 26	63	Clear，fine
31	． 14	${ }_{56} 5$	Cloudy Clouãy，cold wind	． 13	$58 \frac{1}{2}$	Overcast，brisk wind	． 17	61	Showery，cold
		$57 \frac{1}{2}$	Clouay，cold wind	． 18	61雱	Cloudy，brisk wind	． 24	$60 \frac{1}{2}$	Fine，brisk wind
	8.23 Total	54.81 Average		$\begin{array}{\|l\|} 12.27 \\ \text { Total } \end{array}$	62.62 Average		$\begin{array}{r} 9.98 \\ \text { Total } \end{array}$	$\begin{gathered} 65.17 \\ \text { Average. } \end{gathered}$	

Greatest night growth on the 7th．
Least ．．．．．． 21 st．

Greatest morning growth on the 26 th．
Least ．．．．30th．

Greatest afternoon growth on the 7th．
Least 20th

Average night growth	.28
morning growth	.42
afternoon growth	.33

Observations on the growth of the Spanish Gourd，taken at 4 A．M．（Night）， 12 Noon，（Moning），and 8 P．M．（Afternoon），during July， 1844.

NIGHT．				MORNING．			AFTERNOON．		
$\underset{\underset{\sim}{\dot{\infty}}}{\substack{i}}$	号		Remarks on the Weather at $4 \mathrm{~A} . \mathrm{M}$ ．	菩		Remarks on the Weather at 12 Noon．	岩		Remarks on the Weather at $8 \mathrm{P} . \mathrm{M}$ ．
Jul．	In．			In． . .			In． 1.01	．	Overcast
3	．87	561	Cloudy	.45	$\boxed{59}$	Cloudy，little wind	1.21	60	Ditto，calm
4	． 62	$56 \frac{1}{2}$	Rainy	． 92	61	Ditto，brisk wind	． 93	$63 \frac{1}{2}$	Cloudy
5	． 80	$59 \frac{1}{2}$	Overcast	． 69	62䂞	Ditto，little wind	． 90	62	Ditto
6	． 84	55	Cloudy	． 50	60	Ditto，calm	1.15	631	Ditto，mild
7	． 82	59	Overcast，mild	． 69	$62 \frac{1}{2}$	Overcast，calm	． 74	63	Rain
8	． 73	57	Ditto	1.34	$62^{\frac{1}{3}}$	Clear at intervals	2.34	$66 \frac{1}{2}$	Clear，fine，calm
9	1.49	$61 \frac{1}{2}$	Cloudy，calm	1.20	65	Very fine sun，little wind	2.83	$67 \frac{1}{2}$	Ditto，ditto，mild
10	． 77	$60 \frac{1}{3}$	Clear，fine，（dew）	1.18	58	Ditto and light clouds	2.20	$67 \frac{1}{2}$	Cloudy，mild
11	1.91	63	Clear，mild	2.20	66	Ditto	1.52	$67 \frac{1}{2}$	Ditto
12	1.97	$60 \frac{1}{2}$	Cloudy	1.47	60	Showery，brisk wind	1.47	$60 \frac{1}{2}$	Cloudy，showery
13	1.20	57	Ditto	1.55	$60 \frac{1}{2}$	Ditto	1.13	$62 \frac{1}{3}$	Rain
14	1.43	60	Clear，brisk wind	1.09	$61 \frac{1}{4}$	Clear，brisk wind	1.28	61	Clear and fine
15	1.28	57	Clear，very fine	1.11	62 $\frac{1}{2}$	Clear and dry，little wind	1.14	65	Ditto
16	1.22	55	Slightly overcast	． 70	56	Overcast，little wind	1.46	61	Ditto Cloudy，fine
17	． 82	54	Clear	． 39	60를	Slight haze，little wind	1.57	65	Cloudy，fine Clear
18	1.02	56	Cloudy，calm	1.08	62	Very fine，little wind	1.27	62	Clear Cloudy，mild
19	1.30	52	Ditto	． 76	$56 \frac{1}{2}$	Fine，thunder shower	1.06	60	Cloudy，mild Clear，calm
20	.71	$52 \frac{1}{3}$	Clear	.56	59	Clear and hot，little wind	1.38 1.12	$64 \frac{1}{2}$	Clear，calm Ditto
21	.50 .43	$54 \frac{1}{2}$	Ditto，calm Ditto	.75 .89	$61{ }^{6} \frac{1}{3}$	Ditto $\mathrm{Bright} \mathrm{sun}$,	1.12 .82	724	Bright sun，sultry
22	.43 .50	55	Ditto	． 89	66	Bright sun，sultry	． 82	72	Bright sun，sulty
24	${ }_{*}$＊								
	21.23 Total.			$\begin{aligned} & 19.52 \\ & \text { Total. } \end{aligned}$			$\begin{array}{\|l\|} 28.53 \\ \text { Total. } \end{array}$		

Greatest night growth on the 12 th．
Least ．．21st，22nd，23rd．

Greatest morning growth on the 11th．
Least

Greatest afternoon growth on the 9 th． Least

Average night growth	1.01
morning growth	.97
afternoon growth	1.35

[^13]Table shewing the amount of growth of all the foregoing plants during the months of both July and August.

		NIGHT.	MORNING.	AFTERNOON.
Hop	July	42.02 (1.44 av.)	40.12 (1.38 av.)	+60.41 (2.01 av.)
Vine	July August	+ $\underset{.86}{2.34}$ (.08 av.)	$\begin{array}{r} 2.04(.07 \mathrm{av} .) \\ +1.94 \end{array}$	$\begin{aligned} & 2.16 \\ & 1.64 \end{aligned} \text { (.07 av.) }$
Sweet Willow	July August	3.77 2.16	4.81 (.16 av.)	$\begin{aligned} & +5.13 \text { (.17 av.) } \\ & +4.44 \end{aligned}$
Scarlet Runner	July August	$\underset{8.86}{23.11}$ (.79 av.)	$\underset{9.93}{+50.21 ~(1.73 ~ a v .) ~}$	$\begin{array}{r} 47.15 \text { (} 1.57 \text { av.) } \\ +11.32 \end{array}$
Fig	July August	$1.63 \text { (.05 av.) }$	$\begin{aligned} & +3.16(.10 \mathrm{av} .) \\ & +1.50 \end{aligned}$	$\begin{aligned} & 2.12 \\ & 1.07 \end{aligned} \text { (.07 av.) }$
Jerusalem Artichoke	July August	$\begin{aligned} & 8.23 \\ & 4.15 \end{aligned}(.28 \mathrm{av} .)$	$\begin{array}{r} +12.27 \text { (.42av.) } \\ +7.09 \end{array}$	$\begin{aligned} & 9.98 \text { (.33 av.) } \\ & 6.95 \end{aligned}$
Spanish Gourd .	July	21.23 (1.01 av.)	19.52 (.97 av.)	+28.53 (1.35 av.)
	Total	119.07	156.26	180.90

The examination of these tables shews that the same discrepancies as were remarked on the former occasion, when the plants under observation were growing in a hothouse, occur when the plants are exposed to the open air; and prove conclusively that those discrepancies were not owing to the artificial state in which the experimental specimens were placed.

The period of the day at which the greatest growth takes place still proves to be the afternoon, if all the experiments are regarded as but one; for the numbers stand thus: night 119.07 , morning 156.26, afternoon 180.90 ; but when the experiments are separated it then appears that the period of maximum growth varies with the species; in the Hop, Sweet Willow and the Gourd it was the afternoon; in the Fig and Jerusalem Artichoke it was the morning; in the Vine it was the night in July and the morning in August; in the Scarlet Runner the morning in July and the afternoon in August. It is especially worthy of observation that this does not correspond with the observations of 1843, for at that time the Willow, which in 1844 grew upon the whole fastest in the after-
noon, that is to say in the hottest and brightest part of the 24 hours, increased most in the morning which was the coolest and most overcast. So again the Fig grew fastest in 1844 when exposed to the cool of the morning, and uninterrupted light ; but in 1843 its maximum growth took place, between 6 in the afternoon and 12 at night, at which time it could have received little or no sunshine.

If we attempt to reconcile these conflicting results we shall find the separate as perplexing as the general observations. For instance, the greatest morning growth of the Jerusalem Artichoke and the Vine took place on the 26 th ; but at the same time the Hop, Sweet Willow and Fig were growing slowly, and even the Scarlet Runner, which resembled the Vine and Artichoke most nearly, had not reached its maximum. The greatest afternoon growth of the Jerusalem Artichoke and the Hop was on the 7th, but at that time the Vine, which had previously corresponded with the former, scarcely exceeded its average rate; the growth of the Scarlet Runner was considerable; the Fig however was below its average, and the Gourd had reached its minimum. So again on the 3rd, when the Hop grew slower than at any other period during the month, the Fig made its maximum growth; on the 27 th while the Vine and Scarlet Runner grew fastest, the Fig grew slowest, and the same thing happened between these plants on the 27 th. Similar instances will be found on an attentive scrutiny of the tables.

If however, there are so many instances of discrepancy, there are also some of correspondence. Thus, the Jerusalem Artichoke and the Vine not only made their maximum morning growth on the 26th, but their minimum night growth on the 21 st; in like manner the Fig and the Sweet Willow which made their maximum night growth on the 24th, also made their minimum morning growth at the same time : an unexpected result amidst so much conflicting matter, when the totally different nature of the plants is taken into account. These however seem to be
mere coincidences, for there is little accordance between the plants at other times; for example, if we compare the Vine and Jerusalem Artichoke as to their rate of growth at other periods near to those when they are alike, we again find nothing but dissimilitude. Thus,

	Vine.			Jerusalem Artichoke.		
	$\begin{gathered} \text { Night. } \\ (.08 \text { av. }) \end{gathered}$	$\begin{aligned} & \text { Morning. } \\ & (.07 a v) \end{aligned}$	$\begin{aligned} & \text { Afternoon. } \\ & (.07 \mathrm{av} .) \end{aligned}$	$\begin{aligned} & \text { Night. } \\ & \left(.28 a v_{0}\right) \end{aligned}$	M orning. (. 42 av.)	Afternoon. (.33 av.)
July 20	. 09	. 04	. 03	. 10	. 21	. 07
21	-. 02	. 03	. 04	-. 05	. 15	. 36
22	. 04	. 09	. 07	. 11	. 40	. 19
25	. 13	. 11	. 16	. 16	. 49	. 44
26	. 16	+. 18	. 10	. 55	+1.06	. 34
27	. 11	. 07	. 20	. 29	. 78	. 33

Here we see that although the Vine and Sweet Willow agreed on two occasions very near about the same time, they otherwise differed in the most singular manner. In the night of July 20th, the Vine was just above its average, but the Jerusalem Artichoke was not half way up to its average; and so on in the other cases.

If we next proceed to examine what the circumstances were which favoured or retarded the growth of the experimental plants, it will be found that there is scarcely more possibility of determining that point than of reconciling their differences with each other.

Plants are always said to grow fastest during a thunder storm, the peculiar electrical state of the atmosphere at that time being regarded peculiarly favourable to growth. Heat also is looked upon as a powerful cause of rapid developement, especially if in combination with moisture ; on the other hand, cold is thought to produce the contrary effect. Finally a brisk wind, as well as bright light, is believed to impede vegetation, while warm overcast weather is favourable to growth. But the actual results hardly confirm those opinions.

On July 19th, there was a thunder storm in the morning, the thermometer being $65 \frac{1}{2}^{\circ}$. The growth of the experimental plants on that occasion was as follows:
Hop $\quad 1.22$ or .16 below the average.
Vine $\quad .04$ or .03 below the average.
Willow $\quad . \quad 22$ or .06 above the average.
Scarlet Runner $\quad 2.54$ or .81 above the average.
Fig
Jerusalem Artichoke .02 or .08 below the average.
Gourd $\quad .76$ or .23 below the average.

So that on this occasion, when the atmosphere was highly charged with electricity, five out of the seven experimental plants grew considerably below the average rate, and of the others one but little exceeded it. It might perhaps be supposed that the influence of the thunder storm would be felt shortly before and after its occurrence, rather than during its continuance; but that was not the fact.

On the occasion in question the growths immediately before and after the thunder storm were as follows:

So that in every instance except one the average rate of growth was diminished, instead of being increased, and the night growth of the Fig was arrested altogether, an event which only happened on six other occasions, and then under circumstances equally unintelligible; on one of those occasions the thermometer was $58 \frac{1_{2}^{\circ}}{}$ with rain; on another $71 \frac{1}{2}^{\circ}$ and hazy.

For the purpose of ascertaining the real effect of both high and low temperatures, the following tables have been drawn out.

Rate of growth under the highest Temperature.

	Night.		Morning.		Afternoon.	
	Temp.	Growth relative to average.	Temp.	Growth relative to average.	Temp.	Growth relative to average.
Hop	$\begin{aligned} & 65 \frac{1}{2} \\ & 66 \frac{1}{2} \end{aligned}$	2.14 or . 70 above 3.63 or 2.49 above	$\begin{aligned} & 71 \frac{1}{2} \\ & 69 \end{aligned}$	1.51 or .12 above 1.68 or .30 above	$\begin{aligned} & 76 \frac{1}{2} \\ & 75 \frac{1}{2} \end{aligned}$	2.52 or .51 above 2.70 or .69 above
Vine	$\begin{aligned} & 65 \frac{1}{2} \\ & 66 \frac{1}{2} \end{aligned}$. 08 or average . 16 or . 8 above	$\begin{aligned} & 71 \frac{1}{2} \\ & 69 \end{aligned}$. 07 or average	$\begin{aligned} & 76 \frac{1}{3} \\ & 75 \frac{1}{2} \end{aligned}$.16 or .09 above .10 or . 63 above
Sweet Willow .	$\begin{aligned} & 65 \frac{1}{2} \\ & 66 \frac{1}{2} \end{aligned}$.23 or . 10 above .09 or .04 below	$\begin{aligned} & 71 \frac{1}{2} \\ & 69 \end{aligned}$.10 or .04 below .13 or .03 below	$\begin{aligned} & 76 \frac{1}{2} \\ & 75 \frac{1}{2} \end{aligned}$.10 or .07 below .26 or .09 above
Scarlet Runner	$\begin{aligned} & 65 \frac{1}{2} \\ & 666 \frac{1}{2} \end{aligned}$.75 or .04 below .75 or .04 below	$\frac{71 \frac{1}{2}}{69}$	2.75 or 1.02 above 3.40 or 1.67 above	$\begin{aligned} & 76 \frac{1}{2} \\ & 75 \frac{1}{2} \end{aligned}$	1.77 or . 20 above 1.42 or . 15 above
Fig	$\begin{aligned} & 65 \frac{1}{2} \\ & 66 \frac{1}{2} \end{aligned}$.16 or . 11 above .04 or .01 below	$\begin{aligned} & 71 \frac{3}{2} \\ & 69 \end{aligned}$.00 or .10 below , 10 or average	$\begin{aligned} & 76 \frac{1}{2} \\ & 75 \frac{1}{2} \end{aligned}$.05 or .02 below .04 or .03 belowe
Jerusalem Artichoke	$\begin{aligned} & 65 \frac{1}{3} \\ & 66 \frac{1}{2} \end{aligned}$.14 or .14 below .55 or .27 above	$\begin{aligned} & 71 \frac{1}{2} \\ & 69 \end{aligned}$.36 or .06 below .49 or .07 above	$\begin{aligned} & 76 \frac{1}{2} \\ & 75 \frac{1}{2} \end{aligned}$.44 or . 11 above .13 or .20 below
Gourd	63 $62 \frac{1}{3}$	1.91 or .90 above .50 or .61 below	$\begin{aligned} & 65 \frac{1}{2} \\ & 66 \end{aligned}$.76 or .21 below .89 or .08 below	72 $67 \frac{1}{2}$	1.82 or .53 below 2.83 or 1.48 above 2.20 or .85 above 1.52 or .17 above

Here we have no intelligible result, but the testimony is just as conflicting as in other cases. It is true that both the Hop and Vine were constantly above their average when exposed to the highest temperature, and at all periods of the day; that both these plants and the Sweet Willow and Fig, acquired their maximum night growth under those circumstances ; that the Gourd also gained its greatest afternoon increase on one occasion of the highest temperature. But, on the other hand, while on one occasion a night temperature of $65 \frac{1^{\circ}}{}{ }^{\circ}$ gave the Willow its maximum growth, another night temperature of $66 \frac{1}{2}^{\circ}$ resulted in .04 below the average; indeed the Willow was below the average in 4 out of 6 instances of highest temperature. Then we find the Scarlet Runner always below the average at night at the very moment when others were acquiring their maximum; and in the case of the Gourd, which was exposed to an afternoon temperature of $67 \frac{1}{2}^{\circ}$ for three successive days, although on the first day it acquired its maximum, yet on the 2nd day afterwards it had fallen so low as $\mathbf{~} \mathbf{1 7}$ above the average, the circumstances remaining to all appearance the same.

Rate of growth under the lowest Temperature.

	Night.		Morning.		Afternoon.	
	Temp.	Growth relative to average.	Temp.	Growth relative to average.	Temp.	Growth relative to average
Hop	$\begin{aligned} & 52 \\ & 52 \frac{1}{2} \end{aligned}$.80 or .64 below .63 or .81 below	$\begin{aligned} & 56 \\ & 58 \end{aligned}$.83 or .55 below .70 or .68 below	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$	1.14 or .37 below 1.55 or .46 below
Vine	$\begin{aligned} & 52 \\ & 524 \end{aligned}$. 04 or .04 below .09 or .01 above	$\begin{aligned} & 56 \\ & 58 \end{aligned}$. 07 or average .05 or .02 below	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$.02 or .05 below .03 or .04 below
Sweet Willow	$\begin{aligned} & 52 \\ & 52 \frac{1}{2} \end{aligned}$.10 or .03 below .09 or .04 below	$\begin{aligned} & 56 \\ & 58 \end{aligned}$.18 or .02 above .21 or .05 above	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$.11 or .06 below .10 or .07 below
Scarlet Runner	$\begin{aligned} & 52 \\ & 52 \frac{1}{2} \end{aligned}$.68 or .09 below .52 or .27 below	$\begin{aligned} & 56 \\ & 58 \end{aligned}$	291 or 1.18 abore .71 or 1.72 below	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$.85 or .72 below .66 or .91 below
Fig	$\begin{aligned} & 52 \\ & 52 \frac{1}{2} \end{aligned}$.0 or .05 below .0 or .05 below	$\begin{aligned} & 56 \\ & 58 \end{aligned}$.04 or .06 below .18 or .08 above	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$.03 or .04 below .05 or .02 below
Jerusalem Artichoke	$\begin{aligned} & 52 \\ & 52 \frac{1}{2} \end{aligned}$.07 or .21 below .10 or .18 below	$\begin{aligned} & 56 \\ & 58 \end{aligned}$.40 or .02 below .67 or .25 above	$\begin{aligned} & 60 \\ & 60 \frac{1}{2} \end{aligned}$.14 or .19 below .24 or .09 below
Gourd	52 52	1.30 or .29 above .71 or .30 below	56 58	.70 or 1.18 or .27 $.21 ~ a b o v e ~$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	1.06 or .29 below 1.46 or .11 abore

In this instance it is evident that in general the lowest temperatures were unfavourable to growth. But it is to be observed that the Vine attained its minimum growth on only one of these occasions(in the afternoon); that the Fig indicated the minimum night growth on two occasions; and, what is most inexplicable, we have 9 cases of the growth being actually above the average in presence of the lowest temperatures : such tender plants as the Fig, the Scarlet Runner and the Gourd (on three occasions out of six) being the species in which this singular anomaly took place.

It does not seem desirable to extend these tables further: for if the observations are analysed for the effects of wind or bright light, there are the same inexplicable discrepancies. Indeed the average of the afternoon growth being so much higher than that of the morning, as was shown in the table at p.255, seems to render an examination into the effect of light superfluous; for it must be admitted that on an average we have more light between noon and $8 \mathrm{P} . \mathrm{M}$., the time of the afternoon observations, than in either of the other periods.

I think no physiologist could have anticipated such results as these. They are in fact so much at variance with what could have been expected, that I should have been inclined to doubt the accuracy of the observations themselves, if I did not know that they were conducted with most scrupulous exactness, and by the method already described in my former report, (see page 103.) This seems as little open to error as any plan that could be contrived, and I have no doubt of its being a true representation of the facts as they occurred.

It therefore seems more than ever certain, that the conclusion to which the former observations pointed was correct, namely, that some agent, distinct from heat, light, or moisture, is in operation, the nature of which we have at present no means of ascertaining.

Move 9-xt
Liienman 98 Reynolds

静,

ADVERTISEMENT.

The Committee appointed by the Horticultural Society to direet the publication of the Papers read before them, take this opportunity to inform the Public, that the grounds of their choice are, and will continue to be, the importance and singularity of the subjects, or the advantageous manner of treating them, without pretending to answer for the certainty of the facts, or the propriety of the reasonings, contained in the several Papers so published ; which must still rest on the credit or judgment of their respective Authors.

It is likewise necessary, on this occasion, to remark, that it is an established rule of this Society, to which they will always adhere, never to give their opinion, as a body, upon any subject, either of Nature or Art, that comes before them. And, therefore, the thanks which are proposed from the Chair, to be given to the Authors of such Papers as are read at the General Meetings, or to the Persons who send fruits, or other vegetable productions, or exhibit Inventions of various kinds to the Society, are to be considered in no other light than as a matter of civility, in return for the respect shewn to the Society by these communications.

$$
A
$$

CONTENTS.

I. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1841. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden. p. 1
II. On the Oxalis Deppei, and its Cultivation as a culinary plant. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.
p. 29
III. Experiments on the Inorganic Constituents of Plants. By Edward Solly, Esq., F.R.S., F.L.S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society. p. 35
IV. The Result of some Experiments in the Garden of the Society on the action of Fertilizing Agents upon the Lawn.
p. 93
V. Notes made in the Garden of the Horticultural Society upon the rate of growth by plants at different periods of the day. By the Vice Secretary.
p. 103
VI. Notes of a Visit to Mexico, Guatemala, and Equatorial America, during the Years 1836 to 1843 in search of Plants and Seeds for the Horticultural Society of London. By Mr. Theodore Hartweg,
p. 115
VII. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1842. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.
p. 163
VIII. On the Exhaustion of Soils. By Edward Solly, Esq., F.R.S., F.L.S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.
p. 189
IX. On Seed-steeping. By Edward Solly, Esq., F.R.S., F.L.S., Hon. Memb. Roy. Agr. Soc. Eng. Experimental Chemist to the Horticultural Society.
p. 197
X. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1843. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.
p. 211
XI. A Calendar, for four months, of the Weather, Natural History and Country Operations, at Foo-chow-foo. By G. Tradescant Lay, Esq., Her Majesty's Acting Consul at that place.
p. 237
XII. Notes made in the Garden of the Horticultural Society upon the rate of growth by Plants at different periods of the Day. Second Series. By John Lindley, Ph. D., F.R.S.
p. 247
XIII. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick, during the year 1844. By Mr. Robert Thompson, Superintendent of the Orchard and Kitchen Garden Department in the Society's Garden.
p. 265 GENERAL INDEX.

DIRECTIONS TO THE BINDER.

Meteorological Diagram for 1841	-	-	to face pager	1	
Habrothamnus fasciculatus	-	-	-	-	124
Achimenes picta	-	-	-	-	161
Meteorological Diagram for 1842	-	-	-	163	
Ditto	Ditto for 1843	-	-	-	211

XIII. Journal of Meteorological Observations made in the Garden of the Horticultural Society at Chiswick during the year 1844. By Mr. Robert Thompson.

This Journal has been kept on the same plan as the preceding.

JANUARY.

JANUARY.

Temperature.					Wind.		Rain.	Remarks.
Day.	Max.	Min,	Sun.	Rad.	Direction.	Force.	In. Pts.	
1133455678891011181314141516171818192031232323242526263728293031	39	27	39	23	W	Little	43	The year commenced with snow and sleet; and the thermo-
	37	14	40	3	NW	Ditto		meter on the night of the 2nd was 18° below freezing. With
	42	32	43	30	W	Ditto	. 24	this exception, however, there were no severe frosts throughout
	51	34	50	32		Ditto	. 05	the month; and the temperature was $2 t^{\circ}$ above the average of
	54 52	44 36	59 60	42	SW	Ditto	.40	nineteen preceding years, the period for which The amount of
	48	25	55	24	NW	Ditto		rain exceeded the usual quantity by nearly $\frac{3}{4}$ of an inch. The
	44	35	55	33	N	Ditto	. 01	morning of the 12th was foggy; heavy and continued rain fell
	40	33	50	29	SE	Ditto	. 08	throughout the day and night. The last day of the month was
	48	30	51	25	N	Ditto	. 01	remarkable for stormy showers, forming a succession of hai,
	46	30	46	28	SW	Ditto		snow, sleet and rain.
	$\stackrel{44}{4}$	35	44	34		Ditto	.76	
	40	35 25	44	32	N	Ditto	. 03	Mean Pressure from the 3 daily observations 29.968 inches.
	40	20	45	23 14		Brisk		
	39	32	51	30	-	Ditto		- Degree of Dryness Ditto...... 1 $1^{\circ} .04$
	4	39	47	35	N	Ditto		—_ Degree of Moisture Ditto...... . 944
	48	37	45	34	NW	Ditto		- Force of Vapour Ditto...... ${ }^{.236}$
	48	28	51	24	N	Little		Maximum Temperature in the Shade 544°.
	47	34 26	49	33	W	Ditto		Minimum Temperature in ditto $144^{\circ}{ }^{\circ}$
	45	26 35	57	22	SW	Ditto		Maximum Temperature in the Sun $61{ }^{\circ}$
	43	23	54	32	NE	Ditto		Minimum of Terrestrial Radiation 38°
	46	36	50	29		Ditto	. 01	Mean Temperature of External Air
	¢0	27	55	24	NW	Ditto		Wixds.
	54	39	51	36	SW	Ditto	. 02	North...... 5 days N. East...... 4 d dys
	54	32 44	60 61	34	W	Brisk	. 02	
	51 11 1	32 26	53	29	W	Brisk	. 03	West....... 8 .. ${ }^{\text {S West..... } 9 \text {. }}$
	41	26	41	22	NW	Ditto	.15	31 days.
	45.84	31.74	50.12	28.29			2.25	Amount of Rain

FEBRUARY.

FEBRUARY.

MARCH.

Morning.						Noon.					Night.				
1844.	B Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Wenther.
	129.339	46	46	-	Cloudy, Fine	29.459	50	40	10	Fine	29.450	41	41		Cl
	$2-.429$	41	41		Overcast	-.400	50	50	-	Showery	-. 372	40	40	-	Squally
	$3-.365$	44	44	-	Cloudy	-. 359	48	48	--	Cloudy	-. 427	39	39	-	Clear and fine
	$4-.357$	40	40	-	Heavy rain	-. 240	38	38	-	Heavy rain	-. 513	35	35	-	Cloudy \& D Do.
	$5-.798$	36	36	-	Overcast	-. 806	40	30	10	Cloudy	-. 762	26	26	-	Clear \& frosty
	6-.740	26	26	-	Clear \& frosty	$-.768$	48	38	10	Fine	-. 924	34	34	-	Ditto \& fine
	730.091	35	32	3	Cloudy	30.129	42	30	12	Cloudy \& cold	30.189	35	35	-	Fine
	8-.260	35	31	4	Fine	$-.240$	44	39	5	Very Fine	-.195	37	37	-	Overca
	9-.021	44	43	1	Densely overcast	29.949	55	52	3	Cloudy, mild	29.957	41	41	-	Ditto
	1029.571	42	42	-	Heavy rain	-. 624	40	40	-	Heavy rain	-. 707	34	84		Clear
	$11-.626$	48	48	-	Boisterous, rain	-. 468	54	54	-	Boisterous	-. 495	39	39		Do. boisterous
	12 -. 511	40	40	-	Very clear	-. 483	39	39	-	Stormy showers	-. 730	38	38		Ditto
	$13-929$	38	37	1	Ditto	-. 954	44	44	-	Cloudy	-. 952	34	34		Clear
	$14-892$	38	38	-	Uniformly overcast	-.828	47	47	-	Rain	-. 592	42	42	-	Heavy rain
	15 -.452	43	43	-	Rain	-. 457	47	37	10	Fine	-. 447	39	39	-	Clear
	$16-.460$	45	45	-	Slight haze	-. 558	50	48	2	Ditto	-. 667	41	41	-	Overcast
	$17-879$	40	37	3	Overcast	-. 893	43	40	3	Boisterous	-. 972	35	35		Ditto
	1830.010	35	30	5	Clear	-.985	44	32	12	Clear and cold	30.030	37	37	-	Ditto
	$19-.020$	43	42	1	Cloudy	30.039	48	40	8	Cloudy	29.897	41	41	-	
	20.29 .580	43	40	3	Ditto \& cold	29.450	46	46	-	Rain	-.811	30	30		Clear \& frosty Clear
	2130.003	34	32	2	Very clear	30.017	46	33	13	Fine	-. 921	33	33		Slight rain
	22.29 .739	42	41	1	Overcast	29.639	47	47	-	Cloudy	-. 503	41	41		Clear \& fine
	$23-513$	42	42	-	Ditto	-. 533	48	43	5	Fine	-. 570	33	33		Overcast
	24-513	47	47	-	Cloudy	-. 655	46	46	-	Boisterous	62	40	40		Ditto
	$25-644$ $26-.617$	42	42	4	Fine	-. 573	54	54	10	Very Fine	-. 578	45	47		Cloudy
	$27-851$	50	50	4	Light haze	-. 894	56	56	-	Overcast	30.032	49	49		Hazy
	2830.269	46	42	4	Fine	30.334	59	47	12	Very Fine	-. 395	40	40		Clear
	$29-.505$	39	39	-	Dense fog	-. 462	58	43	15	Dry haze	-. 441	39	39		Overca
	$30-.373$	44	43	1	Dry haze	-. 317	55	37	18	Fine	-. 283	41	41		Ditto
	$31-.235$	45	44	1	Slight haze	$-.187$	56	48	8	Clear and fine	-. 159	43	43		Ditto, foggy
	29.794	41.35	40.26	1.09		29.785	48.29	42.94	$5 \cdot 35$		29.818	8.35	8.35	0.0	

MARCH.

Temperature.					Wind.		Rain.	Remarks.
Days	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	55	36	62	32	SW	Brisk	. 04	
\pm	52	37	57	32	W	Ditto	. 04	
3	50	37	57	33	SW	Ditto	. 20	The weather was frequently boisterous with heavy rains and
4	41	28	51	24	NE	Little	. 48	on the whole very unsettled. The temperature was a little
6	43	19	55	13	N	Ditto		below the average. The amount of rain was an inch above the
	43	30	52	25	N	Ditto		usual quantity. The mean height of the barometer was con-
8	44	35	52 61	35	S	Ditto		stance remarkably low. The 11th, 12th, 17th, 20th and 24 th
9	58	34	63	30	SW	Brisk		were very boisterous. As in the two preceding months, West
10	44	31	52	28	N	Ditto	. 69	and South-west winds were prevalent.
14	53	35	53	30	SW	Strong	. 20	
12	47	31	53	26	W	Ditto	. 09	Mean Pressure from the 3 daily observations 29.799 inches.
13	47	32	54	28		Brisk		- Temperature Ditto 42 $^{42^{\circ} .06}$
15	49	39	50	37	W	Little	.48	- Dew Point Ditto ${ }^{4} \mathbf{2}^{\circ} 15$
16	53	38	58	37	E	Ditto		- Degree of Moisture . . Ditto 923
17	44	30	48	27	NE	Strong		-_ Force of Vapour Ditto 255 inch.
	46	35	48	30		Brisk		Least observed degree of Moisture $0^{.526}$
20	58	36	56	32	NW	Ditto		Maximum Temperature in the shade $633^{\circ}{ }^{\circ}$
21	50	23 31	53 58	16	N	${ }_{\text {Little }}$. 04	Maximum Temperature in the Sun $7 \mathbf{7 2}^{\circ}$.
22	47	42	48	39	SW	Ditto	. 05	Minimum of Terrestrial Radiation 133°.
23	52	26	64	21	W	Ditto		
24	48	35	54	33	SW	Strong	. 03	
25 26	56 60	43 46	62 67	40		${ }_{\text {Brisk }}^{\text {Little }}$. 06	Winds.
27	6	$4{ }_{4}^{46}$	67 62	43	SW	Little		North 5 days $\|$N. East...... 5 days
28	60	29	71	23	N	Ditto		East 3 ... N. West..... 1
29 30 30	${ }^{63}$	37	71	33	E	Ditto		West....... 7 .. ${ }^{\text {E }}$. West 9
30 31	57 60	$\begin{aligned} & 40 \\ & 38 \end{aligned}$	$\begin{aligned} & 64 \\ & 72 \end{aligned}$	35 35	$\underset{\text { E }}{\text { NE }}$	Brisk Ditto		,
	51.06	33.87	57.77	29.84			2.44	2.44 inch

APRIL.

APRIL.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	65	29	78	23	NE	Little		This month was very dry ; the days hot for the period of the
2	72	29	80	26	SW	Ditto		season and the nights cold and often frosty. In 12 of the latter
3	72 68	${ }_{38}^{32}$	75	26		Brisk Little		the thermometer was at, or below the freezing point; but 18 nights were indicated by the Radiating thermometer as being
¢	58	34	62	27	N	Ditto	. 01	more or less frosty. The barometer stood high. The amount
6	62	32	71	27	E	Ditto		of rain was less than in any corresponding month for at least
7	62	25	68	20	NE	Ditto		19 preceding years, with the exception of 1842. The degree
8	68	27	73	22	SW	Ditto		of dryness as indicated by the hygrometer was unusually great,
9	73	29	78	22	W	Ditto		especially on the 9th, 10th, 26 th ; and on the 30th, it attained
10	65	28	75	21	S	Ditto		almost the highest pitch of dryness ever observed in this
11	62	34	68	30	SW	Ditto		country.
12	62	45	70	40		Ditto	. 23	
13	59	47	65	46	W	Ditto	. 02	Mean Pressure from the 3 daily observations 30.097 inches.
$1{ }_{1}^{4}$	66	41	72	38	NW	Ditto	. 02	- Temperature Ditto $53^{\circ} .26$
16	70	48 36	71 80	42 32	SW	Ditto Ditto	. 01	
17	71	36	80	32	E	Ditto		-_ Degree of Moisture .. Ditto 743
18 19	61 66	30	69	24	NW	Ditto	01	- Force of Vapour. . . . Ditto 302 inch.
20	66 67	42	74	37	N	Ditto		Least observed degree of Moisture ${ }_{7} 0^{.312}$
21	70	45 38	74	41	W	Ditto		Maximum Temperature in the Shade $733^{\circ}{ }^{\circ}$
22 23 28	70	39	77	33	SW	Ditto		Maximum Temperature in the Sun $\ldots . . .184^{\circ}$.
23 24 24	71	39	80	35	W	Ditto		Minimum of Terrestrial Radiation 20°.
24 25	71	31	83	24		Ditto		Mean Temperature of External Air $51^{\circ} .06$
26	73	33	84	28	S	Ditto		Winds.
27 28 28	64	45 29	84 80	42 23	NE	Ditto	. 03	North..... 3 days ${ }^{\text {N. East...... } 4 \text { days }}$
28 29	66 66	30	81	24	NE	Ditto		
30	66 66	$\begin{array}{r} 38 \\ 37 \end{array}$	80 80	$\begin{aligned} & 34 \\ & 32 \end{aligned}$	E	Brisk Ditto		West....... 6 .. ${ }^{\text {d }}$ S. West..
	66.60	35.53	75.50	30.60			0.33	

MAY.

MAY.

Temperature.					Wind.		Rain.	Remarks.
Dayt.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	70	38	82	32	E	Brisk		
2	71	46	83	29		Little		This was an excessively dry month, uncongenial to most
3	65	45	75	40	NE	Ditto		kinds of vegetation; for, excepting three days, the wind was
4	59	48	60	41		Brisk	. 01	constantly from north-east or east, very dry, and likewise cold,
5	72	43	78	40		Ditto		as appears from the temperature being a degree below the
6	72	36	7^{8}	31	E	Little		average, notwithstanding the abundance of sunshine. The
7	76	43	90	37	N	Ditto		very limited quantity of rain which fell at intervals was quickly
8	69	44	75	40	E	Ditto		evaporated; for the hygrometer indicated not only great dry-
10	78	49	90	42	SW	Ditto		ness during the day, but also a considerable degree in the
10	68 64	38 52	80	32	W	Ditto	. 07	mornings and evenings, periods in which the air is generally
11	64 72	52	76	50	NE	Ditto		found moist. The weather was very boisterous between the
13	78	39	90	36	-	Ditto		17 th and 20th inclusive.
14	70	38	90	31	-	Ditto		Mean Pressure from the 3 daily observations 30.068 inches
15	60	41	85	37	-	Brisk		- Temperature Ditto... $544^{\circ} 78$
16	65	40	87	34	-	Little		- Dew Point Ditto... 4^{46}. ${ }^{\text {a }}$
17	59	32	69	24		Strong		- Degree of Dryness. Ditto. . ${ }^{\text {- }}$.16
18 19	54 60	44	75	40	-	Ditto	. 02	- Degree of Moisture Ditto... 745
20	63	43	76	39		Ditto		- Force of Vapour \ldots Mo......Ditto... $\quad 319$ illch
21	62	46	80	44	-	Ditto	. 02	
22	67	46	78	44	-	Little		Minimum Temperature in ditto 33°.
23	70	43	82	39	-	Ditto		Maximum Temperature in the Sun 90°,
24	66	45	82	42	-	Ditto		Minimum of Terrestrial Radiation 24°.
25	65	40	77	36	-	Ditto		Mean Temperature of External Air $54^{\circ} .05$
26 27	58	41	70	35		Brisk		Wixds.
27 28 28	56	43	69	40	-	Ditto	. 06	North...... I days \| N. East.... 22 days
$\begin{aligned} & 28 \\ & 29 \\ & \hline \end{aligned}$	59	48	68	44		Ditto		
$\begin{aligned} & 29 \\ & 30 \end{aligned}$	${ }_{6}^{58}$	44	66	43	NE	Ditto	. 07	
31	61	45	73 72	41 37	E	Little		West....... ${ }^{\text {t }}$.. S . West....
	65.42	42.68	77.93	37.80			0.25	Amount of Rain 0.25 inches.

JUNE.

Morning.						Noon.					Night.				
1844.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.
S.	129.998	55	50	5	Clear	29.957	68	47	21	Fine	29.949	44	40	4	Clear
M.	2 3 30.957	51 55	48	10	Overcast and cold Light Clouds	-.953	64	49	15	Ditto	-.971		43	3	Cloudy
T.	${ }_{4}{ }^{3}-147$	62	45 55	10	Very Fine	30.086	65	45	20	Very Fine	30.123	${ }_{51}^{51}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	Clear \& Fine
W.	529976	6	55	10	Overcast	29.915	74	50	23	Ditto	-29.822	$\begin{aligned} & 51 \\ & 59 \end{aligned}$	57	4	Ditto
Th.	-.720	58	58	-	Slight rain	-.714	67	67	4	Cloudy	-29.834	56	53	3	Slightly clouded
F.	7-.890	64	60	4	Overcast	-.862	68	55	13	Boisterous	-.901	59	54	5	Clear
S.	830.057	63	50	13	Very Fine	30.040	71	50	21	Very Fine	30.001	54	49	5	Ditto
	929.992	64	64	-	Slight rain	29.983^{\prime}	72	56	16	Ditto	-.009	53	49	4	Ditto
M.	1030034	64	55	9	Fine	30.037	68	55	13	Cloudy	-.110	51	48	3	Ditto
W.	${ }_{12} 12$-. 186	63 63	55	12	Clear and do.	-. 173	71	47	24	Very Fine	-. 143	58	53	5	Ditto
Th.	$13-.003$	69	55	14	Liear	-131	73	53	20	Ditto	-. 080	59	56	3	Overcast
F.	14-030	62	51	11	Clear, Fine	29.945	72	48	124	Ditto	29.940	59	54	5	Ditto
- S. ${ }^{\text {S. }} 1$	15-.009	60	55	5	Very Fine	-.036	67	. 38	29	Ditto	-70.996	$\begin{aligned} & 54 \\ & 51 \end{aligned}$	46		Ditto
- S. ${ }_{\text {M. }} 1$	$16-179$	63	47	16	slightly clouded	-. 197	67	43	24	Ditto	-. 168	50	46	4	Ditto
${ }_{\text {M. }}^{\text {T. }}$	17-.153	65	52	13	Hot \& dry	-. 067	70	48	22	Cloudy	29.925	56	53	3	Overcast
	${ }^{18} 29757$	62	62	-	Rain	29.690	69	55	14	Fine	-.675	53	53	-	Ditt
Th.	2030.041	58	55	-	Overcast	-.918	6	60	-	Heavy clouds	30.014	50	48	2	Cloudy,
	2129.980	62	60	2	Light clouds	二.985	75	62 58	17	Overcast	29.972	$\begin{aligned} & 56 \\ & 58 \end{aligned}$	54 56	2	Ditto
	$22-769$	67	60	7	Overcast	-. .777	78	55	17 23	Very fine	-..61	53	49	4	Very fast
	$23-789$	78	69	9	Clear and fine	-. 758	86	65	21	Clear, Sultry	-.742	66	59	7	Ditto
${ }^{\mathbf{r} .}$	$24-651$ $25-618$	75 61 6	65 6	10	Cloudy \& sultry	-. 647	83	65	18	Hot, Ditto	-. 642	60	56	4	Ditto
W.	$26-.718$	57		-	Heavy rain	-613	64	64	-	Constant Rain	-. 666	49	49		Rain
Th.	$27-828$	56	56	-	Overcast	二744	66	53	13	Light clonds, fine	- $\begin{array}{r}\text {-.784 } \\ -886\end{array}$	55	55		Ditto
	28	60	55	5	Very filie	-969	71	55	16	Very fine	30.016	55	52	3	Clear
				7	Dry haze		72	63	9	Overcast, fine	-.850	54	51	3	
	29.950	62.30	55.97	6.33		29.929	70.57	54.17	6.40		29.929	54.23	50.93	3.30	

JUNE.

Temperature.					Wind.		Rain.	Remarks.
Oig	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	72	44	88	40	NE	Brisk		
2	61	41	79	36		Ditto		More rain fell in this month than in both the two preceding,
3	69	41	89	37	E	Little		the 25 th merely the surface of the ground was occasionally
4	79	40	95	36	SW	Brisk		wetted; more fell on the day above mentioned than had pre-
5	79	53	85	50	-	Ditto	. 06	viously fallen, in the whole amount, since the middle of
6	70	53	83	53		Ditto	. 02	April. It was found that even this quantity did not moisten
7	71 80	50	84	46		Sirong		lower than 6 inches in most soils; consequently the roots of
9	80	49 51	95	48	W	Ditto	. 021	trees were little benefited by it. The mean temperature was
0	77	41	90	37		Ditto		fully 2° above the average, the wind being chiefly from Southwest and West, directly opposite to the cold points from which
11	83	42	99	37	SW	Ditto		it came in the preceding month. Thunder occurred on the
12	82	56	98	53		Ditto		it 18th; the 7 th was very boisterous.
13	85	52	100	48		Brisk		
14 15 15	75	49	89	44	W	Ditto		Mean Pressure from the 3 daily observations 29.936 inches.
15 16	78 78	43 40	90	39 37	NW	Ditto		$\begin{array}{lll}\text { —— Temperature } \text { Ditto } & 62^{\circ} \cdot 37 \\ \text { Dew Point Ditto } & 53^{\circ} .69\end{array}$
17	77	52	94	50	S	Little	. 04	- Degree of Dryness ... Ditto $8^{\circ} .68$
18	77	54	93	51	E	Ditto	. 05	- Degree of Moisture . . Ditto 740
19	66	46	70	43	NW	Ditto	. 02	- Force of Vapour Ditto 412 inch.
20	74	53	82	52	W	Ditto	. 01	Least observed degree of Moisture 910 $^{.0355}$
21	83	52	99	48	SW	Brisk		Maximum Temperature in the Shade..... $91^{\circ}{ }^{\circ}{ }^{\circ}$
22	86	48	101	44		Little		Minimum Temperature in ditto $\ldots \ldots \ldots .{ }^{40^{\circ}}$
23	91	63	106	62	S	Brisk		Maximum Temperature in the Sun 106°
24	89	67	105	54	sw	Ditto		Minimum of Terrestrial Radiation ${ }_{\text {a }}^{3}$
25 26 26	65	47	65	46	-	Little	.62	Mean Temperature of External Air ${ }^{\text {a }}$ O ${ }^{\circ} .95$
27	67 68	51	86	51	N	Ditto	12	Winds.
28	74	50 47	85	47 43	W	Ditto		North.......2days ${ }^{\text {N. East...... } 3 \text { days }}$
29	83	54	97	50	SW	Ditto		
30	79	50	91	46	NE	Ditto		West........6. $6 .$.
	76.60	49.30	90.66	45.80			0.97	Amount of Rain............ 0.97 inches.

JULY.

JULY.

Temperature.					Wind.		Rain.	Remarks.
Dins.	Max.	Miu.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	79	54	93	53	S	Little		
2	69	53	86	51	N	Ditto	.22	month The period between the $215 t$ and 28 th was remarkably
3	72 68	57	86	53	SE	Ditto	.14	mont, the thermometer reaching between 80° and 90° in the shade,
4	68	55	73	55	SW	Brisk	. 01	one day excepted. On the $25 \mathrm{th}^{\text {it }}$ was as high as 92°. The quan-
5	70	50	86	48	NE	Little	. 06	tity of rain was but little short of the average ; yet the ground
6	65 68	54	86	52	N	Ditto	. 06	at some depth still continued dry. A very heavy thunder storm
8	77	58	90	56	W	Ditto	.13	occurred on the afternoon of the 19th, accompanied with rain and
9	74	49	90	45	N	Ditto		hail. The air was very clear on the 20th; and then the hot period
10	78	60	89	58	SW	Ditto		set in as above noticed. The first week was cloudy and wet; but with few exceptions the rest of the month was unusually
11	78	56	91	54	W	Ditto		bright, the sky being frequently quite cloudless.
12	78	56	80	52		Brisk	. 06	
13	71	56	84	53	SW	Ditto	.53	Mean Pressure from the 3 daily observations 29.883 inches.
14	75	47	90	43	W	Ditto		- Temperature Ditto....... $63^{\circ} \cdot 71$
15	76 75	46	90 85 8	42 37	SW	Little		- Dew Point Ditto...... $57.5{ }_{6}{ }^{\circ} 18$
17	73	52	84	50	N	Ditto		- Degree of Moisture . . . Ditto....... . 781
18	73	45	89	43	W	Ditto		- Force of Vapour...... Ditto...... 4772 inch.
19 20	74	44	87	42	N	Ditto	. 39	Least observed degree of Moisture....... ${ }_{90} 0^{.389}$
20	76	43	90	41	NW	Ditto		Maximum Temperature in the Shade $\ldots . . .992^{\circ}$.
21	82	49	96	46	S	Ditto		
22 23	89	53	104	49	SW	Ditto		Maximum Temperature in the Sun 108°
23 24 24	87	61	105	52	E	Ditto		Minimum of Terrestrial Radiation 37 37°
24 25	87	53	103	50		Ditto		Mean Temperature of External Air....... 64.30
25	92	62	108	59	S	Ditto		
20 27	74	55	89	50	NW	Ditto		Winds.
27 28	83	50	100	45		Ditto		North......5 days N . East....1 days
28 29	88	57	101	52	SW	Ditto		South......3 .. S. East..... 1 ..
30	68	44	101	39	NW	Brisk		East3 . 3 N, West.... 4
31	72	55 49	$\begin{aligned} & 75 \\ & 83 \end{aligned}$	51 44	SW	Ditto Ditto	.14 .02	West 7 .. ${ }^{\text {a }}$ S. West 7
	76.42	52.19	89.51	48.93			2.10	Amount of kain 2.10 inches.

AUGUST.

AUGUST.

Temperature.					Wind.		Rain.	Remarks.
Dasa	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	71	45	74	42	W	Strong	02	
2	72	49	85	45		Little	$\cdot 1$	
3	69	52	84	48	SW	Strong	. 15	average; but the weather on the whole was very favourable for
4	77	44	91	41	W	Ditto	.01	bringing crops to maturity. The depth of rain was about half
5	72	57	83	57	S	Little	$\cdot 37$	an inch below the average for this month. The barometer was
6	71	52	81	48	SW	Strong	. 02	low till the 15 th, after which no rain fell with the exception of
8	71 72	50 47	84 83 8	46	W	Ditto	.12	two slight showers; and towards the end of the month the ba-
9	74	45	87	41	SW	Ditto		rometer stood high. There was a heavy shower, with squall, at
10	76	41	92	37	N	Little		noon on the 7 th, and on the 14th a very heavy squall com-
11	73	54	86	51	SW	Brisk	. 12	menced suddenly, and likewise at noon, with rain in torrents.
12	70	54	72	52	W	Ditto	.33	
13	65	51	69	48	SW	Little	. 24	Mean Pressure from the 3 daily observations 29.799 inches.
14	${ }^{65}$	49	66	46	W	Boisterous	. 30	- Temperature. Ditto. 59 59.94
15 16		47	74	43	NW	Strong	. 03	- Dew Point.......... . Ditto...... $54^{\circ} .22$
	77	57	82	57	W	Listle	. 01	- Degree of Dryness.... Ditto...... 5 $5^{\circ} .72$
18	69 69	47	75	46		Brisk		- Degree of Moisture...Ditto...... 811
19	72	60	87	39 60	W	Brisk	. 01	Least observed degree of Moisture....... ${ }^{\text {a }}$. 416 inch.
20	78	51	82	50	W	Ditto		Maximum Temperature in the Shade.... $80^{\circ}{ }^{.444}$
,	65	52	74	50	-	Little		Minimum Temperature in ditto........ $3^{88^{\circ}}$.
23	67	42	72	40	-	Ditto		Maximum Temperature in the Sun $\mathbf{9 2}^{\mathbf{\circ}}$.
${ }^{23}$	69	38	74	35	SW	Ditto		Minimum of Terrestrial Radiation 33°.
4	71	49	78	46		Ditto		Mean Temperature of External Air $59^{\circ} .69$
25 26	73 66	50	81	48	NW	Brisk		
\%	71	47 38	70	44		Little		Winds.
${ }^{28}$	78	40	8	33 36		Ditto		North 1 days ${ }^{\text {N. East..... } 0 \text { days }}$
29	79	42	90	39	E	Ditto		South 1 I \cdot S. East...... I . ${ }^{\text {I }}$
33	72 80	42	87	39		Brisk		East....... 2 West
		44	90	42	SE	Little		
	71.68	47.71	80.23	44.96			1.84	Amount of Rain 1.84 inches.

SEPTEMBER.

Morning.							Noon.					Night.				
1844.	完	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.	Barom.	Hygrometer.			Weather.
		30.380	55	55		Slight fog	30.335	77	61	16	Clear and hot	30.335	50	50	-	Clear \& fine
M.	2	-. 322	58	58	-	Foggy	-.263	74	60	14	Ditto	-.192	54	51	3	Ditto
(W .	3	-. 097	62	62		Fine	-. 050	69	60	9	Fine	-. 020	62	60	2	Overcast
${ }^{4} \mathrm{~W}$.	4	29.977	62	62	-	Densely overcast	29.954	73	63	10	Ditto	29.926	60	58	2	Ditto
1h.	5	-.842	66	66	-	Cloudy, mild	-.801	71	65	6	Cloudy, fine	-. 926	56	56	-	Ditto
	6	$-.837$	65	65	-	Rain	-. 884	70	64	6	Ditto	-. 934	60	59	1	Do. \& mild
S	7	894	65	65		Slight rain	-. 894	72	72	-	Ditto	-.913	58	56	2	Clear \& fine
M.	9	.	6	63	-	Very fine	-.840	72	63	9	Clear \& fine	-. 759	60	60	-	Heavy rain
T.	10	$-.820$	57	57	-	Densely overcast	-. 8.816	63	60	3	Slightly overcast	-.747	5	54	-	Fine
W.	11	30.014	52	52	\div	Slight fog	-. 9995	64	47	17	Very fine	-.993	53	53	-	Clear \& do.
Th.	12	-.011	59	59	-	Overcast	30.037	66	53	13	Overcast, fine	30.089	55	55	-	Ditto
F.	13	-. 159	60	60	-	Ditto	$-.154$	67	50	17	Very fine	$-.138$	56	54	2	Overcast, fine
S.	14	-. 078	61	61	-	Do. \& fine	-056	72	57	15	Ditto	-.030	57	54	3	Ditto
S.	15	29.857	63	63	-	Overcast	29.825	70	64	6	Cloudy	29.830	60	60	-	Rain, hazy
M.	16	$-.838$	66	65	1	Very fine	$-.838$	71	65	6	Do. \& fine	-. 848	61	59	2	Clear \& fine
W.	17	$-.729$	66	64	2	Overcast	-.708	70	70	-	Showery, cloudy	$-.727$	56	56	-	Hazy
W.	18	-. 879	55	55	-	Rain	$-.729$	55	55	-	Rain	--.989	48	48	-	Fine
D Th.	19	30.068	51	51	-	Clear	-. 933	62	50	12	Very fine	-.938	44	43	1	Very clear
	20	-. 028	55	55		Drizzly	-. 997	58	58	-	Hazy	-. 997	44	44	-	Ditto
S	21	-. 048	54	54	-	Clear	30.068	64	57	7	Very fine	30.091	49	47	2	Ditto
M.	22	-. 036	52	50	2	Fine	29.970	59	50	9	Cloudy \& do.	29.921	49	47	2	Cloudy
T.	23	29.741	54	54	-	Cloudy	-. 692	61	45	16	Ditto	-.729	51	49	2	Overcast
W.	25	--893	53	50	3	Fine	-. 944	63	53	10	Very fine	30.081	46	45		Clear \& \& \& do.
0 'Th.	26	-. 270	44	5		Slight fog	30.183	62	50	12	Ditto	-. 234	44	44		Clear \& do.
	27	-. 179	42	42		Ditto	-. 138	62	59	3	Fine	-. 096	42	42	-	Foggy
S.	28	-. 047	43	43		Dense fog	29.987	64	53	11	Very fine	29.934	43	43	-	Clear
M.	29	29.961	52	52	-	Drizzly	20.040	58	54	4	Cloudy, fine	30.219	41	40	1	Ditto
M.	30	30.326	46	43	3	Slightly overcast	-. 328	56	44	12	Clear \& do.	-. 242	40	40	-	Ditto
		30.003	33	. 97	0.36		29.981	. 80	- 37	8.43		30.001	51.67	. 80	0.87	

SEPTEMBER.

OCTOBER.

OCTOBER.

Temperature.					Wind.		Rain.	Remarks.
Days.	Max.	Min.	Sun.	Rad.	Directiou.	Force.	In. Pis.	
1	70	45	92	43	SW	Little		The average temperature was still maintained; and there was
2	70	47	80	44	W	Strong		likewise abundance of moisture. The quantity of rain which fell
3	71	41	85	37	SW	Ditto		between the ist of April and the commencement of this month
4	69	46	88	44	-	Little		was 6 inches $\frac{8}{10}$; whereas the average for the same period is 12
5	67	39	79	37	-	B isk	. 22	inches $\frac{0}{10}$; and deducting $1 \frac{1}{2}$ inch, the excess above the average
6	63	40	78	37	NW	Ditto		for October, there remained about in inches of rain still due at
7	62	29	79	27	NW	Little		the end of the month. Nearly as much fell on the 14th and 15 th
8	61	41	77	38	S	Ditto		as there did in the months of April, May, and June of the pre-
9	63	53	74	50	SE	Brisk	. 01	sent year. The barometer averaged very low; the greatest de-
10	63	35	74	33	SW	Ditto	.07	pression being about the middle of the month when the great
11	68	39	88	36		Little		fall of rain took place. Previously to this, it was found that in
12	64	55	79	54	S	Brisk	. 03	borders not watered the soil was dry to the depth of a trench, $2 \frac{1}{2}$
13	65	45	79	43	SW	Ditto	- 33	feet deep.
14	65	44	77	44	S	Brisk	. 42	Mean Pressure from the 3 daily observations 29.674 inches
15	63	46	70	46	SW	Ditto	1.04	\qquad Temperature Ditto $50^{\circ} .04$
16	60	43	76	40	-W	Little	. 02	- Dew Point Ditto 4 $4^{80.61}$
17	59	37	68	34	-	Ditto		- Degree of Dryness ... Ditto $1^{\circ} \cdot 43$
18 19	56	33	69	30	SW	Ditto		- Degree of Moisture . . . Ditto 950
18 20	58	42	73	40	SW	Brisk	. 03	_- Force of Vapour Ditto ${ }^{\text {. }} 343$ inch.
31	59	34	74	34	E	Ditto	. 03	Least observed degree of Moisture$^{.588}$
22	59	30	61	26	W	Ditto	. 04	Maximum Temperature in the shade $71{ }^{\circ}{ }^{\circ}$
23	5^{8}	39	64	37	N	Ditto	.04	Maximum Temperature in the Sun 92°.
34	52	46	52	45	-	Ditto	. 88	Minimum of Terrestrial Radiation 27°.
24 26	52 53	40	55	39	-	Ditto	. 03	Mean Temperature of External Air 50 $0^{\circ} .17$
27	53	37	56	35	-	Ditto		Winds.
28	53 47	29 31	56	28	NE	Ditto		North. 44 days. N. East.... . 22 days.
29	52	42	59	40	E	Ditto	. 28	
30 31	48	34	60	30		Ditto	. 02	East........ 4 . ${ }^{\text {N. West } 1 \text {. }}$
31	54	43	70	40		Ditto		West.......5 . . ${ }^{\text {S }}$ West. . . . 11
	60.09	40.26	71.16	38.09			4.13	Amount of Rain. . 31 days...........4.4.13 inches.

NOVEMBER.

NOVEMBER.

DECEMBER.

DECEMBER.

Temperature.					Wind.		Rain.	Remarks.
Dhys.	Max.	Min.	Sun.	Rad.	Direction.	Force.	In. Pts.	
1	42	33	55	32	NE,	Brisk		This month was one of continued severity. The mean tempe-
2	40	27	41	25		Little		rature was 7° below the average So early in the month as the
3	39	33	39	32	-	Ditto		5 th and 6th the thermometer fell 18° below freezing. Frost con-
4	40	22	40	17	-	Ditto		tinued till the 14 th, when it was found to have penetrated to the
5	35	14	39	8		Ditto		depth of 8 inches in Kitchen Garden soil ; but where the ground
6	30	14	30	9	E	Ditto		had been recently dug the frozen crust was only 6 inches thick.
7	34	20	34	15	NE	Little		The wind was wholly from East, South East or North East, but
8	32	26	33	25	NE	Brisk		chiefly from the latter Dense fogs were of frequent occurrence.
9	32	28	32	26	-	Ditto		The nights of the 19th and 20th were boisterous
10	32	28	32	26		Ditto		
11	30	22	33	17		Little		
12	31	24	32	22	E	Ditto		Mean Pressure from the 3 daily observations 29985 inches
13	32	25	32	23		Brisk		-- Temperature Ditto. . . . $33^{\circ} 89$
14	32	28	33	25		Little		- Dew Point Ditto...... $33^{\circ} 39$
15	40	34	40	32	-	Ditto	. 03	-- Degree of Dryness Ditto...... ${ }^{\circ} 50$
17	43	35	45	35	-	Ditto		- Degree of Moisture Ditto...... 930
18	44	35	45	34	NE	Ditto		Least observed degree of Moisture
19	42	40	44	40	E	Ditto	05	Maximum Temperature in the Shade...... 49°
20	38	28	4	27	NE	Brisk	. 1	Minimum Temperature in ditto......... 14°
21	37	30	49 37	27	-	Ditto		Maximum Temperature in the Sun........ 55°
22	35	27	35	23	-	Ditto		Minimum of Terrestrial Radiation........ 8°
23	34	28	33	25	-	Little		Mean Temperature of External Air....... $33^{\circ} \mathbf{2 7}$
24	34	31	34	29	E	Ditto		
25	35	31	35	30	-	Ditto	.	WINDS.
27	39	30	39	30	SE	Ditto		North. o days N East 17 days
29 28	38	30	41	30	NE	Ditto		
29	48	42	48	40	SE	Ditto	. 15	East 11 .. ${ }_{\text {N West }}^{\text {W West }}$ O
30	42	32	50	38	NE	Ditto	. 15	$\underbrace{\text { Cest } 0 \text {. . }}$ W West
31	44	32	44	30		Ditto		31 days
	37.64	28.90	38.97	2664			0.39	

Monthly Mean Pressure, Temperature, and Dew Point, \&c. of 1844 ; deduced from the Observations recorded in the preceding Journal.

1844. Months.	Pressure.								Temperature.											
					Mean at			Mean of the three tions.	In the Shade.			Morn.	Mean at		Mean of the three Observ ${ }^{8}$	$\begin{gathered} \text { In Sun's } \\ \text { Rays. } \end{gathered}$		Terrestrial Radiation.		$\begin{gathered} \text { Mod. } \\ \text { ofSun } \\ \text { and } \\ \text { Rad. } \end{gathered}$
	Max.	Min.	Med.	Barom.	Morn.	Noon.	Night.		Max.	Min.	Med.		Noon.	Night.		Max.	Min.	Max.	Min.	
Jan.	O.346	29.19	.969	1.147	29.961	29.967	29.976	29.968	54	14	38.79	37-35	43.67	$37 \cdot 39$	39.47	61	39	42	3	39.20
Feb.	30.171	28.624	29.608	1.547	29.584	29.599	29.610	29-597	53	19	36.49	$33 \cdot 37$	41.17	34.17	36.23	61	38	41	12	38.17
March	. 505	29.240	29.806	1. 265	29.794	29.785	29.818	29.799	63	19	42.46	41.35	48.29	38.35	42.66	72	48	43	13	43.80
April	30.441	29.58	0.097	0.853	30.108	30.097	30.086	30.097	73	25	51.06	50.30	62.60	46.90	53.26	84	62	46	20	53.05
May	30.432	29.791	30.070	0.641	30.082	30.039	30.063	30.068	78	32	54.05	54.06	63.1	6	54.78	90	66	50	24	:57.86
June.	30.179	29.613	29.939	. 0.566	29.950	29.929	29.929	29.936	91	40	62.95	62.30	70		62.37	106	70	62	36	68.23
July	30.275	29.47	29.885	0.801	29.897	29.87	29.876	29.883	92	42	64.30	63.6	70.3	$57 \cdot 10$	63.71	108	66	59	37	69.22
Aug.	30.293	29.331	29.801	0.962	29.79	29.79	29.811	29.799	80	38	59.69	59.81	67.29	52.74		92	66	57	33	62.59
Sept.	30.380	29.692	29.997	0.688	30.003	92.981	30.001	29.995	84	30	58.91	56.38	86.80	51.67	57.93		75	60	26	$67 \cdot 47$
Oc	30.252	28.940	29.683	1.312	29.690	29.666	29.666	29.674	71	29	43.58	47.90	56.09	46.13	50.04	92	52	54	27	54.62
Nov.	30.326	28.937	29.769	1.389	29.770	29.758	29	29.767	60	22	43.5			41.57	43	65	44	49	17	$43.98{ }^{\circ}$
Dec.	30.462	29.430	29.985	1.032	29.990	29.981	29.984	429.985	49	14	32.27	33.16	$635 \cdot 93$	32.58	33.89	55	32	40	8	32.80
Aver.	30.338	29.321	29.884	1.017	29.885	29.8	29.883	32.830	70.66	27.00	49.09	48.50	556.04	45.00	48.8	83.	83	50.25	1.33	52.58

1844 Wonthe.	Hygrometer indicating Dew Point.								Scale of the Winds.									Rain.
	Mean Dew Puint at			Mean Dew Point.	Mean Force of Vapour.	Mean degree of Dryness.	Mean degree of Moisture.	Least degree of Moisture.	N.	N. E.	E.	S.E.	S.	S. W.	W.	N.W.	Days.	In. Pts.
	Morn.	Noon.	Night.															
Jan. .	36.74	41.16	37.39	38.43	.236	1.04	914	660	5	4	\bigcirc	1	\bigcirc	9	8	4	31	2.25
Feb.	32.65	37.55	34.17	34.79	. 206	1.44	949	652	3	\bigcirc	2	1	2	8	6	7	29	2.27
March	46.26	42.94	38.35	40.51	. 255	2.15	923	526	5			-	1	9	7	1	31	2.44
April	45.87	44.70	45.07	45.21	. 302	8.05	743	312	5	4	3 4	0	2	9	6	2	30	0.33
May .	48.93	46.97	43.97	46.62	-319	8.16	745	337	,	4	6	-	2	1	1	-	31	0.25
June.	55.97	54.17	50.93	53.69	. 412	8.68	740	337 355	2	22	6	\bigcirc	\bigcirc	13	6	2	30	0.97
July	59.35	57.87	55.39	57.53	. 472	6.18	781			3	3	-			7	4	31	2.10
Aug.	56.55	54.54	51.58	53.95	.416			38	5	1	3	1	3	7	7			1.84
Sept.	55.97	57.37	50.80	53.95 54.71	-416	3.72	811	444		-	2	1	1	8	14	4	31	
Oct.	47.81	52.09	50.80	54.71	-427	3.22	872	549	1	7	6	4	1	7	4	0	30	1.31
Nov.	47.81	5	45.94	48.61	- 343	1.43	950	588	4	2	4	1	3	11	5	1	31	4.13
	42.40	47.27	41.57	43.74	. 287	0.11	996	926	2	3	4	3	2	12	3	1	30	3.06
D	31.45	33.29	32.42	32.39	. 187	1.50	930	705		17	11					\bigcirc	31	0.39
Aver.	46.16	47.49	43.96	45.85	- 321	3.97	863	537	32	68	47		17	94	67	26	366	21.34

GENERALINDEX

TO THE

FIRST AND SECOND SERIES

TRANSACTIONS OF THE HORTICULTURAL SOCIETY OF LONDON.

** The Roman numerals indicate the respective Volumes; the First Series is to be understood, unless the references are preceded by $2 \mathrm{~S}_{\text {., when the Second Series is denoted. }}^{\text {, }}$

Aard-aker (Earth Nut), ii. 359.
Abdel assis (Turkish name of the Cyperus esculentus), vi. 50.
Abel, Dr., vi. 272, 486, 535 ; vii. 524, 525 ; 2 S., ii. 30.
Abelia triflora, 2 S. i. 456.
Abercrombie, vi. 218.
Aberdeen, Earl of, 2 S. iii. 237.
Abies amabilis, 2 S. ii. 250.
-Deodara, 2 S. ii. 237, 240, 242, 263.

- Douglasii, 2 S. ii. 242, 260.
- grandis, 2 S. ii. 250.
- Menziesii, 2 S. ii. 260.
- Morinda, 2 S. ii. 242, 263.
nobilis, 2 S. ii. 242, 250.
religiosa, 2 S. iii. 123, 127, 128, 131, 135, 138.
- Webbiana, 2 S. ii. 240, 242, 263.

Abooke, Country Plum, v. 90, 451.
Abricot d'Alexandrie, 2 S. i. 72.
-_'Alexandrie, Gros, 2 S. i. 60.

- Amande Aveline, 2 S. i. 69.

Amandier, 2 S. i. 65.
Angoumois, 2 S. i. 71.
Blanc, 2 S. i. 59.
Commun, 2 S. i. 61.
Commun à Feuilles Panachées de
Jaune, 2 S. i. 62.
-Gros précoce, 2 S. i. 60.

- Hâtif Musqué, 2 S. i. 58.
de Hollande, 2 S. i. 69.
de Nancy, ii. 201 ; 2 S. i. 66, 70, 73.
de Nüremberg, 2 S. i. 66.
Pềche, i. App. 8; ii. 201 ; 2 S. i. 59, 66.
de Piémont, 2 S. i. 66.
Précoce, 2S. i. 58.
Royal, 2 S. i. 63.

Abricot de St. Jean, 2 S. i. 60.
-_de St. Jean Rouge, 2 S. i. 60.
—— de Tours, 2 S. i. 66.
_ du Wirtemberg, 2 S. i. 66.
Abricotier à Feuilles Panachées, 2 S. i. 62
Abricotin, 2 S. i. 58.
Acacia affinis, 2 S. ii. 242, 246.
——armata, vii. 41 ; 2 S. ii. 246, 247.
——dealbata, 2 S. ii. 242, 246, 247.
—_decurrens, and others, 2 S. ii. 247.
——diffusa, 2 S. ii. 240, 242, 247.
——Julibrissin, vi. 38; 2 S. ii. 242.
lophantha, 2 S. ii. 242, 247.
———stricta, 2 S. ii. 240, 246.

- verticillata, 2 S. ii. 242, 246, 247.

Acaste pulchra, i. 323.

- venusta, i. 322.

Acclimatizing, hints respecting, i. 21 ; vii. 31.
_ effected not by suckers or cut-
tings, but by repeated sowing, i. 24.
Aceras Anthropophora, vi. 405.
Acer campestre, vi. 499.
—— variegatum, vi. 496.
-_oblongum, 2 S. ii. 264.
palmatum, 2 S. ii. 257.
Achimenes longiflora, figured, 2 S. ii. 508; 2 S. iii. 140.
—— pedunculata, 2 S. iii. 136. pieta, figured, 2 S. iii. 161.
Achocõn, v. 104.
Achras Cainito, v. 105.
L_Lucuma, v. 105.
—— mammosa, 2 S. iii. 133.

- Sapota, v. 82, 96.

Axfides, or locusts of St. John, vi. 34.
Axpor depos, vi. 35.
Acocotli, medicinal virtues attributed to it, i. 84.

Acocotli, Mexican name of one of the species of Dahlia, i. 84.
Acon, Mr. James, observations on the growth of early and late grapes under glass, vii. 1.
Acorus calamus, iv. 400.
Acropera Loddigesii, 2 S. iii. 116.
Acrostichum calomelanos, iii. 341.
Actinocarpus minor, i. 268.
Adanson, i. 331; vi. 277.
Adansonia digitata, v. 444.
Adelia acidoton, 2 S. ii. 257.
Adiantum villosum, iii. 341.
Adina globiflora, vi. 264.
Administration of the Jardin du Roi, Paris;
Plants received from, 2 S. ii. 411, 413, 414.
Aëgle Marmelos, v. 117.
Aeranthes grandiflora, vi. 282.
Aerides, treatment of, iv. 241.

- odoratum, i. 295 ; vii. 499.

Aeridium odorum, i. 295.
African Custard Apple, v. 443.
Afzelius, Professor Adan, v. 89, 90, 440, 443, $446,447,449,450,451,453,457,458,460$, 461, 462, 463, 464 ; vi. 86.
Agapanthus umbellatus, vi. 438, 439; vii. 40.
Agaricus campestris, ii. 403.

- Georgii, ii. 403.

Agave americana, account of one at Woodville, i. 242.
notice relative to its flower-
ing, iv. 389.

- saponaria, 2 S. iii. 117.

Age, its influence upon trees greater in cold than in warm climates, i. App. 8.

- effects of, upon fruit trees, v. 384.

Aglionby, H. A., Esq., 2 S. iii. 91.
Ayvos, vi. 46.
Agriculture, Chinese, v. 49.
Agrumi, iii. App. 2.
Aguacate, 2 S. iii. 130.
Aguas calientes, vegetation of, 2S. iii. 119.
Ailanthus glandulosa, vi. 494.
Ainger, Mr., 2 S. ii. 424, 435.
Ainslie, Sir Whitelaw, 2 S. ii. 172, 173.
Air, method of admitting a due proportion into hothouses, i. 151.
Air Plant, cultivation of, vii. 499.
Aiton, John, Esq., vi. 213, 336.
Grape, iii. 93.
account of the Esperione
information from, respecting the cultivation of the purple-fruited pas-sion-flower, iii. 103.
Artos, W T Ee on forcing plums, iv. 531.
Arton, W. T., Esq., i. Pref.; i. 254, 262, 276, $281,287,329$; ii. 163,164 ; iii. 86 ; vi. 65 ; vii. 24.

Arron, W. T., Esq., his success in bringing the mango, \&c., to perfection, i. 151.
by in large crops of figs raised by him in the Royal Gardens at Kew, i. 254.
brief practical observations on the cultivation of the cucumber in the Royal Gardens at Kew during the autumn and winter months, ii. 282.

- notice of a late nectarine raised in the Royal Gardens at Kew, iv. 211. Ajax, species named, i. 343 to 349.
Akee tree, v. 90.
Alamotou, v. 93.
Alangium decapetalum, v. 120.
Albergier de Montgamet, 2 S. i. 65.
\longrightarrow Ordinaire, 2 S. i. 74.
- de Portugal, 2 S. i. 74.
- de Tours, 2S. i. 74.

Albuca major, 2 S. ii. 269.

- minor, 2 S. ii. 269.

Alburnous fibre, 2 S. ii. 117.
Alburnum, its growth, and office in the process of vegetation, i. 219.
\ldots of creeping plants, 2 S. ii. 36.
Alchemilla nivalis, 2 S. iii. 157.
Ali Khan, 2 S. ii. 173.
Alkalies required by plants, 2 S. iii. 189.
Alkaline Salts, 2 S. iii. 56.
Aletris farinosa, i. 328.
Alexandrian Laurel, vi. 48.
Alexander, D., Esq. 2 S. i. 332.
Alexander, Dr. William, i. 328.
Alexis bifurca and grandiflora, their introduction, i. 284.
Algarobia dulcis, 2 S. iii. 132.
Aleen, Mr. John, vi. 477.
Allen, Mr. Thomas, on forcing cucumbers, vi. 127.

Alligator apple, v. 95.
iii. 130 pear (Laurus Persea), v. 96; 2 S . iii. 130 .
effects of temperature on, iii. 463.

Alimentary plants, attention directed to their improvement, 2 S. ï. 348.
Allium, notices respecting some varieties of the
genus, iii. 416.

- Ampeloprasum, iii. 418.
- Cowani, vi. 98.
fistulosum, iii. 377, 417.
striatellum, vi. 97.
striatum, vi. 97.
Allinutt, John, Esq., 2 S. i. 534, 535.
Allobé, v. 88.
Almonds, both sweet and bitter, known to the
Romans, i. 152.

INDEX.

Almonds, recommended for stocks for peaches and nectarines, ii. 90.
Almond tree, early blossoming of, in $1834,2 \mathrm{~S}$. ii. 3 .
account of a peach tree raised from the seed of one, iii. 1 .
Almond-stock proper for budding peaches upon, i. App. 5.

Almond Amère, iv. 410.

- Commune, iv. 409.
-Douce à coque dure, iv. 409.
Douce à coque tendre, iv. 409.
des Dames, iv. 409.
Pistache, iv. 409.
Princesse, iv. 409.
Sultana, iv. 409.
Almyra stellaris, i. 336.
Almus ferruginea, 2 S. iii. 160.
-mexicana, 2 S. iii. 126, 138.
Aloe, American, account of one at Salcombe, which flowered in the open ground, i. 176.
Alonsoa urticifolia, vii. 42.
Aloysia citriodora, vii. 40 ; 2 S. ii. 242, 281.
Alpine plants, how raised in the Jardin des
Plantes, Paris, i. App. 24.
Alpinia Galanga, i. 281.
- jamaicensis, i. 281.
- mutica, i. 280.
——nutans, i. 279.
—— occidentalis, i. 282.
——racemosa, i. 281.
spicata, vi. 274.
spiralis, i. 279.
Alps, the Swiss, aspect of their vegetation and description of some of the native trees, i. App. 17.
Alstonia ciliata, 2 S. iii. 124.
- venenata, vii. 54.

Alströemeria aurea, 2 S. ii. 242, 280, 281.
—— edulis, i. 332. Flos Martini, vi. 82. hirtella, 2 S. ii. 280. ovata, 2 S. ii. 280.
Pelegrina, 2 S. ii. 280 ; vii. 40. psittacina, 2 S. ii. 280. pulchella, 2 S. ii. 242, 280.
Alströemerias, on their cultivation, 2 S . ii. 124.

Althæa nudiflora, vii. 251.
Alum, 2 S. iii. 37, 38.
Alumina, 2 S . iii. 36 .
Alum-water applied to hydrangea plants, to render their flowers blue, iv. 568.
Alyssum sativum, v. 35.
Amandes, iv. 409; see Ahmonds.
Amaranthus caudatus, vi. 55 .

Amaranthus polygamus, v. 54.

- tristis, v. 54.

Amaryllis, description of the pollen of, iv. 34. remarkable case of proternatural formation in the flowers of one, vi. 313; figured, vi. 315.

- notice of certain seedling varieties of, v .337.
_- on a hybrid one, v. 390.
————advena, vi. 88, 89.
aurea, i. 299.
Belladonna, 2 S. ii. 268.
candida, vi. 89.
crocata, iv. 39 ; vi. 309 ; 2 S. ii. 268.
cyrtanthoides, vi. 88.
equestris, v. 338, 339.
equestri-vittata, v. 337.
Forbesii, vi. 87, 88.
β, purpurea, vi. 285.
formosissima, 2 S. ii. 268.
fulgida, v. 337, 338.
Johnsoni, iv. 499, 501 ; v. 340, 390. laticoma, iv. 184.
longifolia, vi. 98 ; instructions for its treatment, iii. 187, 192. fl. albo, vi. 292. var. longiflora, iv. 50.
- ornata, iii. 189. β, iv. 38 .
psittacina, 2 S. ii. 268.
psittacinâ-Johnsoni, v. 361.
Reginx, iv. 49 ; v. 339.
Reginæ vittata, iv. 40, 498.
- Reginæ-vittata, hybrid, figured, v. 340. hybrid, v. 390. seedlings from, iv. 42. rutila, v. 337, 338, 339.
——— sarniensis, iii. 399 , 447 . vittata, iv. 44,49 ; 2 S. ii. 268.
zeylanica, iii. 190.
American Blight, vi. 547.
Amherst, Lord, vi. 486.
Amica nocturna, i. 43.
Ammobium alatum, vi. 95.
Ammonia, 2 S. iii. 98.
Ammonia, 2 S. iin. 98 . employed for the destruction of insects, iv. 78.

Ammonia, salts of, experiments with, in the growth of plants, 2 S iii. 57.
Ammoniacal water, 2 S iii. 46.
Amomum angustifolium, i. 283.
Cardamomum, i. 282
grandiflorum, i. 284.
Grana Paradisi, i. 283.

Amomum Plinii, i. 176.
———xanthorhiza, i. 284. Zerumbet, i. 285.
Amphiglottis lurida and secunda, i. 294.
Amorpha fruticosa, vi. 495.
Amygdalus orientalis, 2 S. ii. 271.
-_ pumila, 2 S. ii. 252.
Anagallis, iv. 23.
Anagyris foetida, vi. 499.
——indica, vi. 499 ; vii. 245 ; 2S. ii. 264.
Analysis of the soil of the Society's garden, 2 S. iii. 36.
Ananas Antigua aurantiaca, 2 S. i. 9. rubra, 2 S. i. 16.

- Jamaica purpurea, 2 S. i. 32.
——malabarica, 2 S. i. 9. ordinaire, 2 S. i. 29. ovale, 2 S. i. 29.
——providentia, 2 S. i. 10.
—— sans épines, 2 S. i. 9.
—— semiserrata, 2 S. i. 8.
viridis inermis, 2 S. i. 7.
Ananassa bracteata, 2S. i. 6.
——debilis, 2 S. i. 4, 6.
lucida, 2 S. i. 4.
sativa, 2 S. i. 4.
Anchovy pear, v. 98.
Anchusa italica, vii. 40.
Anderson, David, Esq., vii. 199.
Anderson, Mr. David, v. 69 ; notice of a plum exhibited by him, iv. 207.
Cun account of the Montagu Cantaloup melon, with a description of the method by which it was obtained, iv. 318.
Anderson, George, Esq., i. 354, 476; ii. 280, 347 ; iii. 358 ; iv. $290,292,294$; vi. 467 , 470,472 ; vii. $419,470,475,476,481$, 493, 497; imported the Tulipa Clusiana, i. 334 .
account of a method of forcing vines and nectarines, ii. 245.
tribute to his memory, ii. 280 .
of ripening grapes by dung-heat, drawn up by him, ii. 330 .
Anderson, Mr. John, account of the New Zealand spinach (Tetragonia expansa), iv. 488 ; noticed, vi. 577.
account of his method of growing early celery, v. 492.
Anderson, Mr. William, i. 135 ; on the introduction and cultivation of a variety of Azalea indica, ii. 259.
Andreossi, vi. 40.
Andrews, iii. 101, 224 ; iv. 288, 290, 299 ; v. 469,471 ; 2 S. i. 544.

Andromachia acaulis, 2 S. iii. 154.
——_ igniaria, 2 S. iii. 154.

- solidaginea, 2 S . iii. 155.

Andromeda, 2S. i. 465.
——arborea, 2 S. ii. 260.
floribunda, 2 S. ii. 260.
polifolia, 2 S. ii. 260.
Aneilema Sinicum, vi. 79.
Anemone, cultivation of, iv: 374.
—— vitifolia, 2 S. ii. 264.
Angerstein, John Julius, Esq., iv. 89.
Angolam, v. 120.
Anguillara, iii. 343.
Anigozanthus flavida, i. 327.
grandiflora, i. 327.
Angræcum luridum, vi. 86.
Anigosia flavida, whence brought, i. 327.
Animals, domestic, Societies for the improvement of, established throughout the British empire, i. 2.

- carnivorous and herbivorous, their expulsion from the habitations of man not easily accomplished, i. 41; their power in warm and thinly inhabited countries, i. 42.

Anisophylleia laurina, v. 446.
Anneslea spinosa, iii. 32.
Annual plants, methods of applying manure to them, i. 6.
them, 2 S. i. 75.
lation of sap in, 2 S. i. 323.
Anomalies, fructiferous, instances of, i. 103;
accounted for, i. 106.
Anomatheca cruenta, 2 S. ii. 269.

- juncea, i 323.

Anomaza excisa, i. 323.
Anona Cherimolia, v. 102.
\longrightarrow glabra, 2 S. ii. 259.
—— longifolia, v. 101.
——muricata, v. 95.
_- palustris, v. 95.
——punctata, v. 101.
__reticulata, v. 94.
—_ senegalensis, v. $92,443$.
——squamosa, v. 94, 402.
Anstice, Mr. George, notice of a plan by, for heating stoves, iii. 121.
Anson, Viscount, vi. 440 ; 2 S. i. 67.
Anthemis artemisiæfolia, iv. 327.
Anthemis grandiflora, iv. 326, 328.
stipulacea, iv. 327.
Anthericum bicolorum, i. App. 21.
serotinum, i. 328.
Anthocercis viscosa, 2S. ii. 247.

Antholyza æthiopica, i. 324.
——mthopica, β, i. 324.

- floribunda, i. 324.
fulgens, i. 323.
ringens, i. 324.
vittigera, i. 324.
Antidesma, v. 447, 463.
Antoine, Mr. J., fruit trees received from, 2 S . ii. 414.

Antrobus, Sir Edward, 2 S. i. 540, 541, 542, 543.

Awtos devסpov of Diosc., vi. 35.
Apartado, Marquess d', ii. 156.
Aphides, hints for the destruction of, i. 297.
Aphylax spiralis; i. 271.
Apios tuberosa, iv. 445.
Apium glaucescens, 2 S. iii. 158.

- graveolens, iii. 71 ; vii. 43.

Aplopappus stoloniferus, 2 S. iii. 145.
Aponogeton distachyon, 2 S. ii. 268.
Apothecaries' Garden at Chelsea, iv. 330.
Apple, Assyrian or Median, Roman name of the citron, iii. App. 4.
of Sodom, vi. 53.
Mr. Knight's experiment to raise from seed, i. 34.
no English fruit capable of attaining a higher degree of perfection, i. 63.

- varieties cultivated in Mr. Swainson's garden, exhibited, i. 66.
- account of some varieties, of which grafts were commanicated to the Society, i. 226.
- Twenty-two varieties known to the Romans, i. 152.
premium proposed to be given for raising
better and more productive varieties of, i.
App. 2.
__ with singular blossoms, iv. 136.
- Golden, iii. 343.
- account of a collection of Norman, ii. 298.
- method of keeping, ii. 399.
- description of four seedling dessert, iii. 263.
- sorts exhibited in 1818, iii. 310.
description of some of the best varieties of Irish, iii. 452.
- account of some of the best varieties peculiar to or cultivated in the county of Norfolk, iv. 65.
- varieties of, from ringed trees, iv. 124.
- Amorous, iii. 343.

Alexander, ii. 405 ; iii. 314, 328 ; iv. 524 ; vii. 335.
figured, ii. 406.

- Alfriston, iv. 217.
- d'Api, ii. 299.

Apple, Api rouge, ii. 299.

- Arabian Pippin, ii. 298.
- Aromatic Pippin, ii. 103.
- Astrachan, red, iv. 52\%.
- Balgone Pippin, iii. 325.
- Balmanno Pippin, iii. 326.
- Baltimore, figured, iii. 120.
- Bath, iii. 324.
- Bayfordbury Pippin, iv. 528.
- Bayeux, ii. 300.
- Beauty of Wilts, vii. 336.
- Beaufin, false, i. 69.
-_Belle Bonne, iv. 68.
- Belledge Pippin, iii. 324.
——Bellefleur d'Eté, iv. 278.
Longue, iv. 278.
Oblongue, iv. 279.
- Bell's, ii. 103.
- Bere Court Pippin, v. 400.
- Black Nonpareil, iii. 325.
- Bland Rose, i. 66.
- Bernard's Baker, ii. 103.

Blenheim Pippin, iii. 322 ; 2 S. iii. 62.

Blenheim or Woodstock Pippin, vii. 334.

- Boatswain's Pippin, iii. 323.

Bossom, iv. 528.
Börsdorff, iii. 121, 323.
Brabant Bellefleur, figured, 2 S. i. 295.
Brandy, i. 229.
Breedon Pippin, iii. 268, 322 ; figured, iii. 267.

Bringewood Pippin, i. 288.
Brookes's, iv. 216.
Brown, of Burnt Island, iii. 323 ; vii. 334.

- Burr-knot, i. 65, 120 ; iii. 320.

Calville, red, i. 66.
Blanche, ii. 300 .
Rouge de Micoud, vi. 242.
——Cambusnethan Pippin, iii. 316,325 ; vii. 335.

- Canfroome, i. 229.

Caroline, iv. 66.

- Cat's Head, i. 67.
- Charles, figured, vii. 259.
- Claremont Pippin, iii. 328.

Clifton's Crab, i. 68.
Coates's, iii. 329.
Codlin, great produce of, ii. 166 .
Carlisle, iii. 320, 327.

- Irish, iii. 320.

Manx, vii. 336.

- iii. 320.
——iii.
Spring Grove, figured, i. 197.

Apple, Codlin, Summer, iii. 320. Tarvey, vii. 338. Tottenham Park, iii. 328.
Colonel Harbord's Pippin, iv. 65.
Cornish Aromatic, ii. 74.
Gilliflower, ii. 74.
-_Cortice striata, iv. 278.
Coul Blush, vii. 340.
Count Woronzoff's, iii. 328.
Court-pendu, i. 69.
plat Rougeatre, iv. 279.
Court of Wick, vii. 335; 2 S. iii. 62.
Coustard, ii. 300.
Cowring's (Cowarn's) Queening, i. 68 ; ii. 103 .

Cray Pippin, v. 401.
Crofton, iii. 321.
Dowell's Pippin, v. 268.
Downton, i. 35.
——_an excellent cider apple, i. 145. how obtained, i. 145 .

146, 228.
Mr. Knight's account of, i. 145,
Drap d'Or, ii. 299.
Dumelow's Crab (seedling), iii. 323 ; iv. 529.

Seedling, iv. 529.
Dutch Bellefleur, iii. 329.
Mignonne, 2 S. iii. 62 ; iv. 70.
Downton, ii. 186.
Early Bough, vi. 415.
Crofton, iii. 453.
Julien, iv. 216 ; v. 267.

- July Pippin, vi. 415.
- Embroidered Pippin, i. 67.
- Evans's Valuable, i. 67.

Eve, iii. 320, 324, 452.
Fall Pippin, iii. 315, 322 ; iv. 217.
large, vi. 416.
_- Fearn's Pippin, i. 67 ; iii. 103.

- Finale, vii. 259.
- Flat Green, i. 68.

Fleur de Mai, ii. 300.
Flower of Kent, i. 68.
Flushing Pippin, ii. 103.
Formosa Pippin, iii. 322.
French Crab, i. 68 ; iii. 327. Pippin, i. 67; ii. 298.
Rebel, ii. 103.
De Gèle, iii. 324.
Golden Harvey, account of, i. 229; 2 S. iii. 62.
— Knob, iii. 313, 321, 325, 363.
Mundi, i. 68.
Noble, iv. 524.
Pippin, i. 35, 67 ; ï. 103, 161,
167 ; iii. $388 ; 2$ S. ii. 109 ; iii. 62 .

Apple, Golden Fippin, decay of, i. 4. by cuttings than by grafts, i. 65.

Downton, i. 145.
in a state of decay, i.
App. 8.
iii. 87.
ing it, vi. 539.
i. 35 .

\longrightarrow Hughes's, vii. 336 new, ii. 103.
———Screveton, iv. 218.
_ Royal, i. 68.
-_Ganges, iii. 326.
——Grange, i. 228 ; iii. 321.
Gravenstein, iv. 216.
figured, iv. 523.
Green Harvey, ii. 103.
Green Leadington, ii. 103.
Green Pyramid, i. 69.
Grosse Reinette d'Angleterre, ii. 299.
Rouge Tiquettée, ii.
300.

- Hall-door, i. 68 ; ii. 103.
- Hanwell Souring, iv. 219.
- Harvey, or Dr. Harvey's, iv. 67.
- Haus Mutterche, iv. 278.
- Hawthornden, iii. 317, 320.
- Hayward's Bur-knot, or Gloucestershire Creeper, ii. 103.
-Honey Greening, vi. 415.
——Hollandbury, i. 68 ; iii. 328 ; vii. 334.
- Holland Pippin, i. 67.
- Hunt's Duke of Gloncester, iv. 525.

Incomparable Lucas's, iv. 136.
Ingestrie, red, i. 227.
yellow, i. 227.

- Irish Pitcher, iii. 320.
-Ironstone, iii. 328.
- Jubilee Pippin, v. 400.
- July-flower, Cornish, iii. 323.
- Juneating, red, iii. 319.
——white, iii. 319.
- Kentish Pippin, i. 67.
- Kerkan, vii. 339.
——Kerry Pippin, iii. 453.
\longrightarrow Vii. 333.
-_Kinellan, vii. 338, 341.
King of Pippins, i. 68.
Kirke's Admirable, ii. 103.
Baker, ii. 103.
Incomparable, i. 66 ; ii. 103.

Apple, Kirke's Scarlet Admirable, iii. 328; vii. 334.

- Kirton Pippin, i. 67.
_-Kitchen Reinette, ii. 103.
Lady's Thigh, i. 68.
Lemon Pippin, i. 67; ii. 103.
London Pippin, i. 67; iii. 323 ; iv.

67.

Maclean's Favourite, 2 S. ii. 108.
Malcarle, or Mela Carla, figured, vii. 259.

- Margaret, iii. 320.
—— Margil, i. 68 ; ii. 103 ; vii. 336.
- Marmail Pippin, i. 67.
- Marigold, i. 66.
- Martin Nonpareil, iii. 456.
- Mathematic Pippin, i. 67.
- Mêre de Ménage, iv. 278.
—— Minchull Crab, i. 68.
- Minier's Dumpling, i. 69, 70.
- Mollett's Guernsey Pippin, iv. 524.
- Morden Bloom, iii. 320.

Mother, iii. 320.
De Neige, iii. 316, 321 ; vii. 334.
Newbold's Duke of York, ii. 103.

- New Nonpareil, ii. 103.
- New Rock Pippin, v. 269.
- New Scarlet Nonpareil, ii. 103, 104.
- Newtown Pippin, i. 67 ; ii. 103, 285, 299 ; iii. 822.
— Newtown Late Pippin, i. 67.
- New York Pippin, i. 67.
- Nonpareil, ii. 161, 298; 2 S. iii. 62.

American, vi. 416.
Braddick's, iii. 268, 332 ;
figured, iii. 267.
Codlin, i. 68.
Formosa, iii. 322.
Margate, v. 268.
Old, ii. 103.
Pitmaston Russet, iii. 322 ;
figured, iii. 267.

- Nonpareil Ross, iii. 454.

Sweeney, iv. 526.

- Nonsuch, i. 66 ; ii. 103.
— Biggs's, i. 68.
- Norfolk Beaufin, ii. 103.

Paradise, i. 67.
Storer, i. 67.
Storing, iii. 313.
Colman, vii. 333.

- Northern, ii. 103.

Reinette, ii. 108.
Greening, vii. 333.
104. North's new Scarlet Pippin, ii. 103,

- Nutmeg, i. 68.

Apple, Orange, of the Isle of Wight, ii. 406. Isle of Wight, iii. 314, 321. Pippin, i. 145 ; ii. 103.
Domale parent of the
Downton, i. 145.
_-Ord's, account and description of, i. $\mathbf{2 8 5}$; figured, 285.

- Ord, iii. 326.
- Original, iii. 320.
- Orleans Pippin, ii. 298.
- Ortley, vi. 415.
- Oslin, iii. 320.
- Oval, i. 69.
-_ Padley's Pippin, i. 69.
- Palestine, ii. 300.
- Peach, vii. 334.
-_Pearmain, Baxter's, iv. 67. Claygate, v. 269, 402.
Foulden, iv. 69.
Herefordshire, i. 68; vii.

332.

Holt's, i. 68. Hubbard's, iv. 68. Lamb Abbey, iii. 269 ; figured, iii. 267.

Loan's, i. 68 ; vii. 335.
Scarlet, vii. 335.
Summer, i. 66.

- Pearmain, ii. 103.
- Petit Jean, iv. 525.
- Pigeon, ii. 299.
- Pigeon Cœur-de-Boruf, ii. 299.
_- Pigeon's Egg, i. 68.
_- Pigeonnet de Rouen, ii. 298.
—— Pinner Seedling, iv. 530.
Pomme Knight, iv. 279.
Pomme Poire, ii. 298, 299.
Priestley's Red Streak, ii. 103.
Quarenden, Devonshire, i. 66 ; vii. 333.

Quatre Goûts, ii. 300.
Queening, Winter, iv. 70.
Quince, i. 68.
Queen's, iii. 323.
Raspberry Pippin, i. 67.
Reinette Blanche, ii. 298, 300.
d'Espagne, iii. 317. du Canada, ii. 298, 299 ; iii.
322 ; vii. 335 ; 2 S. iii. 62. de Caux, ii. 300.
Contin, vii. 339, 341.
Dorée, Nouvelle, iv. 279.
Franche, ii. 298; iii. 317.
French, iii. 323.
Golden, i. 68; 2 S. iii. 62.
Grise, ii. 298, 299 ; iii. 325.
Kentish, i. 68.

INDEX.

Apple, Reinette, Kirke's Golden, vii. 333.
Rayée, ii. 300.
Royal, i. 68.
Rouge, ii. 299.
Sellewood's, i. 68.

- Revelstone Pippin, iv. 522.
_- Ribston Pippin, i. 67, 120; ii. 254. Account of the original tree, iii. 140.

$$
2 \text { S. iii. } 62 .
$$

—— Royal Costard, iii. 327.
Royal Reinette, iv. 529.
Royal Somerset, iii. 325.
Russet, Golden, i. 68.
Horsham, iv. 69.
Knobby, iv, 219.
Piles', i. 68.
_- Rymer, iii. 329.
——Sack, ii. 103.

- Sam Young, iii. 324, 454.
- Saul, iii. 321.
_- Scarlet Crofton, iii. 453.
Golden, iii. 343.
Shepherd's, iv. 218. seedling, ii. 103.
-_Siberian Bittersweet, vi. 547.
Harvey, i. 229.
- Simpson's Pippin, i. 286 ; ii. 285.

Snow, of Canada, iii. 316.
Spice, i. 68.
-Spitzemberg, vi. 416.
Esopus, v. 401.
_- Spring Grove Codlin, described and figured, i. 197, 198.

Crab, iii. 313.
Stone Pippin, ii. 103 ; iii. 361.
Stony Royd Pippin, v. 401.
Straat, vi. 417.
Strawberry, iii. 326.
Pippin, ï. 103.
-Striped Holland Pippin, i. 67.

- Sudbury Beauty, 2 S. ii. 109.

Summer Breeding (Broad-end), i. 69.
Pippin, i. 66 ; iii. 312.
Traveller, i. 66.
Swaar, vi. 417.
Sweet Topaz, vii. 340.
Tolworth Court, i. 68.
Transparent Crab, iii. 313.
Pippin, i. 68 ; ii. 103.
Youngsbury, iii. 312.

- Travers's, iii. 324.

Wellington, 2 S. iii. 62.
White Russet, iii. 454.
White Stone Pippin, iv. 69.
Whitmore's Pippin, i. 67.

- Williams's Pippin, i. 67, 69.

Apple, Wine, iii. 328.

- Winter Broaden, or Broadend, iv. 66.

Colman, iv. 66.
Majetin, iv. 68.
Queening, iii. 328.
_-Wise, iv. 217.
Wood's new Transparent Pippin, ii. 103,
105.

- Wormsley Pippin, i. 228 ; vii. 333.
_-Wyken Pippin, i. 67; iii. 316.
- De Wÿneghem, iv. 279.
- Tunbridge Pippin, iii. 328.
_— Two-year, ii. 103; iii. 328.
- Van Dyne, vi. 417.
——Vert Anglois, ii. 298, 299.
_- Waltham Abbey Seedling, v. 269.
- Weeping, iv. 141.
- Warwickshire Pippin, ii. 103, 104.

Apple Tree, the length of time it requires to attain maturity, i. 39.
observations on grafts from the,
i. 60 .
. requires plenty of light and air, i. 64 .
——Burr-knot, account of, i. 65. soil best agreeing with it, i. 65 .
will grow readily by cuttings, and be less liable to canker, i. 65.

- remarks on the pruning and training of standard, i. 236.
- 39 on raising them from pips, 2 S . i. 39.

App. 8.

 how raised by the French, i. ness of those raised from the early fruitful-解 on the formation of a select collection of, iii. 263.causes of decay in, iii. 291.

- superior healthfulness of scions taken from their trunks compared with those cut from the extremities, iii. 387.
thod standard, description of the method of training them, v. 186.
canker in, v. 183.
dwarf standard, upon pruning and managing them, vii. 291. in the Himalaya, 2 S. i. 465.
inorganic substances in, 2 S. iii. 53.
Apple-sauce, i. 197.
Apricose, Bunte, oder Geflecte, 2 S. i. 62.
aus dem Angoumois, 2 S. i. 71.
Frühe Muscateller, 2 S. i. 58.
Gemeine, 2 S. i. 61. grosse, 2 S. i. 61.
Hasselnussmandel, 2 S. i. 70.
Hollandische, 2 S. i. 70.

Apricose, Orange, 2 S. i. 70.
Rothe, 2 S. i. 71.
mit Scheckichten Blättern, $2 \mathrm{~S} . \mathrm{i}$. 62.

Apricot, 2 S. i. 465.
on the country where the tree grows wild, iii. App. 23.
i. a fruit well known to the Romans, i. 152 .
not esteemed by Pliny and Martial, i. 152.
__ as a stock for the Peach and Nectarine, ii. 202.
-ii. on the cultivation of, on Espalier trees, ii. 219.
conjecture respecting its native country, iv. 368.
account of the varieties cultivated in the Garden of the Society, 2 S. i. 56.

2 S. i. 465.
Albergier Ordinaire, 2 S. i. 74.
Albergier de Tours, 2 S. i. 74.
d'Alexandrie, 2 S. i. 72.
d'Alexandrie, Gros, 2 S. i. 60.
Algiers, White, 2 S. i. 59.
Almond, 2 S. i. 57, 65.
Ananas, 2 S. i. 70.
Angoumois, 2 S. i. 58.
Rothe, 2S. i. 71.
Anson, Imperial, 2 S. i. 66.
Anson's, 2S. i. 66.
Blenheim, 2 S. i. 64.
Breda, 2 S. i. 58, 69.
Dunmore's, 2 S. i. 66.

- Bredäische, 2 S. i. 70.

Brussels, 2 S. i. 57, 61, 64, 69.
Bunte, 2 S. i. 62.
Common, 2 S. i. 61.
Commun, 2 S. i. 61.
Jaune, 2 S. i. 62.

- Dunmore's, 2 S. i. 66.
——à Feuilles Panachées, 2 S. i. 62.
Frühe Muscateller, 2 S. i. 58.
Geflechte, 2 S. i. 62.
Gemeine, 2 S. i. 61.
Gros Précoce, 2 S. i. 60.
Grosse Frühe, 2 S. i. 60.
Grosse Gemeine, 2 S. i. 61.
Hâtif Musqué, 2 S. i. 58.
Hemskirke, 2 S. i. 57, 69.
Holland, 2 S. i. 70.
de Hollande, 2 S. i. 69.
Hollandische, 2 S. i. 70.
Hasselnussmandel, 2 S. i. 70.
Large Early, 2 S. i. 57, 60.
Maculé, 2 S. i. 62.

Apricot, Masculine, 2 S. i. 58.

- Brown, 2 S. i. 58.

Early Red, 2 S. i. 58. ${ }^{\text {' }}$
Early White, 2 S. i. 59.
Red, 2 S. i. 57, 58.
White, 2 S. i. 57, 59.
Michmich, iii. App. 27.
Montgarnet, 2 S. i. 57, 65.
Moorpark, i. App. 8; ii. 201. 2 S. i. 57, 63, 66.
ii on the proper stock for, ii. 19 . on the premature death of parts of its branches, 2 S . ii. 34.
P_influence of the Plum stock upon, v. 287.

Oldaker's, 2 S. i. 66.
Sudlow's, iv. 207 ; 2 S. i.
66.

Walton, 2 S. i. 66.

Musqué Hâtif, 2 S. i. 58.
Musch Musch, 2 S. i. 58; figured, 2 S. i. 72.

- De Nancy, 2 S. i. 66, 70.
—— De Nuremberg, 2 S. i. 66.
Orange, 2 S. i. 58, 70, 74.
—— Early, 2 S. 1. 74.
-_ Peach, 2 S. i. 66.
Pêche, i. App. 8 ; 2 S. i. 66 ; iv. 207.
—— Pfirsich, 2 S. i. 66.
—— De Piémont, 2 S. i. 66.
—— Précoce, 2 S. i. 58.
—— Roman, 2 S. i. 57, 61, 71.
Blotched-leaved, 2 S. i. 57,

62.

Royal, 2S. i. 57, 63, 74.
George, 2 S. i. 74.
Persian, 2 S. i. 74.
Shipley's, 2 S. i. 57, 64.
Large, 2 S. i. 64
Miss Shipley's, 2 S. i. 64.
De St. Jean, 2 S. i. 60. Rouge, 2 S. i. 60.
Temple's, 2 S. i. 66.
De Tours, 2 S. i. 66.
Turkey, 2 S. i. 58, 61, 73.

- Blotched-leaved, 2 S. i. 62.
- Large, 2 S. i. 73.

Striped, 2 S. i. 62.
Variegated, 2 S. i. 62.
-Walton Moorpark, vi. 393.
De Wirtemberg, 2 S. i. 66.
Die Würtembergische, 2 S. i. 66.
Aprikose, Die Grosse Frühe, 2 S. i. 60.
Aquariums, vi. 535.
Aquatic plants, on their management, iii. 24.

Aquatic plants, mode of warming a cistern for, i. 199 ; figured, 197.
successful method of managing,
iv. 395. plan of compartments and section of troughs for, iv. 402.
Arabis andicola, 2 S. iii. 153.
Arachis hypogæa, on its cultivation, v. 372.
Aralia racemosa, vi. 496.

- spinosa, 2 S. 259.

Arancio bianco, iii. App. 18.
-_ dolce, iii. App. 16.
dolce d' inverno, iii. App. 18.
fino della China, iii. App. 16.
a fior doppio, iii. App. 17.
forte a fior semi doppio, iii. App. 14.
a foglia di Salice, iii. App. 15.
forte, iii. App. 14.
a frutte grosse e scorza mangiable, iii. App. 15. a medolla dolce, iii. App. 15. violette, iii. App. 15.
-_ listato, iii. App. 18.

- a mazzetto, iii. App. 14.
massimo, iii. App. 17.
Melarosa, iii. App. 16.
Nanino da China, iii. App. 15.
nono dolce, iii. App. 17.
oliviforme a scorza dolce, iii. App. 17.
—_ de Rosa, iii. App. 18. stellato, iii. App. 16.
di sugo rosso, iii. App. 16.
Araucaria brasiliensis, 2 S. ii. 242, 282.
—— Dombeyi, 2 S. ii. 242, 281, 282.
—— imbricata, 2 S. ii. 237, 281.
Arbutus Andrachne, 2 S. ii. 242, 271.
- densiflora, 2 S. iii. 117, 119.
filiformis, ii. 94.
jalapensis, 2 S. iii. 126, 128.
oaxàcana, 2 S . iii. 126.
procera, 2 S. ii. 242, 260
thymifolia, ii. 94.
Unedo, 2 S. ii. 226, 242, 254, 271, 272, 274.

Scarlet, 2 S. ii. 237.
Arcedeckne, Andrew, Esq., vii. 179.
Arctostaphylos nitida, 2 S. iii. 127.
pungens, 2 S. iii. 117.
Arctotis aureola, 2 S. ii. 271.
maculata, 2 S. ii. 271.
Ardisia punctata, vi. 261.
Aremberg, Comte d', i. 47.
Arethusa bulbosa, i. 300 ; vi. 405.
-ophioglossoides, vi. 405.
secunda, i. 288.
Argenteuil, inhabitants of, chiefly supported by
the culture of Fig-trees; natural aspect of the town, i. App. 6.
Arguenila, vi. 273.
Arisæma macrospatha, 2 S. iii. 122.
Aristea capitata, i. 312.
——cyanea, i. 312.
———major, i. 312.
-_ melaleuca, i. 312 ; iv. 155.
_- spiralis, iv. 155.
Aristolochia sempervirens, 2 S. ii. 271.
Aristophanes, vi. 55.
Aristotelia Macqui, v. 105 ; vi. 499 ; 2 S. ii. 242, 254, 282.
$\xrightarrow{2}$ foliis variegatis, vi. 496.
Aristotle, iii. App. 24.
Arkwright, Richard, Esq., iii. 400; vi. 230, 232. On a method of retarding the ripening of Grapes in Hothouses so as to obtain a supply of fruit in the winter season, iii. 95 .

Arlington, Lord, vii. 562.
Armeniaca, or Apricots, so called by Pliny, i. 152 .
vulgaris variegata, 2 S. i. 62.
Arnirot Cavac, vi. 57.
Arnott, Dr., 2 S. ii. 265.
Aroma of a ripe fruit appears to accelerate the maturity of others in its vicinity, v. 228.
Arpophyllum alpinum, 2 S. iii. 138.
Arracacha acuminata, 2 S. iii. 155.
Arrach, vii. 130.
Arran, Earl of, vii. 396 ; 2 S. i. 543.
Arroche blanche, vii. 131.
-_ blonde, vii. 131.

- des Jardins, vii. 130.
——rrouge, vii. 133.
——_ foncé, vii. 133. pâle, vii. 133. très rouge, vii. 133. vert jaunâtre, vii. 131.
Artemisia, vi. 48.
Arthropodium minus, vi. 278.
Artichoke, 2 S. iii. 59.
- Jerusalem, 2 S. iii. 59.

Arum acinus, i. 267.

- bulbiferum, i. 266.
__ crinitum, i. 266 ; vi. 295.
- Dracunculus, vi. 49.
- helleborifolium, i. 266.
- muscivorum, i. 266.
- venosum, i. 267.

Arundel, Sir John, i. 104.
Arupo, 2 S. iii. 149.
Asagræa officinalis, 2 S. iii. 116.
Asclepias carnosa, vii. 16, 19.
\longrightarrow volubilis, vii. 27.
volubilis, vii. 27.

Ashburnham, Mr., 2 S. ii. 401.
Ashes, Vegetable or Wood, esteemed as a manure by the Chinese, v. 51.
Ashton, William Garfit, Esq., vii. 184, 188.
Ashworth, Mr. Thomas, notice of his mode of obtaining young Potatoes, iii. 122.
Asimina triloba, 2 S. ii. 259.
Asinina, a sort of Plum so called by the Romans, i. 153.
Asparagus, 2 S. iii. 59 ; vi. 497.
cultivation of, ii. 234.
———method of forcing, ii. 361.
modes of cultivating it.in Austria, v. $330,335$.
v. 509 . cultivation of, during the winter, . succeeds well in the sandy soil of Holland, v. 511.
L how to preserve fresh after cutting, v. 514. on a method of growing in single rows, vi. 390 . effect of late spring frost on, vi. 497. on forcing, vii. 188. scandens, 2 S. ii. 272.
Aspasia epidendroides, 2 S. iii. 142.
Aspidistra punctata, vii. 66 .
Aspidium aculeatum, iii.: 341.
——adscendens, iii. 341.
——exaltatum, iii. 341.

- atomarium, iii. 341.
—_dilatatum, iii. 341.
———elatum, iii. 341.
———fraxinifolium, iii. 341.
lobatum, iii. 341. trifoliatum, iii. 341. noveboracense, iii. 341.
Asplenium melanocaulon, iii. 341 .
- præmorsum, iii. 341.

Ass's Cucumber, vi. 52.
Astel, Capt., vii. 538, 544.
Aster, Mr., vi. 415.
Aster argophyllus, 2 S. ii. 240, 247.
-rupestris, 2 S. iii. 156.
Astragalus chlorostachys, vii. 249.

- geminiflorus, 2 S. iii. 153.

Astranthus cochinchinensis, vi. 270.
Astrapæa Wallichii, vi. 65 ; vii. 390.
Asuarina acida, iv. 58.
Athol, Duke of, account of 5 kinds of Larch sent by him to the Society, iv. 416.
Atkinson, William, Esq., v. 495 ; vi. 159, $160,250,383,386,543$; vii. $204,568,582$. by, iv. 522.
tion of Strawberry beds, v. 189.

Atkinson, William, Esq., notice of a Grape exhibited by, v. 263.
notice of specimens of a new Strawberry raised by him, v. 399.
directions for the management of hothouse fire-places, that are constructed with double doors and ash-pit Registers, v. 467.

British Oak, 2 S. i. 336.
Atlee, Mr., 2 S. i. 543.
Atriplex Halimus, 2 S. ii. 225, 226. hortensis, vii. 130.
—— hortensis, vilba, vii. $130,131$. nigricans, vii. 132. pallidè virens, vii. 131. ruberrima, vii. 133. rubra, vii. 130, 133.
portulacoides, 2 S. ii. 272.
Artocarpus integrifolia, v. 108.
Aubergine, vii. 83.
$\xrightarrow{\text { Aiolette longue, vii. } 85 .}$
—— ronde, vii. 85 .
Aublet, v. 101.
Aubletia Tibourbou, effect of ringing it, iv. 128.

Auckland, Earl of, Plants received from, 2 S. ii. 416.
Aucuba japonica, 2 S. ii. 242, 251, 257.
Audibert, M., v. 3, 36 ; vi. 345,357 ; 2 S. i. 61.

411, 414.
Augustenberg, Duke of, iv. 523.
Auliza ciliaris, i. 294.
Auricula, powdered, iv. 19.
Austin, Mr. Robert, iv. 286, 456.
Averrhoa acida, v. 115.
ACarambola, v. 115 ; vii. 390. figured, 2 S. ii. 30.
its cultivation, $i b$.
Avicenna, vi. 38.
Avocado, v. 96.
—_Pear, effects of temperature on, iii. 463.

Axcinena, Messrs., 2 S. ii. 407.
Ayer-Ayer, v. 110.
Aylesbury, Marquess of, iii. 328; 2 S. i. 201.

Ayres, Mr. Richard, on the management of Plants belonging to the genus Citrus, iv. 306.

Thomas, his description of three remarkable Gooseberry plants, v. 490.
Azalea, iv. 21.

Azalea, iv. 21.

Azalea calendulacea, 2 S. ii. 259.
-_ glauca, vi. 494.
———indica, 2 S. i. 82 ; 2 S. ii. 251. on the introduction and cultivation of a variety of, ii. 259.
133.

- phœnicea, 2 S. ii. 251.
——_ nudiflora, vi. 494.
pontica, vi. 498.
sinensis, 2 S. ii. 252.
versicolor, vi. 494.
viscosa, vi. 494, 498.
Azaleas, American, iv. 24.
Azara dentata, 2 S. ii. 282.
Azonualala, v. 93.
Azorella aretioides, 2 S. iii. 157.

B.

Batrs, 2 S. i. 263.
Babiana rubro-cyanea, iv. 19, 155.
—— stricta, iv. 19.
—— \quad, i. 323.
-_ sulphurea, iv. 19.
villosa, iv. 19.
Baccharis alpina, 2 S. iii. 156.

- humifusa, 2 S . iii. 156.
——microphylla, 2 S. iii. 160. thyoides, 2 S. iii. 156.
Backhouse, Mr. James, Apples sent by,iii. 314 . 419.

Messrs., vii. 236, 237 ; 2 S. i. 226, 228, 229, 234, 235.
Bacon, Anthony, Esq., vii. 203, 204.
Lord, i. 4; iv. 224, 226 ; 2 S. iii. 200.
Badingian, vii. 83.
Badinjan, vii. 83.
Bæometra columellaris, i. 330.
Bagot, Lord, iii. 303; iv. 533 ; vi. 161 ; 2 S. i. 11,169 ; ii. 168.
account of the cultivation of the Mespilus japonica as a fruit-bearing tree, iii. 299.

Bahmia, vi. 53.
Bailey, Mr. Henry, vi. 163 ; of Nuneham, 2 S. ii. 455.

- Messrs., vii. 582 ; 2 S. ii. 435.

Bajazet II., vi. 44.
Baker, Capt. Thomas, vi. 323 ; vii. 26, 399.

- William, Esq., apple sent by, v. 528.

Bál Cabaghi, vi. 57.
Baldwin, an American botanist, v. 251, 252. Mr. Thomas, iv. 75, 78 ; v. 206, 264 ; vi. 383,387 ; 2 S. i. 10 .

Baldwin, Mr. Thomas, notice of a Queen pine-apple exhibited by him, iii. 118.
kale, without covering the for forcing seaplants with dung or litter, iv. 63; applicable to asparagus and rhubarb, iv. 64.
weight of large pine-apples grown by him, v. 206.
Balfour, Mr. William, description of a pear tree on which the operation of reverse grafting had been performed, v. 396.
Balm, 2 S. iii. 61.
-_ of Gilead, vii. 42.
Balsam, on its cultivation, iii. 127, 406.
\longrightarrow propagation of, by cuttings, 2 S. i. 151. experiments on, with coloured infusions, 2 S. ii. 41.
Bamboo, 2 S. iii. 154.
Bambusa, some species of, dwarfed exceedingly by the Chinese, iv. 230.
Banana, v. 80, 83, 465.
Banane musquée, v. 85.
Bañgkuda, v. 117.
Banks of rivers, on planting moist alluvial with fruit trees, vii. 135.
Banks, Sir Joseph, i. Preface, i. 247, 271, $273,285,287,288,304,305,308,315$; ii. Preliminary Observations; ii. $19,33,85,95$, 115,120 , 121 ; iii. $165,180,301,313$; iv. Preface ; iv. $330,457,483,489,490,515$, 516,556 ; v. 452, App. 2 ; vi. 161, 168, 213, 472,474 ; vii. $150,499,510 ; 2$ S. i. 519 , 246. on the introduction of the potato, and on the hill-wheat of India, i. 8. duction of the potato into Great Britain, i. 8 . _ hints respecting the proper mode of inuring tender plants to our climate, i. 21 .
on the revival of an obsolete mode of managing strawberries, i. 54.
on the American cranberry, i. 75. on the horticultural management of the Spanish chesnut tree, i. 140 . on the forcing-houses of the Romans, and list of fruits cultivated by them, i. 147. his account of the Spring Grove Codlin, i. 197.
crop of figs that grow on the new shoots, i . 252 . tural observatio his selection of horticulApp. 4.
appearance of the Aphis lanigera, or appletree insect in this country, ii. 162.
Banks, Sir Joseph, notice of apples sent by, iii. 121.
notice of sweet potatoes sent by him, iii. 365.
Banks, Lady, iv. 172, 173, 515.
Banksia ericifolia, 2 S. ii. 247. littoralis, 2 S. ii. 247.
oblongifolia, 2 S. ii. 247.
Banyan tree, on the treatment of, in a conservatory, v. 374.
Baptisia nepalensis, vii. 245.
Barbe de Capucin, iii. 138.
Barca, v. 109.
Barclay, Charles, Esq., 2 S. i. 542 ; 2 S. ii. 124 .

Robert, Esq., v. 415 ; vi. 294, 332 ; vii. $68,153,252$; 2 S. i. 6.

Barenkeena, vii. 83.
Bark, Orange, 2 S. iii. 158.

- Red, 2 S. iii. 158.
of the vine, experiments by removing it to hasten the maturity of the fruit, i. 108.
beds, improved by the addition of yeast, 2 S. i. 474.

Stove, in the garden of the Society, vi. 374.

Barker, G., Esq., plants received from, 2 S. ii. 418, 419.
Barkeria spectabilis, 2 S. iii. 142.
Barley from seed grown on a sandy soil in England found to be earlier in the hilly parts of Scotland than the native grain, i. 33.
comparative statement of the time it requires to ripen in the northern parts of France and Russia, i. 88.

- highest range of its cultivation on the Andes, 2 S. iii. 153.
- experiments with, in steeping the seeds, 2 S. iii. 204.
Barnadesia spinosa, 2 S. iin. 150, 154.
Barnard, Edward, Esq., vi. 95 ; 2 S. iii. 35. notice of specimens of Piccotee Carnations exhibited by him, iii. 360 .

268. Joun, Esq., apple exhibited by, v. 268.

Barnet, Mr. James, an account and description of the different varieties of strawberries cultivated in the Society's garden, vi. 145.
M Mr. Peter, 2 S. i. 230.
Barometer, high, vii. 352,362 ; 2 S. i. 175, 194 ; 2 S. ii. 75.
very high, 2 S. i. 298,$484 ; 2$ S. ii. 534 ; 2 S. iii. $228,234$.

Barometer, great rise of the, vii. 352.
very low, vii. $352 ; 2$ S. i. $298 ; 2$
S. ii. $133,135,148,321,338,530,532,546$, 550 ; 2 S. iii. 2, 20, 22, 212, 214.
Barr and Broores, iii. 426 ; iv. 333, 339.
Barr, Col., 2 S. ii. 170.
Barrere, i. 347.
Barrett, Mr., vii. 150.
Barrington, Hon. Mrs., i. 12, 298 ; vii. 19.
Barringtonia speciosa, vii. 391.
Barron, Mr. James, 2 S. ii. 455.
Barrow, John, Esq., notice of the grapefruited citron presented by him, iii. 358.
Barton, Dr., iii. 108.
Bartsia pallida, vi. 290, 291.
Baselman, Major, i. 363.
Basington, Mr., vii. 553.
Basella nigra, v. 54.
Bastard, Lady Bridget, i. 177.

- Pollexfen, Esq., his remark respecting orange and lemon trees grown in England, i. 177.
Battata, or sweet potato, i. 10, 11.
Bateman, Lord, iii. 178.
Bateman, James, Esq., particulars respecting the mode of cultivation, \&c. of the Averrhoa Carambola, 2 S. ii. 30.
Bates, Mr. William, v. 490.
Bath Horticultural Society, 2 S. ii. 445.
Bath, Marquess of, iii. 122.
Bathurst, Earl, vi. Preface.
Batty, Dr., i. 104.
Bauer, Mr., ii. 38, 178.
Bauhin, Caspar, i. 349 ; iii. 349, 353 ; v. $9,11,18,28$; vii. $9,420,423,424,440$, 441.

Baumann, Mr. Jacob, v. 335, 511. on the modes of cultivating asparagus in Austria, v. 330.

- Messrs., 2 S. i. 72, 145, 271, 284 ; 2 S. ii. 411.
Baxter, Mr. William, iv. 128.
fig tree, iii. 433.
Bay, sweet, 2 S. ii. 226, 244, 247.
- tree, cultivated upwards of two centaries in England, i. 23.
- white, or sweet, iii. 201.

Bead tree, vi. 38.
Beadon, Rev. Frederick, 2 S. ii. 226, 232, 251, 295.
Beale, Daniel, Esq., i. 236.
Bean, an account of its varieties, 2 S. i. 369.
——Broad, 2 S. i. 369.
——Bog, 2 S. i. 369.
——Dutch Long Pod, 2 S. i. 371, 373.
-Dwarf Cluster, 2 S. i. 369.

INDEX.

Bean, Dwarf Fan, 2 S. i. 369.
Dark Red, 2 S. i. 373.
——Early Asper, 2 S. i. 370
__ Early Lisbon, 2 S. i. 371.
Early Mazagan, 2 S. i. 370, 373; 2 S. iii. 59 .

Fan, 2 S. i. 369.
à Fleurs pourpres, 2 S. i. 370.
Green Genoa, 2 S. i. 372.
Green Long Pod, 2 S. i. 372, 373.
Green Nonpareil, 2 S. i. 372.
Green Windsor, 2 S. i. 373.
Kentish Windsor, 2 S. i. 372.
Lisbon, 2 S. i. 371.
—— Long Pod, 2 S. i. 371. Common, 2 S. i. 371. Dutch, 2 S. i. 371. Early, 2 S. i. 371. Green, 2 S. i. 372, 373. Hang Down, 2 S. i. 371. Large, 2 S. i. 371. Sword, 2 S. i. 371. Windsor, 2 S. i. 371.
_-Mazagan, 2 S. i. 370.
—— Early, 2 S. i. 370, 373.
-De Mazagan, 2 S. i. 370.
Moon, 2 S. i. 371.
Mumford, 2 S. i. 372.

- Mumford, 2 S. 1. 372
- Naine à Chassis, 2 S. i. 369.
—— Purple Blossomed, 2 S. i. 370.
- Red Blossomed, 2 S. i. 370.

Sandwich, 2 S. i. 371.
Scarlet Blossomed, 2 S. i. 370.

- Spanish, Small, 2 S. i. 372.
——Stidolph's New Early, 2 S. i. 370.
- Toujours Verte, 2 S. i. 372.
_- Vert de la Chine, 2 S. i. 371.
Verte, 2 S. i. 372.
Violette, 2 S. i. 371.
White Blossomed, 2 S. i. 370.
- Windsor, 2 S. i. 372,373 ; 2 S. iii. 59.

Broad, 2 S. i. 372.
Green, 2 S. i. 372, 373.
Kentish, 2 S. i. 372.
Red, 2 S. i. 373.
Taylor's, 2 S. i. 372, 373.
_- Wrench's Early Moon, 2 S. i. 371.
Scarlet Rumner (Phaseolus), 2 S. iii. 59.

- French, 2 S. iii. 59.
——White, vi. 55.
Beans, Experiments with, in steeping the seeds, 2 S. iii. 206.
Beaton, Mr. D. On the cultivation and management of the Cactus tribe, 2 S . ii. 459.

Beattie, Mr. William, vi. 52, 170. Description of a Vinery, and mode of training practised in it, v. 495.
Beauchamp, George, Esq., specimens of a Walnut sent by him, iv. 517.
Beaufortia decussata, 2 S. ii. 247.
Beauvoir, R. B. De, 2 S. i. 543.
Beauvois, Baron De, v. 444, 460.
Beaver Wood, iii. 201.
Beck and Allan, Messrs., iv. 384.
Bedegian, vii. 83.
Bédéguar, ii. 242.
Bedford, Duke of, vi. 290 ; 2 S. ii. 226, 459.
Beech, i. App. 17; 2 S. ii. 252.
Bees, how useful in Cherry-houses, i. 151.
Beet, account of the cultivated species and varieties, iii. 272.

- Bassano, 2 S. iii. 52, 59.
- Castelnaudary, 2 S. iii. 59.
—— Dwarf Red, iii. 274.
-_ English Sea, vi. 578.
- Green, iii. 283, 284.
_- Green-topped Red, iii. 277.
—— Irish Sea, vi. 578.
—— Large-rooted Red, iii. 273.
_ Large Yellow, iii. 277.
_- Long-rooted Red, iii. 273.
_ rave, iii. 272.
——Champêtre, iii. 280.
—— Red-stalked Leaf, 2 S. iii. 59.
-_Sea, vi. 578.
_- Small Yellow, iii. 278.
——Striped, iii. 285.
——Turnip-rooted Red, iii. 275.
——White, iii. 283.
——Whyte's Dark Red, 2 S. iii. 52, 59.
Yellow, large roots of, exhibited, iii. 283.
stalked Leaf, 2 S. iii. 59.
stemmed, 2 S. iii. 52.
Befaria discolor, 2 S. iii. 128.
—— lævis, 2 S. iii. 128.
——mexicana, 2 S. iii. 120. phillyreæfolia, 2 S. iii. 158.
Begonia Evansiana, used as an esculent, iv. 407.
—— longirostris, 2 S. iii. 155. trachyptera, 2 S. iii. 158.
Belamcanda chinensis, i. 313.
Belfield, Rev. F., 2 S. i. 534.
on the cultivation of Childanthus fragrans, 2 S. ï. 220.
Bellardi, Signor Carlo, iv. 261.
Belle-Dame (a name of Orache), vii. 130.
Benham, Mr. Cearles, notice of Oranges exhibited by, iii. 123.

INDEX.

Bentham, George, Esq., vi. 295 ; 2 S. i. 457 ; ii. 438 .
on hardy ornamental plants, raised in the Garden of the Horticultural Society, 2 S. i. 403, 476 ; on the Salvia patens, 2 S. ii. 222.

Plants received from, 2 S. ii. 416, 417, 419.
Benthamia fragifera, 2 S. ii. 240, 242, 264. figured, 2 S. i. 457.

Benyon, Benjamin, Esq., vi. 174.

Berberis, 2 S. i. 465.
\longrightarrow Aquifolium, 2 S. ii. 242, 260.
aristata, 2 S. ii. $240,264$.
asiatica, 2 S. ii. 240, 264.
conferta, 2 S. iii. 151.
dealbata, 2 S. ii. 250 ; 2 S. iii. 147.
dulcis, 2 S. ii. 282.
empetrifolia, 2 S. ii. 282.
fascicularis, vi. 66 ; 2 S. ii. 242, 262 ;
2 S. iii. 117.
glauca, 2 S. iii. 150, 151, 160.
glumacea, 2 S. ii. 242, 262.
gracilis, 2 S. iii. 124, 143.
Hartwegii, 2 S. iii. 121.
lanceolata, 2 S. iii. 124.
loxensis, 2 S. iii. 150.
napalensis, 2 S. i. 461.
pallida, 2 S. iii. 124.
pinnata, vi. 66.
tenuifolia, 2 S. iii. 116.
121.
i. vulgaris, notice of sweet variety of, iv. 407.

Berberry, supposed to cause mildew in wheat, ii. 85 .

Bergamaschi, Professor, vi. 537.
Berikhach, iii. App. 26.
Berikokka, iii. App. 25.
Beringella, vii. 83.
Berkach, iii. App. 26.
Berkeley, Rev. Mr., plants received from, 2 S. ii. 416.
Bermudiana palmæfolia, i. 310.
Bertoloni, Dr., vii. 422.
Bertuch, vi. 571.
Besabis, country plum, v. 90, 451.
Beshorough, Earl of, v. 220.
Besi (Averrhoa), v. 115.
Besler, iii. 348, 349 ; vii. 423.
Bessera elegans, 2 S. iii. 118.
Beta Cicla, iii. 283.

- maritima, vi. 578.
$\overline{\text { pet vulgaris, iii. } 283 .}$
Betterave, la Disette Blanche, iii. 282.
la Disette Rouge, ou Rose, iii. 282.

Betterave, Grosse Blanche de Prusse, iii. 282.
Hors-de-terre, iii. 281.
———Jaune, iii. 277, 279.
——_Jaune de Castelnaudari, iii. 276.
——— Jaune à Sucre, iii. 279.
——— Rouge de Castelnaudari, iii. 276.
——— Rouge Grosse, iii. 273, 277.
Rouge Petite, iii. 275.
Rouge Ronde Précoce, iii. 275. Sur-terre, iii. 281.
Beyas fasiula, vi. 55.
Biasoletto, Dr., plants received from, 2 S.
ii. 411, 413.

Bickes, M., 2 S. iii. 202.
Biddulph, Mrs. Myddleton, 2 S. i. 546.
Bieberstein, Marschall Von, vi. 89, 90.
Bigarade, iii. App. 14.
——à écorce douce, iii. App. 15.
__ violette, iii. App. 15.
Biggs, Mr. Arthur, i. 269.
his account of some new
apples exhibited, i. 63.
Bignonia capreolata, 2 S. ii. 242, 260. grandiflora, 2 S. ii. 242, 252. pallida, vii. 57. radicans, 2 S. ii. 242.
_ venusta, vii. 392 .
Bilva, v. 118.
Billardiera longiflora, 2 S. ii. 247.
Birchi, v. 119.
Birci, v. 119.
Bishop of London, iv. 337.

- Mr. Thomas, iv. 509 ; vi. 172.

Bisset, Mr., 2 S. i. 227, 234, 235.
Black, Dr., vii. 583.
Black plum of Sierra Leone, v. 455.
Blackburne, John, Esq., i. 275, 277, 308.
Blackening garden walls, vi. 452.
Blackwellia fagifolia, vi. 269.
Blade, Mr., vii. 16.
Blagden, Sir Charles, ii. 134.
Blatr, Mr. T., 2 S. i. 534.
Blake, Mr. Thomas, vii. 163. his method of treating the Azalea indica, iv. 132.

- on propagating choice

 dahlias by grafting, iv. 476.Camellias, 2 S. i. 82.
Blancard, Mr., iv. 333.
Blanching-pot for sea-kale, figured, i. 18.
Bland, Michael, Esq., apple exhibited by, จ. 400 .
Blandford, Marquess of, i. 290.
Blandfordia nobilis, i. 335.
Blantyre, Lord, 2 S. ii. 525.

INDEX.

Bleaching powder, 2 S. iii. $45,46,48,50,51$, 98, 99.
Blechnum australe, iii. 341.

- boreale, iii. 341.

Bléte, iii. 285.
Bletia, analysis of, 2 S. iii. 54.
———hyacinthina, 2 S. ii. 252.
Blighia sapida, v. 90.
Blight, vi. 5.
Blimbing, v. 115 ; 2 S. ii. 30.
Blite, 2 S. iii. 201.
Blols, Sir Charles, iii. 17.

- Sir John, iii. 17.

Blossom buds, on the transplantation of, ii. 7.
Blossoms, method of setting them in cherryhouses, i. 151.
Blume, Dr., vii. 71.
Blunt, Joseph, Esq., 2 S. iii. 35.
Bobart, Jacob, Esq., i. 346 ; ii. 274.
Bobartia indica, i. 313.

- juncea, i. 313.
spicis, i. 313.
Bolleav, Lieut., iv. 136.
Boehm, Edmund, Esq., iii. 102.
Bog plants, plan of compartments and section of troughs for, iv. 402. 395.

Boilers of various constructions, figured, vii. 570.
__ principles of their construction relatively to the extent of surface of glass, $2 \mathrm{~S} . \mathrm{i} .203$.
Bolangena, vii. 83 .
Boletus, 2 S. iii. 53.
lacrymans, ii. 82.
squamosus, ii. 83.
Bolton, Mr. James, i. 277.
Bonapartea, i. 270.
Bond, Thomas, Esq., his mode of managing strawberries, vii. 90.
Bone-ash, 2 S. iii. 96, 100.
Bone-dust, 2 S. iii. 45, 48, 50, 51, 97.
Bonne-Dame (a name of Orache), vii. 130.
Bonnet, M., ii. 149 ; iii. 351 ; v. 242.
Bonpland, vi. 475,477 ; vii. 49 , 51 ; 2 S. ii. 223.
Bontius, v. 86.
Boolesse, i. 155.
Boone, Mr., 2 S. i. 546.
Booth, Mr. W. Beattie, 2 S. ii. 226, 233, 455. Journal of Meteorological Observations made in the garden of the Society during the year 1826, vii. 102. 1827, vii. 346.
1828,2 S. i. 111. 1829,2 S. i. 171. 1830,2 S. i. 297. upon the species and varieties of Camellia and Thea, vii. 519.

Booth, Messrs., 2 S. ii. 411.
Воотнву, Sir Brooke, i. 269, 292, 295, 301. Extract of a letter from, respecting some improvements in gardening, ii. 222.

Boothia, 2 S. i. 405.
Borage, 2 S. iii. 52, 61.
Borders for peach trees, iv. 81.
\longrightarrow for fruit trees, watering of, 2 S. ii. 55. formation of, 2 S. ii. 55. cropped and uncropped, respective temperatures of, 2 S . ii. 60 .
Borecole, Green, ii. 310 ; v. 10.
Large-ribbed, vi. 565.
Neapolitan, vi. 568.
Portugal, vi. 565.
Purple, ii. 312; v. 10.
Variegated, ii. 313.
Borghese, Prince Antonio, iii. App. 6.
Borone, Francesco, i. 283.
Borrer, Mr. William, iv. 466.
Bosc, M., v. 4.
Botan, vi. 468, 487.
Bouche, M., v. 4 ; vii. 421.
Bougainville, v. 126, 251 ; 2 S. i. 330, 331.
Bouguer's table of rays reflected from glass, i. 163 .

Boursault, M., iv. 172 ; vi. 475.
Boussingaultia baselloides, 2 S. ii. 282.
Bouvardia triphylla, 2 S. ii. 250.
\longrightarrow its cultivation, vii. 501.
Bowers, Mr. John, description of a nectarine tree at West Dean House, v. 523.
the bug and seal directions for destroying 117.

Bowles, Capt., v. 252.
Bowlesia acutangula, 2 S. iii. 156.
Box for protecting plants during sea voyages, figured, v. 199.
Box tree, i. App. 21.
Boys, John, Esq., seedling apple exhibited by, v. 268.

Bradierry, Mr. William, account of his mode of cultivating the water-cress, iv. 537.

Braddick, John, Esq., iii. 268, 283, 324, 326 ; iv. 513 ; v. 65, 406, 407, 411. account of Braddick's American peach, ii. 205. on the cultivation of the true samphire, ii. 232. on the treatment of the Cactus opuntia, or Priekly pear, ii. 238. communications from respecting the keeping of nuts, apples, and pears, ii. 399.

INDEX.

Braddick, John, Esq., apples sent by him, iii. 317.

notice of a seedling
Hamburgh grape exhibited by him, $\begin{array}{l}\text {, } v .54 . \\ \text { notice of a mode of }\end{array}$
preserving grapes, iv. 143.

iv. 520.
pear exhibited by,
account of a compo.sition for the destruction of insects on fruit trees, vi. 541.
v. 201.
on grafting vines,
v. 269.
apple exhibited by,
v. on a wash for fruit
trees, v. 319.
v. 402.

Bradley, Richard, v. 63.
2 . Mr., gardener to the Eari of Arran, 2 S. i. 543.
Bramble, 2 S. i. 465.
Brand, Hon. Thomas, iv. 52.
Brandt, i. 342.
Bransby, Rev. John, vi. 577; on the cultivation of Tetragonia expansa, v. 282.
Brass, Mr. Wilitiam, v. 448.
Brassavola glauca, 2 S. iii. 116, 141. nodosa, vii. 70.
venosa, 2 S. iii. 136, 142.
Brassia brachiata, 2 S. iii. 141.
-guttata, 2 S. iiii. 141.
Brassica, memoir on the different species, races, and varieties of the genus, v. 1 .
asperifolia, v. 26.
campestris,
v. $20.21,23,30,42$.
Napo-brassica, v. $24,25$.
communis,
produce of oil, v. 41.
 xvii

Brassica fimbriata viridis, v. 11.
—— gongylodes, v. 18 ; vi. 53.

- napella, v. 30.
—— Napo-brassica communis, v. 25.
Napus, v. 23, 26, 27, 30, 42.
of, i. 26.
esculenta, v. 32.
oleifera, v. 22, 23, 31. produce of oil, v. 41.
- oleracea, v. $3,21,30,39,40$. acephala, v . 7.
fimbriata, v. 297. produce
of oil, v. 41.
palmifolia, v. 11. fimbriata purpu-
rascens, v . 11.
bullata, v. 13.
var. bullata aurata, v. 14.
var. bullata gemmifera, v. 14 . var. bullata humilis, v. 14. var. bullata major, v. 14. var. bullata oblonga, v. 14. var. bullata precox, v. 14. var. bullata Turionensis, v.

14.

var. bullata vulgaris, v. 14. botrytis, $\mathrm{\nabla}$. 19. var. botrytis asparagoides, v.
20. var. botrytis cauliflora, v. 19,
39.
var. botrytis cymosa, v. 20. sylvestris, v. 4. acephala fimbriata versicolor,
v. 11.
var. costata, v. 12, 20.
var. costata nepenthiformis,
figured, v. 13.
capitata, v. 15.
var. capitata conica, v. 16.
var. capitata elliptica, v. 16.
var. capitata depressa, v. 16.
var. capitata obovata, v. 16. var. capitata spherica, v. 16.
v. 18.
var. caulo-rapa purpurascens,
v. 18.
var. caulo-rapa communis,
v. var. caulo-rapa, v. 17, 24.
precox, v. 33, 34.
produce of oil, v. 41.
quercifolia, v. 10.
ramosa, v. 9.
rара, v. 19, 21, 26, 27, 31, 36.

INDEX.

Brassica rapa depressa alba, v. 28. flavescens, v. 28. nigricans, v. 28. viridis, v. 28.
oblonga, v. 28, 32.
oleifera, v. 29, 30.
rubra, v. 10.
sabellica, v. 10.
striata, v. 34.
tophosa, v. 11.
vulgaris, v. 9.
viridis, v. 9.
\longrightarrow purpurascens, v. 9.
washitana, iv. 444.
Bravoa geminiflora, 2 S. iii. 122.
Bree, Rev. William Thomas, 2 S. ii. 351.
exhibited by him, iv. 219.
Breedon, Rev. John Symonds, iii. 268.
by, v. 400.

$$
\text { Dr., iii. } 322 .
$$

Breqse, Mr. John, on a method of forcing peaches and nectarines, principally by dungheat, v. 218.
pine-apples with bottom-heat from dung vi. 118.

Brettonerie, La, 2 S. i. 71, 73, 263.
Brevoort, Mr., vi. 411, 414.
Brewer, Mr., 2 S. i. 546.
Breynius, iv. 329.
Bridden, Mr. William, 2 S. i. 546.
Bridaes, Sir Harford Jones, vii. 586 ; 2 S. i. 325.

Bridgewater, Countess of, vi. 567 ; vii. 213.
Brinion, iv. 329.
Brinjall, a variety of the common egg-plant, ทi. $83 ; 2 \mathrm{~S}$. iii. 243.
it directions for cultivating and cooking it, vi. 116.
Brisbane, Sir Charles, vi. 309.
Broccoli, v. 20.
—_ means of preserving in winter, ii. 304. description of the different varieties, and mode of cultivating them, iii. 161.

- Autumnal, iii. 161, 162.

Cape, mode of growing, iv. 559.
Cauliflower, iii. 166.
Chappels, 2 S. iii. 52, 60.
Cream-coloured, iii. 165.
Dwarf Brown Close-headed, iii. 165.
Early Purple, iii. 163.
culture of, i. 116.
hints relative to the citur of, i. 116. introduced from the Cape of Good Hope, i. 117.

Broccoli, Early White, iii. 164.
——Grange's Early Cauliflower, iii. 163. Green Cape, iii. 162.
Green Close-headed Winter, iii. 163.
Knight's Protecting, 2 S. iii. 60.
Late Dwarf Close-headed Purple, iii.
166.
——Latest Green, iii. 166.
——Maltese, v. 20.

- Portsmouth, iii. 165.
—— Purple, v. 20.
-_ Purple Cape, iii. 161.
Siberian, ii. 306 ; iii. 166.
Spring White, iii. 166.
Sulphur-coloured, iii. 165.
Tall Large-headed Purple, iii. 165.
Victoria, 2 S. iii. 52, 60.
White, v. 20.
Brodiæa ixioides, vii. 72.
Brogden, Mr., i. 275 ; ii. 10 ; v. 66.
Bromelia ananas, v. 461.
——aquilega, i. 269.
——bracteata, i. 269.
Brompield, Dr., 2 S. ii. 234.
Brooke, George, Esq., vi. 174.
Brooker, Mr. Charles, notice of an apple exhibited by him, iv. 217.
Brookes, Mr. Samuel, iv. 354 ; v. 414 ; vi. 90, 324,334 ; vii. $180,238,526,541$.
notice relative to the
flowering of Lilium Japonicum, iv. 551. notice of Chrysanthemums in his garden, v. 159.
Brookhouse, Joseph, Esq., his method of cultivating cucumbers in a peach-house, v. 487.
Brookshaw, 2 S. i. 255.
Broom, 2 S. ii. 225, 237, 245, 280.
Brotero, Professor, iv. 259, 260 ; v. 27.
Broussonet, Professor, i. 305, 347, 350 ; iii. 179.
bulbs of the Thelysia
grandiflora transmitted to England by him, i. 304 .

Broussonetia papyrifera, vi. 496 ; 2 S. ii. 257.
Bhown, Mr.Charles, 2 S. i. 531,534,545,546.
Mr. James, on the application of steam to forcing, ii. 320.
on the adrantages of a
span-roofed house for forcing peaches, iv. 562. ——Mr. Moses, iii. 320.
apples sent by him to the
Society, iii. 315, 316 .
Mr. Robert, i. 25, 280, 332, 336, 338 ;
iv. 58,$330 ;$ v. $90,91,440,441,446,452$, 453,456 ; vi. 168 ; vii. $17,20,27,28$; 2 S. i. 49,409 .

- Mr. Robeat, of Perth, iv. 285 ; vi. 168.

Brown John, and Brown Jolly, West Indian names of the egg-plant, vii. 83.
Browne, Henry, Esq., ii. 374.
Patrick, iii. 102.
Bruce, Robert, Esq., 2 S. i. 230.
Brugmansia, 2 S. ii. 282.
sanguinea, 2 S. iii. 151, 154.
Brugnons, v. 535.
Brunia ericoides, 2 S. ii. 271.
Brunsvigia, on the culture of the bulbs of that genus, iv. 176.
coranica, iv. 181.
falcata, iv. 181, 182.
Josephinæ, 2 S. ii. 221.
Brussels sprouts, ii. 309 ; 2 S. iii. 52 ; v. 14.
\longrightarrow on their cultivation and variation, iii. 197.
Bryocles ventricosa, i. 335.
Buah kandis, v. 117.
_-malaka, v. 117.
Buchan, Mr. William, 2 S. i. 10. on the cultivation of the cinnamon in England, 2 S. ii. 168.
large pine-apple grown
by, v. 264.
Buchanan, Mr. J., 2 S. i. 535.
Buchanania latifolia, v. 120.
Buck, Mr. Robert, vi. 161 ; 2 S. i. 169, 546.

- Mr. Whllam, vi. 384 ; vii. 193 ; 2 S. i. $21,24$.
notice of a pit for fruiting pines and melons; with observations on the production of seeds of pine-apples, iv. 533.
by, iv. 560 . vines in pots exhibited
_ seedling grape exhibited
by, v. 399.
ford or Buck's Scarlet rhubarb, vii. 89.
Buckatzsch, Mr., plants received from, 2 S . ii. 411.

Buckingham, Duke of, vi. 164. Marquess of, vi. 164.
Buckley, Major, 2 S. iii. 35 .
Budding, on a new and expeditious mode of, i. 194 .

- on the usual method of, as regards
fruit trees, i. 215 ; i. App. 5.
- of roses, vi. 317 .

Buddlea bullata, 2 S. iii. 154.

- globosa, i. 176 ; vii. $40 ; 2$ S. ii. 242. interrupta, 2 S. iii. 154 .
Buds pichinchensis, 2 S. iii. 154.
Buds of fruit trees, directions for preserving in a vegetating state when sent to considerable distances, iv. 403.
Buel, Jesse, Esq., 2 S. ii. 415.

Bulbocodium hispanicum, i. 344.
—— minus, i. 350.

- tenuifolium, i. 350.

Bulbous rooted plants, their manner of generating sap, i. 157.
Bulbs, 2 S. ii. 268.

- their formation depends on leaves, i. 325.
- treatment for continuing them in a flowering condition, i. 362.
-ii. of the genera Crinum and Amaryllis,
iii. 187.

Cape, their cultivation in the open borders,
iv. 153.

- packing of, for travelling, v. 197.

Buller, Sir Anthony, 2 S. i. 458.
Bullock, Mr. William, iii. 321, 365.
Bumelia, v. 465.
——tenax, 2 S. ii. 272.
Bunbury, Sir Henry, vii. 438, 498.
Bunce, Mr., plants received from, 2 S. ii. 418, 419.

Buonaiuti, M., i. 93 ; iii. 218, 224, 228.
Buphthalmum lineare, vii. 51.
Bupleurum fruticosum, 2 S. ii. 272.
Burchardt, 2 S. ii. 415.
Burchell, Mr., iii. 204 ; iv. 181, 184 ; v. 92.
Burckhardt, M., v. 88 ; vi. 431.
Burghersh, Lord, vi. 543.
Burlington, Earl of, i. 103.
Burmann, vi. 266.
Burn, Mr. Henry, iii. 328.
Park Muscat grape, vi. 122.
Burney, Dr., vii. 347.
Burbell, Drummond, Esq., iv. 286.
Busch, Mr. Joseph, observations on a method of training apple, cherry, and plum trees in Russia, to preserve them from frost during winter, iv. 405. notes by, on horticultural subjects, iv. 568.
Bute, Marquess of, i. 286.

- Marchioness of, i. 270 ; iii. 224, 225.

Butter and tallow tree, v. 197, 457.
Büttner, 2 S. i. 263, 276.
Buxus, 2 S. i. 465.
\longrightarrow balearica, 2 S. ii. 242, 272.
Bydenjan, vii. 83.
Byres, R. W., Esq., on the cultivation of Chlidanthus fragrans, 2 S. ii. 32.
Byrnes and Hooton, 2 S. ii. 380, 381, 392, 393, 394, 398, 399.
Bywa, iii. 301.

C.

Cabbage, memoir on the, and genera allied to it, v. 1 .

Cabbages, clubbing, cure for, vi. 29.
-butterfly prevented from infesting, by hemp plants, iv. 569 .

- cultivation of, in China, iii. 184; v. 50.
——Battersea, v. 16 ; 2 S. iii. 60.
__ Blistered, v. 13.
——Braganza, vi. 565.
Cavalier, v. 8.
Conical, v. 16.
Creeping, iv. 491.
Dwarf Early Turnip, v. 19.
Field, v. 20.
Fringed, v. 10.
Imperial, ii. 318.
Murcianâ, vi. 567.
Oak-leaved, v. 10.
Open, v. 7.
Palm-leaved, v. 11.
Red, 2 S. iii. 60.
Round-headed, v. 15.
Tall, v. 7.
Thousand-headed, ii. 314 ; v. 9.
Tree, notice of a large one, vi. 115.
Turnip-rooted, v. 25.
Vanack, vi. 567.
Wild, v. 4. American, iv. 444.
York, v. 16.
Cacalia Kleinii, 2 S. ii. 269.
Cactaceæ, 2 S. ii. 239, 260.
Cacti, compost for, v. 485.
- grafting the, v. 485.

Cactus, on its cultivation and management, 2 S . i. 401 ; 2 S. ii. 459.
——flagelliformis, v. 485.
-_Jenkinsoni, 2 S. i. 401.
-_ Opuntia, on its treatment, ii. 238.
Pereskia, v. 486. repandus, v. 100. speciosus, v. 485; 2 S. i. 401.

- speciosissimus, v. 485.
——triangularis, v. 100. triqueter, v. 485.
Cadenhead, Messrs., ii. 378 ; v. 260 ; vi. 156.
Cæpa sylvestris, i. 337.
Cainito (of Afzelius), v. 458, 463.
Calabash, Sweet, iii. 101. tree, 2 S. iii. 137.
Caladium helleborifolium, i. 266.
when and by whom
introduced, i. 267.
odorum, vii. 391.
Calathea flavescens, vii. 64.
Calceolaria angustifolia, 2 S. ii. 283.
corymbosa, vi. 273.
crenata, vi. 63.
integrifolia, vi. 63 ; 2 S. ii. 283.

Calceolaria rugosa, vi. 63; 2 S. ii. 283.
——— paralia, vi. 273.
——— pinnata, vii. 41.
—— scabiosefolia, vi. 92.

- sessilis, 2 S. ii. 283.
_—— viscosissima, 2 S. ii. 252, 282, 283.
Caldclevgh, Mr., communication from, accompanying specimens of the native wild potato of South America, v. 254.
Caledonian Horticultural Society, 2 S. ii. 49.
Calendula incana, vi. 99.
- tomentosa, vi. 99.

Caley, Mr. George, vii. 57.
Caliphruria Hartwegiana, 2 S. iii. 161.
Call, George Isaac, Esq., large gourd sent by him, iii. 364.

- Mr. Martin Miller, description of the steam-pits in the Imperial Gardens of Taurida at St. Petersburg, iv. 468.
Calla æthiopica, vi. 438 ; vii. 34 ; 2 S. ii. 270.
Callicarpa japonica, v. 117.
-_ longifolia, vi. 263.
rubella, vi. 263.
Callimato tree, v. 98.
Callisia repens, i. 272.
Callistemon lanceolatus, 2 S. ii. 240, 248.
—— speciosus, 2 S. ii. 248.
Callitris cupressiformis, 2 S. ii. 247.
Calochortus, account of the species of, vii. 275. albus, 2 S. i. 413. elegans, vii. 278 ; figured, vii. 277. macrocarpus, figured, vii. 276. nitidus, figured, vii. 277. pulchellus, 2 S. i. 412. splendens, figured, 2 S. i. 411. venustus, 2 S. i. 412 ; figured, 411.
Caloprasum Geroltianum, 2 S. iii. 118.
Caloseris rupestris, 2 S. iii. 141.
Calothamnus quadrifida, 2 S. ii. 248.
Calvert, Charles, Esq., strawberries exhibited by, vi. 539.
- Waliter, Esq., specimens and grafts of the Florence cherry presented by him, ii. 229.

Calycanthus preecox, vii. 41.
Calycophyllum coccineum, 2 S. iii. 160.
Calypso borealis, vi. 405.
Calyptranthes caryophyllifolia, vii. 59.
Camaridium ochroleucum, vi. 280.
Cambridgeshire Horticultural Society, vii. 184.
Camelina sativa, v. 35.
produce of oil, v. 41.
Camellias, on their management when forced, 2 S. i. 82. cultivation of, in an open border, vii. 168.

INDEX.

Camellias, description of the species and varieties of, vii. 519.
Camellia, Anemone-flowered, vii. 539.
—_ Apple-blossomed, vii. 526.
___ axillaris, vii. 531.

- Le Blanc's Red, vii. 553.
—— Captain Rawes's, vii. 528. Crimson Shell, vii. 555. Double Red, vii. 538. Double Striped, vii. 537. Double White, vii. 535. drupifera, vii. 531. euryoides, vii. 51, 531. Fawn-coloured, vii. 550. Fringed White, vii. 536. japonica, i. 175 ; vii. 529 ; 2 S. ii. 237, 242, 257.
alba plena, vii. 535. anemoneflora, vii. 540 . atrorubens, vii. 551. carnea, vii. 550. crassinervis, vii. 542. Double Red, 2 S. ii. 258. Double white, 2 S. ii. 258. fimbriata, vii. 536. imbricata, vii. 555. incarnata, vii. 539. involuta, vii. 545. luteo-albicans, vii. 553. ii. 258. myrtifolia, vii. 542 ; 2 S . in. 258.
pæoniflora alba, vii. 548. pallida, vii. 547. rosea, vii. 547.
Parksii, vii. 556.
Pomponia, vii. 546.
Pompone, 2 S. ii. 258. rosea, vii. 553.
rubra plena, vii. 538.
Sabiniana, vii. 557.
semiduplex, vii. 549 .
Single Red, 2 S. ii. 258.
Small, vii. 543.
speciosa, vii. 554.
Striped Double Red, 2 S .
ii. 258 .
variegata, vii. 537.
variabilis, figured, vii. 545.
Waratah, 2 S. ii. 258.
Wellbankii, vii. 552.
Kent's, vii. 524.
Hexangular, vii. 524.
Kew Blush, vii. 546.
Kissii, vii. 525.
Lady Banks's, vii. 521.
Hume's Blush, vii. 539.
Long's, vii. 545.

Camellia, Loddiges’ Red, vii. 551. maliflora, vii. 526.
——— Middlemist's Red, vii. 550.
—— Myrtle leaved, vii. 524.
Large, vii. 543.
—— Nipal, vii. 525.
oleifera, vi. 538 ; vii. 524.
Oil-seed, vii. 524.
Pæony-flowered, Blush, vii. 547. Red, vii. 547. White, vii. 548. Pink, vii. 550.

- Palmer's Double Sasanqua, vii. 527.

Parks's Striped Rose, vii. 556.
Pompone, vii. 546. White, vii. 548.
——Rawes's Variegated Waratah, vii. 554.
reticulata, vii. 528.
Rose, vii. 550.
Sabine's White, vii. 557.
Semidouble Red, vii. 549.
Single Red, vii. 529.
Sasanqua, vii. 521, 561.
rosea, vii. 527.
Various-flowered, figured, vii. 545.
Waratah, vii. 540. effect of ringing it, iv.
128.

White, vii. 548.
Welbank's White, vii. 552.
White Anemone-flowered, vii. 548.
Camerarius, ii. 274, 275 ; v. 18 ; vii. 423.
Cameron, Mr., Uckfield, Sussex, iv. 218.
Camnie, 2 S. ii. 30.
Campanula rapunculus, iii. 19.
Campbell, Mr. Alexander, 2 S. ii. 455. Charles, Esq.. iii. 45, 317 ; iv. 4. Dr. Charles, iv. 423.
-_ Walter Frederick, Esq., vii. 209.
Mr., Dundee, seed-steeping prac-
tised by, 2 S. iii. 202.
Camphorosma monspeliaca, vii. 33.
Camrunga, 2 S. ii. 30.
Candle Wood, 2 S. iii. 122.
Canker in fruit trees, i. 65.
Canna flaccida, i. 275.
——_gigantea, vi. 78.
-_ indica, vi. 438; vii. 37.
—_ iridiflora, vi. 77.
__ nepalensis, vii. 391.

- patens, vi. 438.

Canrew (Telinga), v. 120.
Cape bulbs, 2 S. ii. 269.
Caperonier, i. App. 10.
Capiaumont, M., v. 406.
Capper, Walter William, Esq., vi. 179.

INDEX.

Caprifolium Douglasii, vii. 245.
——fexuosum, 2 S. ii. 241, 258.
\qquad japonicum, 2 S. ii. 242, 258. longiflorum, 2 S. ii. 252.
Capron, Hasler, Esq., notice of fruit exhibited by him, iv. 218.
Capsella Bursa Pastoris, iv. 444 ; 2 S. i. 446.
Capsicum, v. 466.

- cerasiforme, dwarfed by the Chinese, iv. 230.

Capuccia, v. 15.
Capucine petite, vi. 586.
Caragana, vi. 498.
Carandjang, v. 86.
Caraunda, v. 119.
Carbon, from leaves, 2 S. ii. 217.
Carbonate of Lime, 2 S. iii. 54, 56. of Magnesia, 2 S. iii. 54, 56.
of Soda, 2 S. iii. 39, 40, 49, 89, 191, 192.

Cardamomum officinale, i. 282.
Carde, vii. 9.
Cardes, iii. 284.
Cardon à côtes rouges, vii. 12.
- d'Espagne, vii. 9, 11.
pleine inerme, vii. 11.
pleine et sans épines, vii, 11.
de Tours, vii. 9, 12.
vii. 12.

Cardonette, vii. 11.
Cardoon, on the varieties of, vii. 9.
——cultivation of, vii. 13.

- Common, vii. 11. Red, vii. 12.
—— Spanish, vii. 11.
-_ of Tours, vii. 12.
Carduus esculentus, vii. 9.
Carey, Dr., iii. 339 ; iv. 422, 423.
Carica microcarpa, v. 101.
——Papaya, v. 465.
Carissa Carandas, v. 119.
C_spinarum, v. 117.
Carlisle, Anthony, Esq., preliminary observations to Vol. II.
account of a walnut
tree which bore fruit at an early period from seed, ii. 3.
on the connection between the leaves and fruit of vegetables, with other physiological observations, ii. 184.
Carmichælia australis, 2 S. ii. 248, 269.
Carnarvon, Earl of, iii. 189, 252 ; iv. 499 ; v. 361 ; 2 S. ii. 293.

Carr, Mr., fruit trees received from, 2 S. ii. 415.

Carnations cultivation of, 2 S. i. 162.

Carnation, Dwarf, iv. 556.
C_ White Ear, ii. 404.
Carnivorous animals, observations respecting, i. 248.

Carolinea insignis, vii. 390.
Carpodinus acidus, v. 456.

- dulcis, v. 455.

Carpoos, the Turkish name of the water-melon, vi. 58.

Car Pus-poo, i. 284.
Carraway, 2 S. iii. 61.
Carrots, 2 S. iii. 52.
_ method of rearing seed of, in the East Indies, v. 516.
———Garden, description and account of the different varieties, iv. 383.
——_mode of producing early, vi. 370.
—_ Altrincham, iv. 388.

- Blanche, iv. 385.
- Chertsey, iv. 387.
——Common Early Horn, iv. 385.
—— Early Horn, iv. 385 ; 2 S. iii. 60.
———Red Horn, iv. 385.
———Short Red, of the Dutch, iv. 384.
- Green-topped, iv. 388.

Jaune, iv. 386.

- Longue, iv. 386.
—— Long Horn, iv. 385. Orange, iv. 386. Red, iv. 387.
——Red, iv. 387. Yellow, iv. 386.
——Purple, iv. 387.
——Rouge Court Hâtive, iv. 384.
—— Longue, iv. 387. Pâle de Flandres, iv. 386.
- Sandwich, iv. 386.
——Scarlet Horn, iv. 384.
Short Orange, iv. 385.
Superb, iv. 388.
Surrey, iv. 387.
Violette, iv. 387.
White, iv. 385.
Wild, upon its improvement, 2 S . ii. 348.

Yellow, iv. 386.
Carroty disease of plants, account of, i. 357.
Carter, Mr. Daniel, iii. 440.
his method of treating
the Polyanthus Narcissus, i. 362.
Cascarilla, 2 S. iii. 149.
Cassia, vi. 42.
Cassinia leptophylla, vi. 265.
Castalia pygmæa, iii. 28, 33.
Castanea pumila, vi. 495.
\longrightarrow vesca, vi. 495.
Castilleja fissifolia, 2 S. iii. 160.

Castilleja nubigena, 2 S. iii. 156.
—— septentrionalis, vi. 290.
Casuarina, account of a species of, growing in the gardens of Belvedere, near Weimar, iii. 332 ; figured, $i b$.
ii. 248.
——quadrivalvis, iv. 58.

- stricta, 2 S. ii. 248.

Caswall, George, Esq., vi. 214.
by him, iii. 364.
Apple exhibited by, v. 401.
Catalpa syringæfolia, 2 S. ii. 242.
Catasetum, analysis of, 2S. iii. 54.
Claveringi, vi. 278.
cristatum, vi. $83,84$.
floribundum, vi. 279.
integerrimum, 2 S. iii. 142.
laminatum, 2 S. iii. 132.
maculatum, 2 S. iii. 142.
Caterpillars on fruit-trees, destruction of, v. 76 .
berry-bushede of destroying them on goose-
berry-bushes, vii. 403.
Catesby, i. 339 .
Cathea pulchella, i. 300.
Catleugh, Mr., 2 S. i. 546.
Cats, their utility in preserving fruit from birds, 2 S. i. 390.
Cattley, William, Esq., iv. 261 ; v. 74, 80, 112 ; vii. $536,538,541,548$; 2 S. i. 43.
account of Psidium
Cattleyanum, iv. 315.
Cattleya citrina, 2 S. iii. 127.
crispa, 2 S. ii. 179.
Forbesii, vi. 281.
guttata, figured, 2 S. ii. 177.
maxima, 2 S. iii. 160.
Skinneri, 2 S. iii. 146.
Caudex of plants, its utility in the process of germination, i. 218.
Caulet, v. 8.
Cauliflower, v. 20 ; 2 S. ii. 237.
plants, on their management, to
secure a good produce during winter, v. 280.
method of protecting, v. 365.
large Asiatic, 2 S. iii. 60.
Cavanilles, i. 85, 87, 98 ; iii. 220, 224, 225 ;
vi. 273; 2 S. ii. 223.

Cavolo torsolo riccinto, vi. 568.
Cavin, vi. 58.
Cawdor, Lord, notice of a large pine-apple grown in his garden, v. 264.
Cazow, v. 92.
Ceanothus americanus, 2 S. ii. 260.
127.
sxiii

Cebadilla, 2 S. ii. 395 ; 2 S. iii. 116, 117.
Cedar of Lebanon, i. App. 17.
the account of the growth of, in the gardens at Hopetoun House, vi. 429.
Cedrates, iii. App. 7.
—— common gourd-shaped, iii. App. 8. common furrowed, iii. App. 8. gigantic multiform, iii. App. 8. sweet, of Reggio, iii. App. 8. dolcissimo di Reggio, iii. App. 8. gigante di forma incerta, iii. App. 8. volgare cocomerato, iii. App. 8 . volgare solcato, iii. App. 8.
Celeriac, iv. 56.

- observations on, with directions for its cultivation, iii. 71.
-_ its cultivation as practised in Denmark
and Germany, vi. 419.
Celery, cultivation of, iii. 45.
- method of growing early, v. 492.
—_ culture of, vii. 43 ; and of late, vii. 91.
—— red, 2 S. iii. 60.
——white, 2 S. iii. 60.
Cels, M., iv. 335.
Celsia cretica, vii. 42.
Celtis australis, vi. 35.
- cordata, vi. 495.
- orientalis, vi. 495 ; 2 S. ii. 272.

Tourneforti, vi. 495.
Centaurea solstitialis, vi. 51 .
Centropogon calycinus, 2 S . iii. 155.
oblongus, 2 S. iii. 160.
prostratus, 2 S. iii. 155.
Cerastium densum, 2 S. iii. 153.
Cerasus Capollim, 2 S. ii. 251.

- caroliniana, 2 S. ii. 260. decumana, 2 S. i. 273.
laurocerasus, 2 S. ii. 238, 242, 276,

277.

lusitanica, 2 S. ii. 242, 276, 277.
nicotianæfolia, 2 S. i. 273.
ораса, 2 S. iii. 158.
Ceratiola ericoides, 2 S. ii. 260.
Ceratonia Siliqua, vi. 34; 2 S. ii. 273.
Ceratostemma rigidum, 2 S. iii. 158.
Cercis siliquastrum, vi. 33,494 ; 2 S. ii. 273.
Cercocarpus Fothergilloides, 2 S. iii. 126.
Cereus Ackermanni, 2 S. iii. 131.
-_ senilis, 2 S. iii. 123, 147.
Cerisiers, 2 S. i. 250.
Ceroxylon andicola, 2 S. ii. 239; 2 S. iii. 150, 161.

Cestrum buxifolium, 2 S. iin. 160.
——noeturnum, 2 S. ii. 283.
Parqui, 2 S. ii. 283.
Снанot, Mr., 2 S. ii. 380.
Chrtogastra mierophylla, 2 S. iii. 159.

Chamærops humilis, 2 S. ii. 236, 239, 273.
Chale, Mr., ii. 168.
Chalmers, Mrs., very large pear grown in her garden, 2 S. ii. 110.
Chamberlayne, Sir Henry, vii. Pref.
Chămpădak (Jack-fruit), v. 108, 109.
Chandler, Messrs., vii. 538, 540, 541, 543 , 544, 547, 552; 2 S. i. 530, 534.
Chapada (Jack-fruit), v. 109.
Chapman, Mr. Robert, vi. 365.
of the Grandilla iv. 60 on the cultivation - account of his mode of forcing figs, vi. 365 .
Chaptal, M., 2 S. i. 330.
Charcoal, i. 311.

- its effect in restoring to health the root of a hyacinth, iv. 130 . dust, 2 S. iii. 94.
f. on the use of, as a top-dressing for onions, and as a cure for the clubbing in cabbages, vi. 29.
Chardon, vii. 9.
Charter of the Horticultural Society of London, i. 1.
Charlwood, Mr., 2 S. ii. 345.
Chataignier, i. 140.
Chatwin's manure, 2 S. iii. 96, 99.
Cha-whaw, vii. 523.
Chè-deâu, vii. 522.
Cheilanthes lentigera, iii. 341.
- odora, iii. 341.

Cheiranthus Cheiri, v. 5; vi. 313.

- fruticulosus, v. 5.

Cheirostemon platanoides, 2 S. iii. 132, 143.
Chelone centranthifolia, 2 S. i. 481.
Chelsea Botanical Garden, iv. 330.
Chemical Committee of the Horticultural Society, 2 S. iii. 35.
Chenopodium album, iv. 489.
——Bonus Henricus, 2 S. iii. 52, 61.
fruticosum, 2 S. ii. 273.
Cheremi, v. 115.
Cherimoyers, v. 102 ; 2 S. iii. 129, 139, 157. ture, vii suggestions respecting their culture, vii. 254.
Chernside, Mr., plants received from, 2 S. ii. 417.

Cherries, 2 S. i. 465.
instructions for forcing, iv. 109.
forcing of, unsuccessfully tried in a curvilinear house, vi. 379.
Chern on method of forcing, 2 S. i. 101.
Cherry, report upon the principal varieties, 2 S. i. 248.
An account of two varieties of, by Thomas Andrew Knight, Esq, ii. 137.

Cherry, quotation from Virgil respecting, ii. 139.
——a native of Britain, ii. 139.
when first introduced into Rome, i. 152; carried thence into Britain, $i b$.; eight kinds known to the Romans, ib.
raising an early variety of, one of the objects for which the Horticultural Society offered premiums, i. App. 2.
——Adam's Crown, 2 S. i. 268.
———Allerheiligen Kirsche, 2 S. i. 287.
-_ Allsaints, 2 S. i. 287.
——Altendorfer, 2 S. i. 279.
———Amarelle, 2 S. i. 292.
Kleine Frühe, 2 S. i. 292. Königliche, 2 S. i. 292. Nord, 2 S. i. 290.
Ambrée de Choisy, 2 S. i. 280. of Duhamel, ii. 137, 208.

- Anglaise, 2 S. i. 281, 283. tardive, 2 S. i. 276, 283.
——Ansell's fine black, 2 S. i. 254.
Belle de Choisy, 2 S. i. 280.
Bigarreau, ii. 137, 230; 2 S. i. 261, 293; 2 S. iii. 62.
a hard-fleshed one, like it, known to the Romans, i. 152.

Black, 2 S. i. 254.
Blanc tardif de Hildesheimer, 2 S. i. 265.
\longrightarrow Couleur de Chair, 2 S. i. 264.
- Gros, 2 S. i. 261.
i. 264.
à Gros Fruit Blanc, 2 S .
Gros Monstrueux, 2 S. i.
262.
——Gros Noir, 2 S. i. 255.
de Hollande, 2 S. i. 261.
Lauermann, 2 S. i. 263.
Napoléon, 2 S. i. 263.
Noir, 2 S. i. 254.
Rouge, 2 S. i. 262.
Royal, 2 S. i. 261.
tardif, 2 S. i. 261, 273.
Tardif de Hildesheim, 2 S .
i. 265, 294.

Turkey, 2 S. i. 261.
Bigarreautier à Feuilles de Tabac, 2 S .
i. 273.
i. 273.
à Grandes Feuilles, 2 S .
Tabac, 2 S. i. 273.
Tardif à Fenilles de

- Black Eagle, ii. 137; figured, ii. 138;
ii. 208, 302 ; iii. 212 ; 2 S. i. $258,293$.
- Black, early, 2 S. i. 253.

Cherry, Black Heart, 2 S. i. 253.
Büttner's, 2 S. i. 254.
Fraser's, 2 S. i. 255.
Kronberg, 2 S. i. 254.
Ronalds', 2 S. i. 255.
large, 2 S. i. 256.
Spanish, 2 S. i. 253.
Tradescant's, 2 S. i. 254.
Werder's Early, 2S. i. 259.
Russian, 2 S. i. 255.
Bleeding Heart, 2 S. i. 270.
La Bonne Polonaise, 2 S. i. 284.
Boreatton, 2 S. i. 260.
Bouquet, 2 S. i. 288.
Amarelle, 2 S. i. 287.
——Bowyer's Early Heart, 2 S. i. 268, 294.
Brüsseler Braune, 2 S. i. 290.
Busch, 2 S. i. 288.
Büschel, 2 S. i. 288.
Büttner's Neue Herz Kirsche, 2 S. i. 254.

Neue Schwarze Herz Kirsche, 2 S. i. 254.

Schwarze Herz Kirsche, 2 S.
i. 254 .

Yellow, 2 S. i. 275.
Carnation, 2 S. i. 279.
Caroon, black, 2 S. i. 253.
Jeffrey's Royal, 2 S. i. 282.
Cerise à Courte Queue, 2S. i. 286. de Provence, 2 S. i. 286. Grosse à Ratafia, 2 S. i. 290. du Nord, 2 S. i. 277.
\cdots Petite Rouge Précoce, 2 S. i. 292.

Précoce, 2 S. i. 291. de St. Martin, 2 S. i. 287, 290. Tardive, 2 S. i. 287.
Cerisier à Bouquet, 2 S. i. 287.
—— très Fertile, v. 296.
2 S. i. 291.
Nain à Fruit Rond Précoce,
\qquad Nain Précoce, 2 S. i. 292.
à Petit Fruit Noir, 2 S. i. 290. à Trochet, 2 S. i. 287.
——Chevreuse, 2 S. i. 288.
Chinese, vii. 180.
—Heart, 2 S. i. 269.
Churchill's Heart, 2 S. i. 270.
Circassian, 2 S. i. 255.
Black, 2 S. i. 256.
Superb, 2 S. i. 255.
Cluster, 2 S. i. 288.
Common Red, 2 S. i. 285.
Commune à Trochet, 2 S. i. 285.
Coularde, 2 S. i. 281.

Cherry, Cronberger Herz Kirsche, 2 S. i. 254.
——Crown, 2 S. i. 279.
Double Chinese, vii. 238.
——— Double Volgers, 2 S. i. 286.
Doucette, 2 S. i. 280.
—— Downton, v. 262 ; 2 S. i. 267, 293.
Duke, 2S. i. 282.
281.

Benham's Fine Early, 2 S. i.

- Buchanan's Early, 2 S. i. 281.

Early, 2 S. i. 281.

- Early May, 2 S. i. 281.

Jeffrie's, 2 S. i. 282. Jeffrey's, 2 S. i. 282. Large May, 2 S. i. 281. Late, 2 S. i. 276, 293, 294. May, 2 S. i. 281. Morris's, 2 S. i. 281. Early, 2 S. i. 281.
——Portugal, 2 S. i. 281. Royal, 2 S. i. 283, 293. Thompson's, 2S. i. 281.
—— Early May, 2 S. i. 291.
Early Purple Guigne, 2 S. i. 259; figured, 2 S. i. 144.
——Early Richmond, 2 S. i. 285.
Elk-horn, 2 S. i. 254.
E—— Elton, ii. $137,208,301 ; 2$ S. i. 266, 293.
——English Bearer, 2 S. i. 279, 287. Preserve, 2 S. i. 287. Weichsel, 2 S. i. 286.
D'Espagne, 2 S. i. 282.
Fern-leaved, 2 S. i. 283.
à Feuilles de Balsamine, 2 S. i. 283. Pêcher, 2 S. i. 283.
——_ Flandrische Weichsel, 2 S. i. 288.
Flemish, v. 296; 2 S. i. 285, 286.
Florence, ii. 229, figured, ib.; 2 S. i.
267, 293, 294.
Fränkische Wucher, 2 S. i. 289.
Fraser's Black, 2 S. i. 255.
Gascoigne's Heart, 2 S. i. 270.
Gean Amber, 2 S. i. 272. Hungarian, 2 S. i. 272. White Hungarian, 2 S. i. 272.

- Gobet à Courte Queue, 2 S. i. 286.

Golden Knob, 2 S. i. 276.
Graffion, ii. 137, 230.
Griotte de Chaux, 2 S. i. 260.
—— Early Purple, 2 S. i. 259.

- d'Espagne, 2 S. i. 282. de Hollande, 2 S. i. 290. de Kleparow, 2 S. i. 284. Ordinaire du Nord, 2 S. i. 277. Précoce, 2 S. i. 282.

Cherry, Griotte de Ratafia, 2 S. i. 290.
——Griottier Nain Précoce, 2 S. i. 292. de Palembre, 2 S. i. 280. Rouge Pâle, 2 S. i. 279. de Vilennes, 2 S. i. 279.

——Gros Gobet, 2 S. i. 286.

Grosse Rouge Pâle, 2 S. i. 279.
Grosser Gobet, 2 S. i. 286.
Guigne, 2 S. i. 281.
294.

Early Purple, 2 S. i. 259, 293,
Grosse Blanche, 2 S. i. 271.
Noire, Grosse, 2 S. i. 253.
Noire Tardive, 2 S. i. 255.
Rouge Hâtive, 2 S. i. 270.
Guignier à Feuilles de Tabac, 2 S . i. 273.
à Fruit Noir, 2 S. i. 253. à Rameaux Pendans, 2 S . i. 288.

Harrison's Heart, 2 S. i. 261.
Heck, 2 S. i. 288.
Herefordshire Heart, 2 S. i. 270.
Herteginne, 2 S. i. 279.
Herz Kirsche, Fraser's Tartarische, 2 S. i. 256.
i. 256.
i. 265 .

Swarze, 2 S.
Hildesheimer Späte, 2 S . Lauermann's, 2S. i. 263. Napoléon's, 2 S. i. 263. Tilger's Weisse, 2 S.
i. 271.

- de Hollande, 2 S. i. 281.
i. 283. à Feuilles de Saule, 2 S.
- à Larges Feuilles, 2 S .
i. 282.

Holländische, 2 S. i. 279.
Italian Heart, 2 S. i. 261.
Jeffrey's Royal, 2 S. i. 282.
Caroon, 2 S. i. 282.
de Kent, 2 S. i. 286.
Kentish, v. 296 ; 2 S. i. 285, 286, 293, 294 ; 2 S. iii. 62.

- Preserve, 2 S. i. 287.
———Red, 2 S. i. 285.
Kleparower Weichsel, 2 S. i. 284.
Knight's Early Black, iii. 211; iv. 510; 2 S. i. 257, 293, 294.

Knorpel Kirsche, Büttner's Gelbe, 2 S. i. 275.

2 S. i. 275. Wachs,
mit Saftigen Fleiseh, Grosse Schwarze

Cherry, Knorpel Kirsche, Hildesheimer ganz Späte, 2 S. i. 265.

Späte Weisse, 2 S. i. 265.
——Kronberger Schwarze Herz Kirsche, 2 S. i. 254.
——— Lady Southampton's Duke, 2 S. i. 275. Golden Drop, 2 S. i. 275. Yellow, 2 S. i. 275.
——Lauermann's Kirsche, 2 S. i. 263. Grosse Kirsche, 2 S. i. 263.
__ Marmor Kirsche, Späte Hildesheimer, 2 S. i. 265.
——Martin's Weichsel, 2 S. i. 287.

- May Duke, ii. 138, 161; 2 S. i. 281, 293, 294.

Willow-leaved, 2S. i. 283.
\longrightarrow May, Small, 2 S. i. 291. Early, 2 S. i. 291.
—— Merise Petite Ronde, 2 S. i. 276.
——Milan, 2 S. i. 277.
——Monats Amarelle, 2 S. i. 287.
de Montmorency, 2 S. i. 285.

- Montmorency à Courte Queue, 2 S . i. 286. à longue Queue, 2 S . i. 285. à Gros Fruit, 2 S. i. 286.
——Morello, v. 295 ; 2 S. i. 277, 293, 294. Black, 2 S. i. 278. Dutch, 2 S. i. 278.
Large, 2 S. i. 278.
Late, 2 S. i. 278.
Ronalds' Large, 2 S. i. 278.
Small, 2 S. i. 277.
Wild; 2 S. i. 291.
- Muscat de Prague, 2 S. i. 285.
- Nouvelle d'Angleterre, 2 S. i. 279.
——Oranien, 2 S. i. 279.
Rothe, 2 S. i. 279.
——d'Orange, 2 S. i. 279.
——Ostheim, 2 S. i. 289.
——Ostheimer, 2 S. i. 289.
Weichsel, 2 S. i. 289.
de la Palembre, 2 S. i. 280.
Pie, 2 S. i. 285.
Pleurant, 2 S. i. 288.
Pohlnische Weichsel, 2 S. i. 284.
de Portugal, 2 S. i. 279.
Quatre à la Livre, iv. 511 ; 2 S. i. 273.
Ratafia, 2 S. i. 290.
Weichsel, 2 S. i. 290.
——Red Heart, 2 S. i. 270.
——Rouge de Bruxelles, 2 S. i. 279.
Royal Duke, 2 S. i. 283, 293.
——Royal Hâtive, 2 S. i. 281.

Cherry Royale, 2 S. i. 282.

- Royale Tardive, 2 S. i. 283.

Schöne von Choisy, 2 S. i. 280.
Schwarze Herz Kirsche, Grosse, 2 S. i. 253.

Small Black, ii. 139.
de Soissons, 2 S. i. 285.
St. Martin's Amarelle, 2 S. i. 287.
Sussex, 2 S. i. 285.
Süss Kersche, Grosse Weisse, 2S. i. 271.
Tartarian, 2 S. i. 255.
Black, 2 S. i. 255, 293.
Fraser's, 2 S. i. 255.
Black, 2 S. i. 255.
White, 2 S. i. 274.
White, 2 S. i. 274.
Tauben Herz, Schwarze, 2 S. i. 253.
Tobacco-leaved, 2 S. i. 273.
Four to the Pound, 2 S. i. 273.
de la Toussaint, 2 S. i. 287.
Tradescant's, 2 S. i. 254.
Transparent, Fraser's White, 2 S. i. 274.

Trauben Amarelle, 2 S. i. 287.
Vier ein Pfund, 2 S. i. 273.
Virginian May, 2 S. i. 285.
Waterloo, ii. 208, 302 ; figured, ib.; iii. 212, 213; iv. 510 ; 2 S. i. 257.

Weeping, 2 S. i. 287.
Weichsel, English, 2 S. i. 286. Florentiner, 2 S. i. 290.
2s. $\mathrm{Frühe}$ Kleine Runde Zwerg, S. i. 292.

Zwerg, 2 S. i. 292. Hollandische, 2 S. i. 290. Ratafia, 2 S. i. 290. September Grosse, 2 S. i.
278.

Weichselbaum mit Kurzen Stiel, 2 S. i. 286.
-Weisse Sauer, 2 S. i. 292.
——Werder's Early Heart, 2S. i. 294.
White Heart, ii. 137; 2 S. i. 269.
269.

Dredge's Early, 2 S. i.
\qquad Tilger's, 2 S. i. 271.
West's, 2 S. i. 261.
Wildling von Kronberg, 2 S. i. 254.
Wild Russian, 2 S. i. 290.
Yellow, or Golden, 2 S. i. 275.
Yellow Ramonde, 2 S. i. 286.
Z Zwerg, 2 S. i. 288.
Cherry Trees of Asia Minor, vi. 43.
Cherries, Cexperiments in training, iii. 309.
Cherries, Country, v. 89.
Of the West Indies, v. 98.
Cherry Houses, use of bees in, i. 151. xxvii

Cherry Orchard, account of one at Hylands, and plan of, vii. 400.
Chervil, 2 S. iii. 52, 61.
Chestnuts, used for food in the northern parts of Europe, i. 140.
grown at Spring Grove, propagated by grafting, i. 141.

- method of keeping the home-grown nuts, i. 141, 247. sorts known to the Romans, i. 152. Sweet, resemblance of its wood to that of some species of the oak, 2 S. i. 336.
——Trees, observations on rearing them by grafting, i. 62,245 ; practised from time immemorial, i. 140.
Chevalier, Mr., 2 S. i. 15.
Chiatatlahua, plant used against its bite, 2 S . iii. 129.

Chicha, a beverage of the Indians, 2 S. iii. 139.
Chicory, 2 S. iii. 61 .
Chicorée Blanche, vi. 139.

- Endive, vi. 137.
—— d'Eté, vi. 136.
- Frisée, vi. 137.
- fine d'Italie, vi. 136.
__Grosse à cuire, vi. 138.
-_ de Meaux, vi. 137, 138.
-_ toujours blanche, vi. 139.
Chickweed, i. App. 21.
Child, -, Esq., 2 S. ii. 180.
Chilimoya, v. 82.
Chimaphila maculata, 2 S. iii. 128.
Chimonanthus fragrans, vi. 496 ; vii. $41 ; 2 \mathrm{~S}$. ii. $242,258$.

Chinese, state of their nursery-gardens near Canton, iii. 422.
their method of dwarfing trees and shrubs, iv. 224; and of propagating from branches, iv. 228.
their mode of distorting the human
form, iv. 228, note.
cultivation of the Nelumbium, vi. 535 .
plants, how to import them, vii. 396.
Ching-cho-lee, vii. 239.
Chiogenes serpyllifolia, account of, ii. 94.
Chionanthus pubescens, 2 S. iii. 149.

- maritima, vi. 495.

Chlidanthus fragrans, 2 S. ii. 283.
32, 220.
Chloride of calcium, 2S. iii. 203, 204, 205, 206.
lime, 2 S. iii. 45, 95, 96, $97,98$.
Chlorine, 2 S. iii. 36.
Chlorophytum orchidastrum, vi. 78.
Chontadura, 2 S. iii. 158.
Chorozema varium, figured, 2 S. ii. 478.
Chou aigrette, v. 11.

INDEX.

Chou d'Ambervilliers, v. 16.
___ d'Amour (a name of Orache), vii. 130.

- Aflatie, v. 16.
- en Arbre, v. 8, 9.
_ d'Armou (a name of Orache), vii. 130.
___ de Battersea, v. 16.
__de Beauvois, v. 12.
——Botrytis, v. 19.
-_de Bruxelles, v. 15.
_ Cabu Frisé, v. 13.
_-Cabus en Pomme, v. 15.
_ Capu, v. 15.
_- Caulet de Flandres, v. 10.
——Caulier, v. 8.
_- Cavaliers, v. 7.
——des Champs, v. 20.
Chessa, v. 8.
à Chèvre, v. 9.
Chicon, v. 16.
Cloqué, v. 13.
Deprimé, v. 16.
Elliptique, v. 16.
à Feuilles de Chêne, v. 10.
Frange, v. 10.
Frange du Nord, v. 10.
Frisé, v. 10.
d'Allemagne, v. 10.
non Pomme, v. 10.
-_à Faucher, v. 24.
_-Gros d'Ambervilliers, v. 14.
——à Grosses Côtes, v. 12.
de Holland, v. 13.
à Jets, v. 14, 15.
—— et Regets, v. 15.
- de Laponie, v. 25.
-_ à Larges Côtes, v. 12.
de Milan, ii. 315 ; v. 6, 10, 13.
Court, v. 14.
d'Ore, v. 14.
Hâtif, v. 14.
Nain, v. 14.
Ordinaire, v. 14.
Petit, v. 14. à Tête Longue, v. 14.
à Mille Têtes, v. 9, 15 .
Moëllier, v. 9.
de Naples, vi. 568.
Frisé Nain, vi. 568.
-_ Navet, v. 17, 18, 24, 25, 31, 32.
Blane, v. 25.
- non Pommé, v. 8.
——Obové, v. 16.
- en Euf, v. 16.
- Oleifere, v. 21.
-Ovale, v. 16.
——en Pain de Sucre, v. 16.
Palmier, v. 11.

Chou Pancalier, v. 13.
__ de Touraine, v. 14.

- Plume, v. 11.
- Pommé, v. 15.
—— Blanc, v. 16.
à Feuilles Lisses, v. 15.
Frisé, v: 13.
Rouge, v. 17.
Rave, v. 17, 24, 32.
Vert Frisé, v. 10.
Crêpu, v. 18.
Nain Hâtive, v. 18.
Violet, v. 18.
Rosette, v. 15.
Rouge Frisé, v. 11.
Rouge, v. 17.
Sauvage, v. 4.
de Savoy, v. 13.
de Siam, v. 18.
Sphérique, v. 16.
de Strasbourg, v. 16.
de Suède, v. 25.
- en Tête, v. 15.
-_ sans Tête, v. 8 .
-_à Tête Conique, v. 16.
-_à Vache, Le Grand, v. 9.
——Vert, v. 8.
\longrightarrow Branchu de Poitou, v. 9.
——Commun, v. 9.
—— Frisé, v. 11.
———Grand, v. 9.
———à Petites Pommes, v. 15. de Touraine, v. 9.
- Vivace, v. 9.
de Dauberton, v. 9.
d'York, v. 16.
Choux Cabus, v. 7.
- Fleurs, v. 7.
- Navets, v. 7.
- Pommés, v. 7.
- Raves, v. 7.
- Verds, v. 7.

Choufleur, v. 20.
Christ, pomological writer, 2 S. i. 263.
Christ's Thorn, vi. 37.
Christie, Mr. William, v. 37, 389.
tion of the varieties of autumn and winter
radishes, iv. 10.
count of the different description and accarrot, iv. 383.
Cbrysanthemum, iv. 336 ; 2 S. iii. 245.
border, v. 162.
a south wall, v. 419.

Chrysanthemum, different characters of their flowers grown on the open wall compared with those under glass, v. 423.
additional observation on the species and varieties of, vi. 322.
management of the plant in gardens, vi. 322.
sorts adapted for the open border, vi. 359.

Chinese, names of, v. 426. hardiest varieties, 2 S. i. 393. scription of varieties of, iv. 326 .
on the cultivation of, iv. 571.
and Indian, account of several, vi. 322.

Chinese practice of grafting different varieties on the same plant, vi. 356. 360.

Chinese, varieties for bedding out in the open air, 2 S. i. 394. vi. 328.

Blush Ranunculus, flowered, vi. 328.

Brimstone, iv. 341.
Brown Purple, vi. 341.
Buff, iv. 332, 346; v. 162, 416. 354, 355.

Buff or Orange, v. 420 ; vi.
Changeable Pale Buff, vi. 330 ; figured, vi. 331.

Changeable White, iv. 333, 336 ; v. 162, 419; vi. 354, 355.

Clustered Pink, vi. 336, 353.
Copper-coloured, iv. 346.
Curled Blush, vi. 332.
Lilac, v. 155, 162,
421 ; vi. 354.
Curled Pink, vi. 354, 355.
Double White Indian, vi. 347.
346.

Double Yellow Indian, vi.
— Early Blush, vi. 326.
figured, 152.
Early Crimson, v. 151, 421 ;
Early White, iv. 336.
Early Yellow, iv. 341.
Expanded Light-purple, v. 153,421 ; vi. $354,355,356$.
340.
v. 162, 420.
xxix

Chrysanthemum indicum, iv. 327, 328, 329 ; v. 160, 161; 2 S. ii. 242, 252. 330 ; v. 427 ; vi. 354.
(Linn.) figured, iv. flore pleno, figured, iv. 330.

347.

vi. 346.

King's Yellow, iv. 342.
v. 420.

Large Lilac, iv. 333, 343;

- Pale Purple, v. 413.

421; figured, v. 152. Quilled Orange, v.

Yellow, iv. 342.
Late Lilac, iv. 343.
vi. 352.

Pale Purple, v. 422 ;
Quilled Yellow, vi. 343.
—— Lee's White, iv. 336.
Magpie, iv. 336.
Old Purple, iv. 335.
Red, iv. 335.
White, iv. 336.
Orange, iv. 346.
Pale Buff, vi. 334.
353, 355.
Paper White, v. 417, 422.
Parks'8 Small Yellow, vi. 327. procumbens, vi. 348.
Purple, v. 162, 419; vi. 354. Chinese, iv. 327, 334.
Quilled Flamed-Yellow, iv.
334, 349 ; figured, iv. 350 ; v. 421.
Quilled Light-Purple, v. 155, 421 ; vi. $354,355$.

Quilled Pink, iv. 350; v. 150, 421; vi. 350.

	Purple, iv. 335. Salmon-coloured, v. White, iv. 333, 337 ;
414, 422, figured, 423.	
v. 419 ; vi. 350.	

v. 420.

- Rose, iv. 333; v. 162, 416.

Rose or Pink, iv. 344; v. 420 ; vi. 354. v. 412, 422, figured, 424; vi. 352.

Pale
Orange, vi. 337.
Pink,
v. 157,422 , figured, 423 ; vi. 351.

INDEX.

Chrysanthemum, Semi-double Quilled White, v. 158, 422.
427.

Semi-double White, v. 162, 427.

Sinense, v. 427 ; vi. 348.
Small Yellow, v. 415, 422, figured, 424 ; vi. 353.
vi. 348.

Indian, vi. 348.
Single, v. 159;
v. 420 .

341 ; v. 420.
156, 162, 421
v. 162, 420.

Yellow, vi. 329.
Two-coloured Incurved, vi.
342.

Red, vi. 333,
figured, $i b$.
varians, vi. 345.
335.

Windsor Small Yellow, vi.
\qquad Yellow Warata'h, vi. 344.
Chrysiphiala pauciflora, vi. 285.
Chrysobalanus ellipticus, v. 453.
Icaco, v. 98, 453.

- luteus, v. 453.

Chrysomela, a sort of Quince, why so named, i. 153 .

Chrysophyllum Cainito, v. 98.

- macrophyllum, v. 458.
obovatum, v. 458.
Chuquiraga lancifolia, 2 S . iii. 156.
Chupak, v. 110.
Ciboule, iii. 377.
Cicader, ii. 256.
Cicer Arietinum, vi. 54.
- Lens, vi. 54.
-_ of Pliny, vi. 54.
Cichorium Intybus, iii. 138 ; 2 S. iii. 61.
Cicuta virosa, iv. 400.
Cieca, Peter, i. 10.
Cinnamon, on its cultivation in England, 2 S. ii. 168 .

Cinchona woods of Pitayo, 2 S. iii. 158.
Condaminea, 2 S. iii. 149.
lanceolata, 2 S. iii. 158. nitida, 2 S. iii. 160.

Cinchona pubescens, 2 S . iii. 157.
Cinerarias, vi. 438.
Cineraria cruenta, vii. 42.

- lanata, vii. 42.
-_ populifolia, vii. 42.
Cinnamomum verum, 2 S. ii. 168.
Cipura paludosa, i. 309.
Cissus capensis, v. 92.
- cæsius, v. 447.
- stans, 2 S. ii. 260.

Cistus algarvensis, vii. 41.

- corboriensis, 2 S. ii. 272.
- creticus, vi. 46 ; 2 S. ii. $242,272$.
- cyprius, 2 S. ii. 242, 272.
-_ crispus, vi. 46.
- Ladaniferus, vii. 41.
- laurifolius, 2 S. ii. 272. Ledon, vii. 41.
- mutabilis, vii. 41.
—— purpureus, 2 S. ii. 272.
—— salvifolius, vi. 46; 2 S. ii. 272.
- villosus, vii. 41.

Citron, iv. 20.
Citrons, their management, iv. 306.
Citron, grape-fruited, iii. 358.
——Madras, iv. 417.
- trees, on their management, ii. 295.
—— hardier than orange, ii. 297.
Citronates, iii. App. 11.
Citrus, 2 S. ii. 253.
-account of the different varieties of the genus cultivated in Italy, iii. App. 1.

- decumana, iii. App. 6, 17.
-_ medica, 2 S. iii. 118.
Clare, Joserf, Esq., on the cultivation of Nelumbiums, vi. 535.
Clark's Aimatic Compost, 2 S. iii. 97, 99.
Clark, Mr. William, vi. 331, 334, 482.
Clarke, -, vi. 40.
———Captain, iv. 446.
-_ Sir Simon Houghton, 2 S. i. 23. Lady, 2 S. i. $535,540,541,545$.
- Mrs., vii. 483.

Clary, -, 2 S. iii. 52, 61.
Clavering, Captain Douglas Charles, vi. 76, 279.
Clay-balls, useful in diverting the course of the
sap of plants, i. 237.
Clayton, -, iii. 110.
Claytonia virginica, vi. 405.
Cleanthe bicolor, i. 312.
Clematis, 2 S. i. 465.
\longrightarrow cærulea, 2 S. ii. 257.
chinensis, 2 S. ii. 252.
cirrhosa, 2 S. ii. 242, 273.
—— flammula, 2 S. ii. 242.
\longrightarrow florida, 2 S. ii. 242.

INDEX.

Clematis montana, 2 S. ii. 242, 264.

- pubescens, 2 S. iii. 118. sericea, 2 S . iii. 154. Sieboldi, 2 S. ii. 257. virginiana, iii. 108.
Clement, Mr., ii. 55.
Cleome rosea, vii. 65.
Clerodendrum infortunatum, vii. 391.
lividum, vi. 267.
Clethra alnifolia, 2 S. ii. 260.
—— arborea, 2 S. ii. 273.
—— bicolor, 2 S. iii. 158.
——_ nana, vi. 495.
—— nudiflora, vi. 495.
-- Mexicana, 2 S. iii. 128.
-- pubescens, vi. 495.
Clews, Mr. R., 2 S. i. 544, 546.
Clianthus Dampieri, 2 S. i. 522.
Oxleyi, 2 S. i. 522.
puniceus, figured, 2 S. i. 519 , described, 521 ; 2 S. ii. $243,256$.
Clifford, -, iii. 110. 342 ; iv. 422.
Climate, effect of, on Peaches, ii. 61.
- observations on, with regard to Horticulture, vi. 1.
- upon the supposed changes of that of England, vii. 563.
of England not so well suited to the culture of Peaches as that of France, i. App. 6.
—— of Mussooree, 2 S. i. 457.
of New South Wales, effect of, in regard to the early fruitfulness of the Peach, ii. 70 .

Cim of Salcombe, in Devonshire, i. 176.
Climates, cold or hot, their several influences over vegetable life, i. 31.
dife experiments made with plants under different, i. 31, 32.
Clinogyne dichotoma, i. 276.
Clitoria arborea, vi. 73.
Clusia Ducu, 2 S. iii. 150.
Clusius, i. $9,346,353,355,357,360,363$, 364,366 ; vii. 423,437 ; 2 S. i. 265.
one of the early possessors of the potato, i. 9, 10.
the first writer who mentions the tuberose, i. 46.
i. 47 his figure and description of the plant, i. $47,48$.

Cneorum tricoccum, 2 S. ii. 273.
Coal-ashes used to preserve sea-kale from the ravages of worms, i. 20.
Cobæa macrostema, 2 S. iii. 137.
-_ stipularis, 2 S. iii. 124.

Cobbett, Mr., iii. 322.
Coburgia, on the culture of the bulbs of that genus, iv. 176.
Belladonna, iv. 180, 184.
blanda, iv. 180, 184.
ciliaris, iv. 181. Josephinæ, iv. 181.
——— multiflora, iv. 181.
pallida, iv. 181.

- radula, iv. 181.

Coccoloba pubescens, vii. 390 .
-uvifera, v. 99.
Coccus, hints for its destruction, i. 297.
Cochineal, mission of M. Thiery Menonville, to steal that insect from the Spaniards, i. 85.
Cochlearia armoracia, v. 42.
Cock, Mr. William, 2 S. i. 228, 535, 542, 544.

Cockburn, Mr. George, on the management of cauliflower-plants, to secure good produce during the winter, v. 280.
Cockburn, Mr., Colnwood, 2 S. iii. 33.
Cockscomb, on its cultivation, iv. 321.
Codarium acutifolium, v. 460, 461.
Celia macrostachya, 2 S. iii. 145.
Cœlogyne fimbriata, vii. 69.
Coffea marginata, 2 S. iii. 158.
Coffee, 2 S. iii. 129, 139, 148, 157.
Cola, v. 459.
Colborne, Nicholas William Ridley, Esq., Specimens of Coe's Golden Drop, sent by him to the Society, vi. 393.
Colchicum, or meadow saffron, its extraordinary mode of semination, i. 125.

Byzantinum, i. 329.
floribundum, i. 329.
Cole, Master, first introduced the laurel into England, i. 23.
Coleman, -, 2 S. i. 521.
Coleseed, v. 7, 22, 31, 32.
Colewort, ii. 318.
Colla, M., vii. 242.
Colletia ephedra, 2 S. ii. 283.
horrida, 2 S. ii. 283 ; iii. 147.
—— serratifolia, 2 S. ii. 283.
Colley and Hili, Messrs., 2 S. i. 534, 535, 540, 541, 543.
Collinsia bicolor, 2 S. i. 480.
Collinson, Mr. John, 2 S. ii. 455.
Collinson, Mr. John, 2. Peter, i. 95, 267, 290, 292, 305,353 ; v. 64 ; vii. 230.

> his notice, in a letter
to Linnæus, of a singular Peach-tree, i. 103.
Colinton House, account of Holly Hedges at, vii. 197.

Coloma, Comte de, iv. 274, 277, 520 ; v. 404, 411.

Colour of flowers, change of, in the Hydrangea hortensis, iii. 173.
Coloured infusions, on the power possessed by plants of absorbing, 2 S . ii. 41.
Colsa, v. 7, 21, 22, 23, 31, 32, 39, 40, 42.

- de Mars, v. 23.

Colsat, v. 21.
Columbia, plants collected in, by Mr. Hartweg, 2 S. iii. 161.
Columella, i. 60; iii. 2, App. 23, 25, 27 ; iv. 453.
his observations on the cuttings of the Vine, i. 60.
Colutea nepalensis, 2 S. ii. 264.
Colville, Mr., iii. 300 ; iv. 335, 499 ; vi. 325 ; vii. 533.

Messrs., ii. 38, 39.
Mrs., 2 S. i. 534.
Colza, v. 21.
Comarostaphylis arbutoides, 2 S. iii. 135.
Commelin, ii. 37.
Commelina cucullata, vii. 64.
spiralis, i. 271.
Comerell, Abbé de, iii. 280.
Commerson, v. 251, 252, 253; vi. 270.
Common Plum, of the West Indies, v. 99.
Composts, reason why they should be kept free from weeds, i. 18.
Conanthera bifolia, vi. 283.
campanulata, vi. 283.
Coniferous Plants, upon raising them from seed, 2 S. ii. 344.
Connor, Captain, vii. 535.
Conservatories, mode of heating, 2 S. i. 202 ; figured, 197.
Conservatory at Shipley, plan of, iv. 314.
_ at Valleyfield, plan of, vi. 226.
Constantinople, observations on, and an account of plants growing in its neighbourhood, vi. 32.
Constituents, inorganic, of plants, 2 S . iii. 35.
Conte, -, v. 91.
Convolvulus althæoides, vii. 40; 2 S. ii. 273.
———Batatas, iii. 365.
———bryonizfolius, 2 S. ii. 273.
candicans, iv. 26.
Cneorum, vii. 33, 40; 2 S. ii.
273. Jalapa, 2 S. ii. 396. maritimus, 2 S. iii. 115. purpurens, iv. 22. reptans, v. 53; 2 S. iii. 239. sepium, iv. 26. varius, iv. 22.
Cook, Mr. Benjamin, v. 64.
Coaptain, iv. 489, 490 ; 2 S. i. 519.
Cooke, Sir Williak, iii. 300 .

Coore, Philip Davies, Esq., 2 S. ii. 226, 236, 294.
Cooper, Rev. Blakeley, account of a plan for forcing grapes in borders under glass, vi. 454.

Mr. Joseph, iv. 32, on the cultivation of the species and varieties of Hedychium in a stove, vi. 449.
——Mr. -, 2 S. i. 536.
Captain Morse, plants received from, 2 S. ii. 416.
Copland, A., Esq., 2 S. i. 534, 535, 540, 543.

Copings of garden-walls, iv. 269 ; figured, 272, 273.

Corallorhiza multiflora, vi. 405.
Corbett, Mr. James, on the destruction of snails, i. 77.
Corbularia obesa, i. 350 .
—_ tenuifolia, i. 349.
——turgida, i. 351.
Corehouse, Lord, plant received from, 2 S . ii. 416.

Coriaria nepalensis, 2 S. i. 461.
Cork-tree, 2 S. ii. 226, 244.
Совmack, Mr., iii. 235.
Cornato, Prince, iv. 515.
Cornet Plums, i. 155.
Corn Salad, Italian, vi. 584.
Cornu, v. 88.
Cornus, 2 S. i. 465.
-_ circinata, vi. 496.
-_ disciflora, 2 S. iii. 127.
Cornwall Horticultural Society, 2 S. ii. 445.
Coronilla glauca, vii. 38 ; 2 S. ii. 243, 273.
_ valentina, vii. 38.
Correa de Serra, M. Joseph, notice respecting several vegetables used as esculents in North America, iv. 443.
Correa alba, 2 S. ii. 240, 247.
_- speciosa, 2 S. ii. 248.
Corrosive sublimate, 2 S. iii. 96.
Corse, Mr., fruit-trees received from, 2 S . ii. 415 .

Castalia magnifica, iii. 29.
Costmary, 2S. iii. 61.
Costus arabicus, i. 277, 278. dulecis, i. 278. glabratus, i. 277. Pisonis, vi. 274. spicatus, vi. 275.
speciosus, i. 279.
277.

Cotoneaster, 2 S. i. 458.

- acuminata, 2 S. ii. 264.
- affinis, 2 S. ii. 243, 264.

INDEX.

Cotoneaster frigida, 2 S. ii. 264.
lævis, 2 S. ii. 264.
microphylla, 2 S. ii. 243, 264.
nummularia, 2 S. ii. 264.
rotundifolia, 2 S . ii. 264.
Cottage gardens, observations on, iii. 419.
Cottam and Hallen, vii. 582.
Cotton plantations, in Mexico, 2 S. iii. 130.
Cotton, Miss, v. 255, 340.
William, Esq., upon the use of anticorrosion paint, vii. 91.
Cotyledons, or seed-leaves of plants, their utility in the process of germination, i. 218, 219, 220.

- importance of their being preserved, v. 242.

Coulter, Dr., 2 S. ii. 459.
Country Cherries, v. 89, 445, 463.
——Currants, v. 447, 463.
Fig, v. 443, 463.
Grapes, v. 447.
Plums, v. 90, 451.
Courset, Dumont de, vi. 468.
Court, M. de la, i. 49.
Couve tronchuda, v. 12; vi. 565.
dwarf, vi. 566.
Cowan, James, Esq., vi. 87, 89, 98, 285, 569 ;
Golden Potato, sent by him to the Society, vi. 569 .

Cowslip, iv. 19.
_ notice of varieties raised from the common, iii. 358.
——Hose-in-Hose, iv. 19.

- Red, iv. 19.

Coxe, iii. 257, 258, 323 ; iv. 520 ; v. 402 ; vi. 417.

Crab, by culture has produced the Golden Pippin, i. 2, 26.

- Siberian, i. 32, 35, 179.
rich varit by what means converted into rich varieties of apple, i. App. 2, 3.
Cragge Mr superior to our native, i. 32.
Crace, Mr. Henry, on a system of pruning fruit-trees, 2 S . ii. 511.
Craig, James Gibson, Esq., vi. 525.
Crambe maritima, described, i. 13.
Cranberry, American, ii. 96; v. 278. on its cultivation, iv. 483. cultivated with success at Spring Grove, i. 75. injured by dung, iv. 487.

$$
\text { v. } 276 .
$$

Cratægus, 2 S. i. 458.
azarolus, 2 S. ii. 228, 243. glabra, 2 S. ii. 228, 255.

Cratægus mexicana, 2 S. ii. 228, 243, 250 ; 2 S. iii. 126.
microcarpa, 2 S. ii. 228, 260.
Crateva Tapia, v. 100.
Cream Fruit, v. 89.
Cree, Mr. John, i. 334.
Cremolobus peruvianus, 2 S. iii. 154.
Crescentia Cujete, 2 S. iii. 137.
Cress, experiments with, in steeping the seeds,
2 S. iii. 206.

- golden, vi. 583.

Cresson doré, vi. 583.
Cresswell, John, Esq., ii. 336 ; iv. 133.
exhibited by him, iii. 359 .
Crinums, remarks on, iv. 24, 25, 34, 35, et seq.
__ experiments in crossing various species of, iv. 35.

- mode of promoting their rapid growth, iv. 243.
- divisions of the genus, iv. 49.
__ amabile, iv. 49,50 ; vii. 391. management of, and observations on, iv. 419.
——_ asiaticum, iii. 193.
augustum, iii. 195 ; iv. 422, 423,

424.

capense, iii. 187, 192 ; 2 S. ii. 268 ;
iv. $49,50$.
seed of, figured, iv. 38.
——_defixum, iii. 193.
\longrightarrow seed of, figured, iv. 38.
——erubescens, iii. 195.
——_ erubescenti-capense, iii. 196.
giganteum, iv. $38,49$.
Govenium, iv. 24, 42.
hybridun, iii. 190.
—— hybrid, iv. 25.
longiflorum, iv. 50.
moluccanum, iii. 189.
nervosum, i. 337 ; iv. 31.
\longrightarrow
revolutum, iv. 182 ; vi. $284,285$.
—— scaberrimo-capense, iii. 196.
superbum, iv. $422,423,425$.
toxicarium, iv. 49.
—— zeylanicum, iv. 50 .
Crithmum maritimum, ii. 232.
Crocuses, upon the spring varieties of, vii. 419. ___ synopsis of the species, vii. 431. vii. 427.

Crocus, its proper mode of culture, i. 124. best time for sowing the seeds, i. 125.
prefers a light dry soil, i. 129.
——_ injured by forcing, i. 130.
ber of its species, i. 131.

INDEX.

Crocus, 2 S. ii. 268.
argenteus, vii. 423, 424, 431, 438, 455, 498.
batavicus, vii. 455.
præcox, vii. 456 ; figured, vii. 433.
——_aureus, i. 316.
(of the Flora Graca), vii. 444. autumnalis, i. 139.
biflorus, i. 137 ; vii. 423, 427, 431, 446, 451.
communis, vii. 451, 452.
Parkinsonii, vii. 451, 454 ; figured, vii. 433.
stigmatosus, vii. 451, 454.
Bishop's, vii. 437.
circumscissus, i. 137 ; vii. 452.
Cloth of Gold, i. 136; vii. 434.
Double, vii. 137.
Starry, i. 136.
——Cloth of Silver, vii. 437.
-_Common Spring, vii. 469.
Common Yellow, vii. 445.
coriaceus, vii. 448.
Cream-coloured, vii. 448.
of the Dutch, vii. 469.
-Dark Scotch, vii. 440.
Duke, vii. 436.
Early Striped, i. 137.
Egg-shaped, i. 133.
Flask-shaped, vii. 444.
flavus, i. 135.
a, i. 135 ; vii. 440.
β, i. 135 ; vii. 442.
fragrans, i. 136.
β, vii. 467.
—— the fragrant, i. 136.
Gold-coloured, large, i. 133.
Isabella Yellow, vii. 441.
lacteus, vii. 423, 424, 432, 447.
concolor, vii. 448.
penicillatus, vii. 449 ; figured,
vii. 433.
lagenæflorus, i. 134, 316 ; vii. 422, 425, 432, 438, 444, 498.
figured, i. 139 ; vii. 433.
easy method of forcing
it, i. 316.
z and γ, i. 134; vii.
449.
β, i. 134.
-Iuteus, vii. $423,432,438,445,498$.
masiacus, α, vii. 448.
B, i. 134 ; vii. 448.
minimus, vii. 498.
Naked-flowered, i. 138.

Crocus neapolitanus, vii. 477.
—— nudiflorus, i. 138, 318 ; i. App. 21. obovatus, i. 133 ; vii. 475.
—— Old Cloth of Gold, vii. 440.
officinalis, i. 139.
—— Pale Cloth of Gold, i. 136 ; vii. 436.
pallidus, vii. 442.
revolutus, i. 136.
Party-coloured, vii. 457.
Pheasant's Feather, vii. 485.
præcox, vii. 498.
——purpureus pallens, vii. 481.
pusillus, vii. $423,424,432,456$.
reticulatus, vii. 438.
revolutus, vii. 435.
sativus, i. 139 ; vii. $420,421$.
Scotch, vii. 451.
serotinus, i. 138.
Small, vii. 456.
Small Yellow, i. 135.
stellaris, i. 136; vii. 422, 432, 442;
figured, i. 139.
——Striped, vii. 487, 488.
—— sulphureus, i. 135 ; vii. $422,425,432$. albidus, vii. 438, 442. concolor, vii. 438, 441 ;
figured, vii. 433.
isabellinus, vii. 438, 440. striatellus, vii. $438,440$. striatus, vii. 438, 439.
susianus, i. 136 ; vii. $422,425,431$, 434, 438. minor, vii. 434, 436. vulgaris, vii. 434.
True Saffron, i. 139.
Vernal Blue, i. 133.
vernus, i. 133, 134 ; vii. 421, 423, 424, 431, 469.
β, i. 133.
albus major, vii. 493, 494;
figured, vii. 433.
albus minor, vii. 493, 495.
alpinue, vii. 495, 496.
Andersonii, vii. 492, 493 ;
figured, vii. 433.
angustifolius, i. 317.
Aprilis, vii. 495, 497.
aureus variegatus, vii. 435.
bicolor, vii. 487, 490.
clavatus, vii. 473, 478.
concinnus, vii. 473, 476.
crassus, vii. 492, 493.
delectus, vii. 495.
dentosus, vii. 487, 489.
dorsalis, vii. 484.
dubius, vii. 473, 478.
flavus striatus, vii. 440.

INDEX.

Crocus venus fucatus, vii. 483 ; figured, vii. 433.
\qquad fusiformis, vii. 473, 479. vii. 433. gloriana, vii. 487, 488 ; figured,
\qquad glorianella, vii. 487.
grandis, vii. 473, 475.
griseus, vii. 488, 490.
incurvus, vii. 488, 491.
inflates, vii. 473, 480; figured,
vii. 433.
latifolius, flavovarius, vii. 440.
leucorhyncus, vii. 484, 485 ;
figured, vii. 433.
lilacinus præcox, vii. 473, 482.
lineatus, vii. 486.
lineellus, vii. 488, 491.
luteus, i. 316.
mæsiacus, i. 316.
marginatus, vii. 473, 474.
maculosus, vii. 473, 477.
minutus, vii. $473,481$.
neapolitanus, vii. 495, 496. præcox, vii. 473,
482.
obesus, vii. 488, 492.
obovatus, vii. 473, 475.
obsoletus, vii. 493, 494.
pallens, vii. 473, 481.
pallidus, vii. 473, 481.
parvulus, vii. 493.
pectinatus, vii. 488, 491.
Phaëton, vii. 473, 476.
pictus, vii. 483 ; figured, vii. 433.
plumbers, vii. 473, 480;
figured, vii. 433.
propinquus, vii. 487, 489.
pruinosus, vii. 473, 479.
vii. 433.
pulchellus, vii. 486 ; figured,
puniceus, vii. 473.
purpureus, vii. 473, 474.
reticulatus, vii. 487, 490.
vii. 433.

Sabine, vii. 473, 475 ; figured,
\qquad striates, i. 135 ; vii. $486,487$.
stylosus, vii. 473, 479.
tardiflorus, vii. 495, 497.
trilineatus, vii. $493,494$.
tulipaceus, vii. 473, 480.
turbinates, vii. 473, 477.
unguis, vii. 484, 485.
major, vii. 484, 485. variegatus, vii. 487, 488.
versicolor pallide luteous, i. 136. violaceus, vii. 473, 478.

Crocus versicolor, i. 137 ; vii. 423, 425, 431, 457.

figured, vii. 433.
propinquus, vii. $465,468$.
similes, vii. 459, 460. stellatus, vii. 465, 468. urbanus, vii. 465, 469 ;
figured, vii. 433.
venustus, vii. $460,462$.
violaceus, vii. 463.
Wild Grecian, vii. 444.
Croghan, Mr. James, iv. 499.
Cross-bred vegetables, iv. 25.
Cross impregnation, variation in the colour of peas, produced from the blossoms operated upon, v. 234 ; figured, v. 237.
Crossing, v. 213.
Crozier, Mr., his method of preventing the curl in potatoes, i. 192.
Cruikshanks, Alexander,'Esq., account of a hot-water apparatus, 2 S. i. 513.
vii. Preface.

Cucumbers, v. 465 ; 2 S. iii. 52.
observations on the cultivation of, in the Royal Gardens at Kew, during the autumn and winter months, ii. 282.
method of growing, iii. 146.
to obtain plants of, for the winter crop, iv. 411.
method of cultivating, in a peachhouse, v. 487.

- on forcing, vi. 127.
v. 491.
$\xrightarrow{\text { v. } 491 .}$ steam-pit for, v. 353.
__ pit for early, figured, v. 493.
pit for early, figured, v. 493.
description of stoves for, vi. 505.
mildew on, ii. 284.
Ass's, vi. 52.
Early, on a method of raising, iv.

445.

Flanagan's, iv. 560.
Fluted, v. 56.
Gurken, 2 S. iii. 60.

INDEX.

Cucumber, Southgate, vi. 132. Weedon's, 2 S. iii. 60.
Cucumis melo, vi. 58.
Cucurbita aurantia, vi. 57.
——_ cidariformis, vi. 56.
Citrullus, vi. 57.
claviformis, vi. 56.
Evadghi Cavac, vi. 57.
lagenaria, iv. 52 ; vi. 56.
Potiro, vi. 57.
pyriformis, vi. 57.
Cuichunchulla, 2 S. iii. 153.
Culcitium ascendens, 2 S. iii. 156.
——— hyoseridis, 2 S. iii. 156.
nivale, 2 S. iii. 153. reflexum, 2 S. iii. 153. rivale, 2 S . iii. 152. rosmarinifolium, 2 S. iii. 156. rufescens, $2 \mathrm{~S} . \mathrm{iii} .153$.
Cullum, Rev. Thomas Grey, on the construc-
tion of piers and copings of garden walls, iv. 269.

Cumming, Mr. Hugh, plant received from, 2 S. ii. 417.
Cunningham, Allan, 2 S. i. 519, 521.
Cunninghamia sinensis, 2 S. ii. 237, 243, 252.
Cuphea pubiflora, 2 S. iii. 127.
Cupressus horizontalis, vi. 35.

- lusitanica, vii. 41; 2 S. ii. 243, 273.

243 sempervirens, vi. 35 ; 2 S. ii. 237 , 243, 273.
—— thurifera, 2 S. iii. 124.
Curcuma æruginosa, i. 285.
——aromatica, i. 285.
—— longiflora, i. 286.
officinalis, i. 285.
——_ rubescens, i. 286.

- Zedoaria, i. 285.

Zerumbet, i. 285.
Curlies, ii. 313.
Currant, vii. 496, 497.
-_ experiment on, iii. 87.
——method of forcing, iv. 415.
account of some preserved on the trees
till November, vii. 96.
Black, 2 S. iii. 62.
Black Naples, 2 S. iii. 62.
Knight's Sweet Red, 2 S. iii. 62.
Lewis's Yellow-fruited, vii. 242.
Morgan's Red, iv. 206.
White, iv. 206.
Red, on its variations when propagated by seed, iii. 86.
improved premium offered for raising an improved variety from seeds, i. App. 2.
conjectures respecting its being indigenons, iii. 86.

Currant, Scarlet Missouri, vii. 241.

White Dutch, 2 S. iii. 62.
———Wilmot's Pale Red, iv. 206.
Curtis, Mr., author of a pamphlet on seakale, i. 13, 15, 16, 17.

William, i. 300, 317, 325, 345, 346 ; iv. 328 ; vii. $427,523,530,536,539,541$, 543, 547, 551.

Robert, Esq., 2 S. ii. 105, 106.
Mr. Samuel, account of a lime-duster
for the destruction of insects on fruit-trees, vi. 124.

Curvilinear houses in the Garden of the Society, vi. 376.

Cushing, Mr., i. 308 ; iv. 484.
Custard Apple, v. 92, 94, 102, 402 ; 2 S. iii. 139.

African, v. 443.
Cuthill, Mr., 2 S. i. 546.
Cutler, Sir John, ii., Preliminary Obeervations.
Cuttings, their striking facilitated in certain cases by ringing, iv. 558.
——advantage of raising apple-trees from, i. 65 .

Cyathea mexicana, 2 S. iii. 124, 128.
Cycnoches Egertonianum, 2 S. iii. 142.
\square ventricosum, 2 S. iii. 141, 142.
Cyclobothra alba, 2 S. i. 413 ; figured, 409.
——barbata, 2 S. iii. 122.
409.

Cydonia japonica, 2 S. ii. 258.

- sinensis, 2 S. ii. 252.

Cymbanthes fæetida, i. 329.
Cymbidium aloifolium, i. 298.

- boreale, i. 301.
—— coccineum, i. 293.
—— fragrans, i. 298. hyacinthinum, i. 300. pulchellum, i. 300 ; vi. 405. reflexum, vii. 68. verecundum, i. 299.
Cyminosma pedunculata, vi. 69.
Cynara horrida, 2 S. ii. 273.
——scolymus, 2 S. ii. 273.
-_spinosa, vii. 9.
Cypella Herbertiana, 2 S. ii. 283.
Cyperus esculentus, vi. 50.
Cypress, 2 S. ii. 237, 243, 273.
Cypripedium acaule, i. 302.
- arietinum, vi. 405.
bulbosum, i. 301.
calceolus, vi. 405.
humile, i. 302 ; vi. 405.
macranthum, 2 S. iii. 155.
molle, 2 S. iii. 132.

INDEX.

Cypripedium parviflorum, i. 301 ; vi. 405. pubescens, vi. 405.
spectabile, vi. 405.
Cyrtochilum maculatum, 2 S. iii. 116.
var. Russellianum,

$$
2 \text { S. iii. } 141 .
$$

Cyrtopodium punctatum, 2 S. iii. 129, 160.
Cythera borealis, i. 301.
Cytisus æolicus, 2 S. ii. 273.
——Weldeni, 2 S. ii. 273.
——elongatus, vii. 35.

D.

Dactylides, or Finger-shaped Grapes, grown by the Romans, i. 153.
Daffodil, 2 S. ii. 278.
Dahl, Andrew, a Swedish botanist, in honour of whom the dahlia received its name, i. 86 . iii. 219.

Dahlias, list of those of which figures have been published, iii. 236.
on a method of propagating choice ones by grafting, iv. 476.
——an account of the varieties, vii. 141.
a description of a good double, vii. 145 . cultivation of, vii. 160.
—— preservation of, in winter, vii. 161. propagation of, by grafting, vii. 163. 166.
——native country of, i. 84 .
on the different species, and their culture, i. 84.

- medicinal virtues attributed to one of the varieties, i. 85.
M. Thouin's observations relative to its culture, i. 87.
introduced into England by Lady Holland, i. 92, 93, 97.

Mr. Wedgwood's observations on its culture in the northern parts of Great Britain, i. 113 .

- observations on, and account of the species and varieties of the genus, with instructions for their cultivation and treatment, iii. 217.
- Agate, White, vii. 149.

Agathe, Imperial, vii. 149.
Royal, vii. 149.

- atropurpurea, vii. 151.
aurea Nankin, vii. 157.
-_Beauté Suprême, vii. 155.
——Beauty of England, vii. 153.
Belvidere, vii. 156.

Dahlia bidentifolia, i. 92, iii. 222.
$\longrightarrow \alpha$ crocata, i. 113.
β coccinea, i. 113, 114.
———Bright Purple, vii. 159.
——Bristol Yellow, vii. 158.
——camelliæflora, vii. 157.
Chancellor, vii. 152.
——Changeable Purple, vii. 150.
—— coccinea, i. 92 ; iii. 222, 224, 226.
——et crocata, iii. 222.

- Comet, vii. 156.
——Crimson (Monstrous), vii. 153.
- (Young's), vii. 151.
—— (Wells's), vii. 153.
- dodonæus, vii. 158.
-Duchess of Gloucester, vii. 152.
-_ Eclipse, vii. 155.
——elegans, vii. 153.
——Excellent, vii. 159.
Ma Favorite, vii. 150.
Fawn-coloured, vii. 157.
fimbriata, vii. 152.
floribunda, vii. 158.
floribunda nana, vii. 159.
frustranea, iii. 222, 234.
fulgida, vii. 156.
Grand Alexander, vii. 149.
——Gris de Lin, vii. 159.
-_ Henriette, vii. 157.
—_L'Honneur d'Anvers, vii. 154.
insignis, vii. 155.
King Aza, vii. 156.
Koning Aza, vii. 156.
Lady Banks's, vii. 150.
Lilac Striped, vii. 149.
luteola, vii. 157.
Marquis, vii. 152.
Morison, vii. 151.
mutabilis, vii. 154.
Orange Flag, vii. 156.
pinnata, iii. 221, 224, 225.
ponceau, i. 92.
Princess Alexandrina Victoria, vii. 159.
Princess Elizabeth, vii. 154.
pulchra, vii. 150.
purpurea nigra, vii. 151.
repens, 2 S . ii. 395.
rosea, i. 90,91 ; iii. 221, 222, 224.
Rose-coloured, vii. 159.
Royal Olive, vii. 157.
Royal Purple, vii. 151.
Royal Sovereign, vii. 153.
rubioides, vii. 154.
rubra pendula, vii. 154.
Ruby, vii. 154.
Sabini, vii. 151.
xxxvii

INDEX.

Dahlia, Sambucifolia, ε purpurea, i. 113.
-_ sanguinea, vii. 156.
——Sans rival, vii. 154.
——Sovereign, vii. 155.
speciosa, vii. 150.
Dark Purple, vii. 150. Light Purple, vii. 150.
speciossima, vii. 150.
sphondyliifolia, i. 90 ; iii. 222.
Spring Grove Lilac, vii. 150.
Straw-coloured, vii. 158.
sulpharea grandiflora, vii. 157.
speciosa, vii. 158.
——Sun-flower, vii. 155.
Superb Crimson, vii. 152.
superflua, iii. 221, 228, 229.
Tendre Agathe, vii. 160.
Victory, vii. 158.
Warata'h, vii. 152.
White Dutch, vii. 149.
Yellow, Clifton, vii. 158.
Dwarf, vii. 160.
Dale, Mr. George, iv. 509 ; vi. 187.
Dall, Mr. James, description of pine pits heated by leaves only, vi. 111.
apple vii 184 . on the culture of the pine appe, vil. 184; and on forcing asparagus, vii. 188.

Dalton, Mr. M., vi. 160.
Dalrymple, Mr., ii. 168 ; iv. 457, 463.
Damascena, a plum so named among the Romans, i. 153.
Dampier, 2 S. i. 153, 519, 523.
Damasonium australe, i. 268.
Damson Plum, of the West Indies, v. 99.
Danielly John Frederic, Esq., vi. 432 ; vii. 98, 99, 128, 410.
on climate,
considered with regard to Horticulture, vi. 1.
Daniell's manure, $2 \mathrm{~S} . \operatorname{iii} .44,48,50,51,95$.
$\Delta_{\alpha \varphi v n ~ a \lambda \varepsilon \xi a v \delta \rho \varepsilon i a, ~ v i . ~} 48$.
Daphne australis, 2 S. ii. 274.

- cannabina, 2 S. i. 461.
cestrifolia, 2 S. iii. 161.
Cneorum, 2 S. ii. 274.
Laureola, 2 S. ii. 243, 274.
pontica, 2 S. ii. 243, 274.
Dare, Mrs., iii. 146.
Darwin, Dr., ii. 26.
Date, remark concerning, i. 106.
- of Soudan, v. 89.
- of Trebisonde, vii. 36.

Daubenton, v. 8.
Davidson, Robert, Esq., v. 260 ; vi. 156.
Davall, Mr., i. 356.
Davallia canariensis, iii. 341.
Davey, Mr., vii. 550.

Davies, Rev. Whitehall Whitehall, iv. 508.

Davis, Mr., 2 S. i. 544.
Davy, Sir Humphry, iv. 78, 158 ; 2 S. ii. 42.
Dawes, Mr. Henry, observations on the blacking of garden walls, as it affects the ripening of fruits, iii. 330.
Dawnay, Hon. Marmaduke, i. 117; v. 348.
Dawson, Mr. John, fruit of the Banana tree, exhibited by him, iv. 137.
Day, Mr. Peregrine, tree-cabbage exhibited by, vi. 115.
Dearborn, Mr., fruit-trees received from, 2 S. ii. 415.
Deas, Mr. William, 2 S. i. 541.
De Candolle, Professor, iii. 219, 220, 226, 228, 230, 236, 243; iv. 462, 491 ; v. 102, 297 ; vi. $67,73,90,266,268,271,276$, $288,460,467,469,472,565,568$; vii. 47 , $58,235,236,245,446,524,559,561$; 2 S. i. 61, 144, 260, 263, 266, 271, 408 ; 2 S. ii. 459.

Memoir on the different species, races, and varieties of the genus Brassica, and of the genera allied to it, which are cultivated in Europe, v. 1.
plants received from, 2 S. ii. 411, 413, 414.
Decomposing substances not possessed of the power of generating organic existence, ii. 83.
Decortication, iv. 159.
Deering, vii. 470.
Delachamp, v. 15 ; vii. 423.
Delamere, Lord, vi. 198.
$\Delta_{\varepsilon \lambda \text { фiviov of Diosc., vi. } 42 .}$
Demidof, Count, iv. 490.
Demidovea tetragonoides, iv. 490.
Democritus, iii. App. 25, 27.
Dendrobia, treatment of, iv. 241.
Dendrobium album, vi. 281.
Barringtonix, i. 297, 298.
—— crumenatum, vii. 70. denudans, 2 S. ii. 239.
Pierardi, mode of constantly irri-
gating, iv. 241.
Dendromecon rigidum, 2 S. i. 407; 2 S. ii. 251.
Dens canis aquatilis, i. 331.
Deodar Cedar, 2 S. ii. 237, 240, 242, 263.
Descemet, M., iv. 289, 293 ; v. 492.
Deschamps, M., v. 407 ; 2 S. ii. 397, 398.
Desfontaines, i. 304 ; v. 88, 252 ; vi. 99.
Desmodium nutans, 2 S. ii. 264.
Deutzia scabra, 2 S. ii. 243, 258.
Devaynes, John, Esq., i. 298.
Devon and Exeter Horticultural Society, 2 S.
ii. 445.

INDEX.

Devonshire, Duke of, vii. 142; 2 S. i. 64, 535, 546; 2 S. ii. 177; 2 S. iii. 35.
Dew, vi. 10.
Dew-point, vi. 3, 5.
De Wael, M., fruit-trees received from, 2 S . ii. 415.

De Wilde, 2 S. iii. 115.
Diagram, illustrative of the proper inclination for the roofs of hothouses, i. 163.
Dianella cærulea, 2 S. ii. 248.
Dianthus, 2 S. ii. 273.
-_ superbus, i. App. 21.
Diaphane edulis, i. 304.

- stylosa, i. 305.

Dichone crispa, i. 320.
Dick, Mr., i. 364.
-Mr. Andrew, 2 S. ii. 455.
Mr. Јонл, account of a protecting frame for fruit-trees on walls, vii. 76.
account of a new kind of protecting frame, 2 S. i. 165.
Dickens, Charles Scrace, Esq., his mode of constructing a bed for forcing cucumbers, v. 491.

Dickson, Mr. Andrew, vi. 204. thod of growing asparagus in single rows, vi. 390 .
——G. F., Esq., 2 S. ii. 377.
plants received from,
2 S. ii. 418, 419.
Mr., ii. 65.
Mr. James, i. Preface ; ii. 87, 162, 164, 165, 178; vii. 225.
notice of the Agaricus Georgii, exhibited by him, ii. 403.
his remarks on a variety of the Brassica napus, or rape, i. 26.
observations on the tubers of the Lathyrus tuberosus, with instructions for its cultivation, ii. 359.

Rampion, iii. 19.
read at a special meeting of the Society, v.
App. 1.
Mr. Walter, vi. 525.
Mr., 2 S. i. 10.
and Brown, Mesbrs. iv. 285, 286.
and Turnbull, iv. 285.
Messrs., 2 S. i. 232, 235.
$\mathrm{D}_{\text {IEL, }}$ Dr. Adrist., iv. iv. 523 ; v. 409, 410 ; 2 S . i. $254,266,271$.

Dietes iridifolia, i. 307.
Digitalis purpurea, v. 484.
Dillwys, Lewis Weston, Esq., ii. 288, 294;
2 S. ii. $226,234,246,254,257,277,279$.

Dillwynia ericifolia, 2 S. ii. 248.
Dimocarpus Litchi, ii. 401; v. 124.
ii. Longan, ii. 401 ; v. 124 ; figured, ii. 401.

Dinema polybulbon, 2S. iii. 116.
Diomedea argentea, vii. 50.
Dioscorea macrostachya, 2 S. iii. 132.
Dioscorides, vi. 32, 34, 36, 39, 40, 42, 46, 47, 48, 49, 50, 52, 54.
Diosma amœena, 2 S. ii. 269.
Diospyros Kaki, v. 123; 2 S. iii. 245.
—— Lotus, vi. 36 ; 2 S. ii. 274.
—— vaccinioides, vi. 261.
——urginica, 2 S. ii. 261.
Dipidax rosea, i. 330, 331.
Diplazium grandiflorum, iii. 341.
Diplectrum cucullifoliam, i. 287.
Diplolepis apiculata, vi. 68.
-_ ovata, vi. 268, 269.
-_ vomitoria, vi. 68, 268.
Disa cornuta, i. 288.

- spatulata, i. 288.

Disandra prostrata, vi. 438 ; vii. 35.
Disease, Carroty, of plants, i. 357.
Disette, Blanche, iii. 282.
——_ Rouge, iii. 282.
Disperis secunda, i. 288.
Disporum Pullum, i. 331, 332.
Dobree, Harry, Esq., apple sent by, iv. 524.
Dock, i. App. 21.
Dodds, Mr. James, vi. 247.
Dodoens, iii. 342, 349.
Dolichos Lablab, vi. 55.
Dolma, vi. 56.
Bakché (Gourd Gardens of the East), vi. 56.

Dombey, v. 250.
Don, Mr. David, iv. 457, 462 ; vii. 28, 245 ; 2 S. i. 509.

- Mr. George, iv. Preface; iv. 458; v. 439, 440, 442, 444, 445, 446, 447, 449, $450,452,453,454,455,456,457,459$, $460,461,462$; vi. $75,78,83,86,87,91$, 268, 272, 278, 279, 284; vii. 48, 56 ; 2 S. i. 519 ; 2 S. iii. 208.

Donia formosa, 2 S. i. 522.

- punicea, 2 S. i. 521.
speciosa, 2 S. i. 522.
Donn, Mr., i. 262, 321 ; vii. 435, 440.
Doodia aspera, iii. 341 .
Door, v. 35.
Dorella, v. 35.
Doryanthes excelsa, i. 336; 2 S. ii. 248.
Dorycnium hirsutum, 2 S. ii. 274.
- monspeliense, vi. 499

Dorset, Duchess of, vi. 326.
Dotter, v. 35.

Dotterle, v. 35.
Douglas, Mr. David, vi. 293, 294, 296, 409, 575 ; vii. Preface, 62, 63, 67, 70, 71, 241, $244,250,251$; 2 S. i. 404, 405, 406, 407, $408,412,480$; 2 S. ii. 70, 375, 438.
account of the species of Calochortus, vii. 275.
description of several species of Ribes, vii. 505.
account of plants raised from seed collected by him, 2 S. i. 403, 476 ; 2 S. ii. 376.
sion, 2 S. ii. 375.
Douglas, Mr. David, Putney Hill, vii. 143, 148 ; 2 S. i. 540.

Mr. George, iv. 457, 463.
Dowding, Mr. C., 2 S. i. 535, 540, 541, 545.
Dowell, Stephen, Esq., v. 268.
Draba alyssoides, 2 S. iii. 154.

- aretioides, 2 S. iii. 153.

Dracæna ferrea, dwarfed by the Chinese, iv. 230.

Dracocephalum canariense, vii. 42.

- nutans, vi. 216.

Dracontium fertidum, i. 267.
Drake, Sir Francis, asserted to have been the first who discovered the potato, i. 10.

Miss, 2 S. i. 520 ; 2 S. ii. 71, 120, 179, 479.
Drap Country Plum, v. 90, 541.
Draxsha, 2 S. ii. 171.
Drip, to prevent, in glass-houses, vi. 121.
Drivers, Messrs., iii. 306.
Drummond, Captain, iv. 334, 349 ; vii. 523.
ii. 418 .

Mr., plants received from, 2 S .

$$
\text { W. } 410 .
$$

Mr. Gregor, on the cultivation
of French pears, the formation of borders for fruit-trees, and experiments with regard to the effects of supplying the borders with water of different temperatures, 2 S. ii. 49.

Mr. James, vii. 224, 228.
account of an experiment to ascertain the relative produce of potatoes, planted in single or double drills, or in beds, iii. 124.
description of a method of protecting cauliflower and other tender plants during winter, v. 365.
Dry air, in contact with roots in porous pots, vii. 414.

Dryander, i. 274, 281, 307, 310, 342. i. 8 .

Dryas integrifolia, vi. 405.

Drymis granatensis, 2 S. iii. 159.
Dryness, at a south wall, vi. 6 .
D of the air, excessive, 2 S. ii. 537.
Dry rot, ii. 82.
Du Breuil, M., notice of grafting wax, sent by him to the Society, ii. 407.
Duchesne, M., v. 2, 8, 22, 32, 40 ; vi. 149 ; 2 S. ii. 349.
Ducu, 2 S. iii. 150.
Duff, Mr. Christie, on the cultivation of ginger in a glazed pit, vi. 307. Nymphæa rubra, vii. 285.
Duhalde, vi. 486.
Du Hamel, i. 226, 231 ; ii. $19,61,62,131$, $214,230,253$; iii. 3,317 ; iv. 513,518 , 561 ; v. 128, 131, 133, 136, 137, 138, 140 , $296,525,526,530,542,545,546,549$, 550 ; vi. 219,233 ; 2 S. i. $59,60,67,68$, $74,250,262,290,292$; 2 S. ii. $35,41,161$, 199, 201, 208.
Duke of York, vi. Preface.
Dukuh, v. 110.
Dumelow, Mr., iii. 323 ; iv. 529.
Dumont de Courset, iii. 219.
Dunal, M., iii. 347, 348, 350, 352, 353 ; v. 251,252 ; vii. 82.
Dunbar, Mr. John, on the cultivation of the common flax as an ornamental plant, i. 71.
Duncan, Mr. James, 2 S. i. 3; 2 S. ii. 455.
Mr., ii. 42, 43, 47, 49, 53, 55.
Duquesne, Abbé, iv. 520.
Duracina, a hard-fleshed cherry of the Romans, i. 152; a term also applied to one of their vines, i. 152.
Durant, R., Esq., 2 S. i. 546.
Duranta cyanea, 2 S. ii. 283.
-_triacantha, 2 S. iii. 154.
Durian, v. 105, 106.
——Babi, v. 108.
——Borneo, v. 107.
D.Cassomba, v. 108.

Durio Zibethinus, v. 106.
Dutch manure, 2 S. iii. 97, 99.
Duthis, Mr., ii. 165.
Dutrochet, M., vi. 267 ; vii. 256, 414, 415 ; 2 S. i. $87,88,89,95,215$; 2 S. ii. 126 , 410.

Duvaua dentata, 2 S. ii. 283.
——dependens, vi. 499 ; 2 S. ii. $243,283$. latifolia, 2 S. ii. 243, 283.
——ovata, 2 S. ii. 283.
undulata, 2 S. ï. 243.
Dwarfing trees and shrubs, how effected by the Chinese, iv. 224.
Dwarfing of trees in China, effect of on the fruit, iv. 231.

INDEX.

Dymond, Mr. Georae, notice respecting the underground onion, iii. 306.
Drsart, Countess of, vi. 115.

E.

Earth Nut, ii. 359.
East India Company, vi. 276 ; vii. 49, 53, 55, 65.

Eccremocarpus longiflorus, 2 S. iii. 151.
scaber, vii. 249; 2 S. ii. 283.
Echeveria acutifolia, 2 S. iii. 127.
Echites nutans, vi. 70.
-_ sanguinolenta, vi. 70 .
-_ suberecta, iv. 23.
Echium giganteum, 2 S. ii. 269.
Eden, Mr., iii. 335.
Edgar, Mr. John, vii. 150.
Edwards, Bryan, Esq., vi. 395.

- Captain Edward, i. 326. John, Esq., iv. 555 ; 2 S. i. 11.
- Mr. Sydenham, i. 332 ; iv. 553.

Edwardsia chrysophylla, 2 S. ii. 243, 256. grandiffora, 2 S. ii. 243, 256. microphylla, vii. 41 ; 2 S. ii. 243 , 256.

Eeden, Arie Cornelis Van, vi. 292, vii. $143,149,150,151,156,157,160,465$.
Egerton, Sir Philip, 2 S. ii. 357.
Egg. plant, method of cultivating it in France, i. App. 9.
directions for cultivating and cooking, vi. 116.
esculent, vii. 82.
Long Purple, vii. 85.
Mammoth, vii. 85.
Round Purple, vii. 85.
Eglantine Sponge, ii. 242, 243.
EGremont, Earl of, iv. 528, 529 ; vi. 567.
by him, v. 269.
Ehrenberg, Charles, Esq., 2 S. ii. 395, 399.

Ehret, i. 286.

Ehretia serrata, 2 S. ii. 283.
Elæagnus angustifolia, vi. 36.
Eleocarpus serratus, v. 120.
Elder, 2 S . iii. 61 .
Eleocharis tuberosa, 2 S. iii. 243.
Elephant Apple, v. 118.
Elettaria Cardamomum, i. 282.
Elevation, the diversified effects of, on vegetable life, i. App. 16.

Ellice, Edward, Esq, ii. 361.

Elliot, Johv, Esq., apples sent by, iii. 315 .

- John, Esq., description of a moveable
frame for training vines in a house, to protect them from frost, and to facilitate the operation of pruning, iii. 355.
Ellis, John, Esq, vii. 558.
Elm, how propagated for dwarfing by the Chinese, iv. 229.

Downton, v. 146.
Elton, Isaac, Esq., iv. 139.
Endive, 2 S. iii. 60.

- description of the different varieties cultivated in the Garden of the Society, vi. 133.
- Broad-leaved, vi. 134. Batavian, vi. 134.
-_Common Yellow, vi. 134.
Curled Batavian, vi. 134.
Curled Yellow, vi. 134.
Cut Yellow Winter, vi. 137.
Double Yellow, vi. 134.
Dutch Green Curled, vi. 138. Fine Curled, vi. 134, 136. French Small Green Curled, vi. 136.
Green Curled, vi. 137.
Italian Green Curled, vi. 138.
——Large Batavian, vi. 135.
-Large Green Curled, vi. 137, 138.
Lettuce-leaved Batavian, vi. 135.
Long Italian Green Curled, vi. 139.
New Batavian, vi. 135, 136.
Small Batavian, vi. 135.
Small Green Curled, vi. 137.
White, vi. 139.
White Batavian, vi. 135, 136.
White Curled, vi. 139.
Endlicher, Dr., 2 S. ii. 410.
Enkianthus, ii. 157. quinqueflora, ii. 156, 157.
Epidendrum aloides, i. 298.
aloifolium, i. 298.
amethystinum, 2 S. iii. 155.
anceps, i. 294.
asperum, 2 S. iii. 136.
aurantiacum, 2 S. iii. 140.
ciliare, i. 294.
coccineum, i. 293.
cochleatum, i. $293 ; 2$ S. iii. 116.
elongatum, i. 294.
equitans, 2 S. iii. 116.
falcatum, 2 S. iii. 127.
fragrans, i. 293; 2 S . iii. 141.
fuscatum, i. 294; 2 S. iii. 116.
macrochilum, 2 S. iii. 142.
porphyreum, 2 S. iii. 155. rhizophorum, 2 S. iii. 128.
rubrum, i. 295.
secundum, i. 294.
seriatum, 2 S. iii. 116.

INDEX.

Epidendrum sinense, i. 298.

- Skinneri, 2 S. iii. 142.
- Stamfordianum, 2 S. iii. 136.
 tuberosum, i. 299. umbellatum, 2 S . iii. 116. undulatum, i. 295. varicosum, 2 S. iii. 141. vitellinum, 2 S. iii. 131.
Epigæa repens, vi. 405.
Epigrams of Martial, citations from, respecting the luxury of forcing-houses enjoyed by the Romans, i. 147, 148.
Epinard de Flandres, vi. 576.
Epipactis ensifolia, vi. 405.
- ovata, i. 292. pallens, vi. 405. palustris, vi. 405.
Epiphytal orchids, 2 S. ii. 239.
Epiphytes, analyses of several, 2 S. iii. 53.
- orchideous, their cultivation, 2 S . i. 42 .

Epsom salts, y S. iii. 42, 48, 50, 51, 75.

Erica abietina, 2 S. ii. 225, 271.
——arborea, 2 S. ii. 225, 243, 274. australis, 2 S. ii. 225, 243, 274. baccans, 2 S. ii. 225, 271.

- colorans, 2 S. i.. 271.
- concinna, 2 S. ii. 225, 243, 270.
_- favoides, 2 S. ii. 225, 271. flammea, 2 S. ii. 225, 271.
——gracilis, 2 S. ii. 225, 243, 270, 271. mediterranea, vii. $40 ; 2$ S. ii. 225,243 , 274.
—— scoparia, 2 S. ii. 274.
—— stricta, 2 S. ii. 225, 274.
——ubiflora, 2 S. ii. 225. 271.
-umbellata, 2 S. ii. 225, 274.
-_ vagans, 2 S. ii. 225, 226, 274.
- verticillata, 2 S. ii. 271.

Erigeron campanulatum, 2 S. iii. 156. graveolens, vi. 49.
Eriobotrya japonica, v. 124; 2 S. ii. 225, 243, 258.

Eriocephalus africanus, 2 S. ii. 271.
Eriosoma mali, iii. 61 ; vi. 547.
Erodium hymenodes, vii. 42.
Errington, Mr. Robert, upon forcing the peach-tree, 2 S. ii. 357.
Eryngium humile, 2 S. iii. 156.
Erythrina Crista-galli, 2 S. i. 284.
Erythronium aquatile, i. 331.
Dens Canis, i. 331.
Escallonia caracasana, 2 S. iii. 157.
——glandulosa, 2 S. i. 264, 269.
——montevidensis, 2 S. ii. 243, 284.
pulverulenta, 2 S. ii. 243.

Escallonia rubra, 2 S. ii. 243, 284.
Eschscholtzia cæspitosa, 2 S. i. 408.
—— crocea, 2 S. i. 407.
—— hypecoides, 2 S. i. 408. tenuifolia, 2 S. i. 408.
Escobedia linearis, 2 S. iii. 137.
Esculent vegetables used in China, v. 49.
Espeletia grandiflora, 2 S. iii. 158.
Essex, Earl of, v. 492 ; vi. 477.
Ethanium racemosum, i. 281, 282.
Eucalyptus alpina, 2 S. ii. 248.
— hirsuta, i. 25.
——obliqua, i. 25.
Euclea, v. 92.
Eucomis punctata, vi. 438. striata, vi. 438.
Eugenia aquea, v. 111.
\longrightarrow australis, 2 S. ii. 240. Guayavilla, $2 \mathrm{~S} . \mathrm{iii} .157$. Jambos, i. App. 11, 12, 13, 14 ; v. 112.
malaccensis, v. 111 .
Eulophia gracilis, vi. 86.

- guineensis, vi. 86.

Euonymus, 2 S. i. 465.
——chinensis, vi. 74. chinensis, vi.
echinatus, 2 S. ii. 264. europæus, var., vi. 42. Hamiltonianus, 2 S. ii. 264. japonicus, 2 S. ii. 259. sarmentosus, 2 S. ii. 264.
Eupatorium amplum, 2 S. iii. 159. glutinosum, 2 S. iii. 154. latipes, 2 S. iii. 159. scandens, vii. 250. vacciniæfolium, 2 S. iii. 159.
Euphorbia amygdaloides, 2 S. ii. 232.
\longrightarrow cyathophora, vi. 91. cyathophora, vi. 91.
mellifera, 2 S. ii. 274. Pithyusa, 2 S. ii. 274. rigida, 2 S. ii. 274. Tirucalli, 2 S. ii. 301. veneta, 2 S. ii. 274.
Euphrasia stricta, 2 S. iii. 156.
Eurya chinensis, vi. 271.
Euryale ferox, iii. 31, 34, 35.
Eurycles sylvestris, i. 337.
Eutaxia myrtifolia, 2 S. ii. 248.
Euxenia Mitigui, 2 S. ii. 248.
Evans, Thomas, Esq., i. 272, 279, 300, 303, 332 ; iv. 333,342 ; vi. 325.
Evansia chinensis, i. 303.
Evaporation from plants, vi. 20.
Evelin, John, his remark concerning the application of manure to annual plants, i. 6.
Evergreens, 2 S. ï. 233, 254, 278.
Ewbanke, Mr., i. 277.

INDEX

Exhaustion of soils, 2 S. iii. 189.
Exhibitions, reports upon, 2 S. i. 529.
Exotics, account of several which endure the open air in Devonshire, i. 175, 242, 243.
Expansion of liquids, table of, vii. 573.
Experiments, First Report on those carried on in the Garden of the Horticultural Society, vi. 373 .

F.

Fabricius, ii. 162.
Fagoago, Viscount, ii. 156.
Fairbairn, Mr. John, i. 291.
on the cultivation of the strawberry, 2 S. i. 84.

- Mr. Thomas, on the cultivation of air-plants, vii. 499.
Fairweather, Mr. John, on the cultivation of the Impatiens balsamina, iii. 406.
Falconer, Dr., plants received from, 2 S. ii. 411, 413, 414.
——Mr. J., 2 S. i. 536, 540, 543.
Falderman, Mr. Francis, on the propagation of Zamias, vi. 501.
Falla, Mr., vi. 172, 207, 288 ; vii. 230 ; 2 S . i. $230,231,232,234$.
——account of a successful method of raising onions, ii. 121.
Farina of hardy plum-trees introduced into the blossoms of the tender kinds; rich varieties thence attainable, i. App. 2, 3.
Farmer, T., Esq., 2 S. i. 545 ; 2 S. iii. 35.
Farnborough, Lady, vii. 545.
Farquhar, Sir Robert, v. 198 ; vii. 46.
Fat Hen (Chenopodium album), iv. 489.
Fences, for Gardens and Orchards, on the most eligible, ii. 354.
Fennel, 2 S. iii. 52, 61.
Ferns, directions for raising from seed, iii. 338.
- list of species raised by Mr. Shepherd from seed, iii. 341.
Feronia elephantum, v. 118.
Ferraria pavonia, i. 309.
Fra Tigridia, i. 309.
Frrrarius, his account of the Tuberose, i. 48.
Fertilization by Pollen of a different species, effect of, in altering the usual form of the capsule, v. 69.
Ferula, vi. 50 .
- of Pliny, vi. 50.

Ficus Brassii, v. 448.

- elastica, vii. 389.
- indica, on the treatment of, in the conservatory, v. 374.
- prinoides, 2 S. iii. 160. xliii

Figs, method of hasteming their maturity, i. 110.

- several sorts cultivated by the Romans, i. 152 .
- when first introduced into England, i. 156.
- Mr. Gardiner's method of ripening the second crop, i. 252, 253, 254.
__ large crops raised by Mr. Aiton, in Kew Gardens, i. 254.
- cultivation of, on the back walls of vineries, iii. 409.
- dried in this country, exhibited, iv. 564.
- method of obtaining very early crops of, vi. 232.
account of a method of forcing at Harewood House, vi. 365.
- on their cultivation, 2 S. ii. 165.
- effects of frost on, 243, 274, 275.
- sections of, figured, v. 166, 167.
—_ varieties of:-
- Black Provence, v. 348.
- Blanche, vi. 233.
- Blue Burgundy, iv. 506.
- Brown Naples, iv. 505 ; v. 348.
—— Turkey, iv. 505.
- Ford's Seedling, v. 348.

Genoa, vi. 366.
Black, vi. 366. Large White, v. 347.

- Gentile, v. 348.
- Howick, v. 164.
- Ischia, Brown, v. 347.
ii. 275 .

Green, v. 163, 348 ; vi. 366 ; 2 S.
Large Brown, vi. 366 .
Small Black, vi. 366.
Yellow, v. 348.

- Italian, iv. 505.
- Long Blue, iv. 506.
_- Marseilles, White, v. 348 ; vi. 233.
- Murrey, v. 348.
- Murry, vi. 366.
- Nerii, 2 S. ii. 165.
- Pocock, v. 348.
- small (of Sierra Leone), v. 448.
- Tarring, iv. 505.

White Marseilles, iii. 435 ; iv. 506 ; v. $163,164,167,176$.
Fig-tree, one still growing in the Archbishop's Garden at Lambeth, said to have been imported by Cardinal Pole, i. 156.
improved method of training, to cause
it to ripen its second crop of fruit, i. 252.
Culture of, the grand support of the
inhabitants of Argenteuil, i. App. 6.

Fig-tree, training of the, iii. 307.
-account of the Pocock, in the garden of Christ Church, Oxford, iii. 433. 460.
effects of high temperature on, iii.
Culture of, in a Stove, iv. 200.
on its management in the open air, iv. 428.
${ }^{16}$ premature dropping of the fruit, v . 163.
upon its cultivation, 2 S. i. 395.
experiments on its rate of growth, 2 S. iii. 103.
Fig-trees, management of, i. App. 7.
ii. 228.
on their preservation in the winter,
-.- Memoranda respecting their culture in the open air in England, iii. 74.
-Standard, on their treatment in the Gardens at Arundel Castle, iv. 185.
account of some in a garden at sompting, near Worthing, iv. 504.

- on the effects produced upon them by ringing, v. 170 .
- on the management of, in the open air, v. 346.
- mode of protecting their branches during winter, vi. 108.
Filberts, i. 155.
grown by the Romanz, i. 153.
cultivation and mode of pruning of, near Maidstone, iv. 145.
on the fertilization of the female blossoms, iv. 310.
Fior del Passione, iii. 111, 112.
Fir, i. App. 17.
Fir-wool, analysis of, 2 S. iii. 55.
—Scotch, 2 S. ii. 256.
-Silver, 2 S. ii. 263.
Fire-screen, at Fontaineblean, embroidered with daffodits, and said to have been given by Henri IV. to the fair Gabrielle, i. 349.
Fire-places, Roman, how constructed, i. 148.
-.... of hothouses, directions for the management of those with double doors and ash-pit registers, r. 467.
Fischen, Mr. Chistopuen Abaaiam, vi. 99.
- Dr.. iv, 368 ; vi. 296, 503 ; vii. 252.

Acesunt of Count Zubow's steampity at St. Petersburgh. iii. 4,30 .

- notice respecting the Begonia Evansiana, iv. 407.
plants received from, 2 S . ii. 410,
412 ; 2 S. ii. 411, 413.
- Mr., vi. 291.

Fisher, Rev. John, upon the management of an unproductive Swan's-egg Pear-tree, vii. 94.

Fistik, vi. 47.
Fitzgerald, Lord Henry, iii. 313, 328; v. 407.
specimens of a pear sent from his garden, v. 266.
Flacourt, v. 92.
Flacourtia inermis, v. 116.
——Ramontchi, v. 93.
—— sapida, v. 120.
Flanagan, Mr. Patrick, practical account of the culture of early melons, iv. 187.
iv. 524.
apple exhibited by,
n
iv. 560 .
, 560.
on the house ma-
nagement of peaches and nectarines, v. 57.
Flax, common, national advantages derivable from its culture, i. 71.
on its cultivation as an ornamental plant, i. 71.
(Linum usitatissimum) its botanical description, i. 72.
i. 72, 73.

- the soil best suited for its growth,

$$
1.2,00
$$ proper season for sowing, i. 73. how to prepare it for the flaxdresser, i. 74.

error in the practice of pulling and macerating the flax, i. 74.

- maceration of, i. 74.

Fleetwood, Mr. Thomas, his mode of hastening the maturity of grapes on open walls, v. 484.

Fleming, John, Esq., 2 S. ii: 227, 234.
Fletcher, Andhew, Esq., vi. 523.
Mr., 2 S. i. 546 .
Flies killed by the steeped bruised leaves of Bessera elegans, 2 S. iii. 118.
Floresi, Mr., 2 S. ii. 387 ; iii. 120.
Florists of Haarlem, their meetings for the purpose of naming their respective flowers, i. 231.

Flor de Mayo, 2 S. iii. 157.
Flos Passionis, iii. 111, 113, 114.
Flowers, double, observations upon the natural laws which govern their production, vi. 309. Flov, Mr. Michael, vii. 241.
description of American
fruits, of which trees were transmitted to the Society, vi. 409.
Flues might be superseded in hothouses by the introduction of steam-tubes, i. 151.

INDEX.

Flues, used by the Romans under the floors of their apartments, i. 148.

- for hothouses, on their construction, iii. 252.
hothouse, Walker's improved construction of, iv. 237.
construction of, v. 213.
section of, 216.
on their management, so as to
keep up a nearly equal temperature during the night, vi. 247.
Flue-embrazure, ii. 175.
Foljambe, George Savile, Esq., vi. 541 ; 2 S. ii. 233.
Follette, vii. 130.
Fontanesia phyllireoides, 2 S. ii. 243, 275.
Foo-chow-foo, calendar of the weather, natural history, and country operations at, 2 S. iii. 237.

Fonbes, Dr., v. 515 ; notes relative to the cultivation of Asparagus at Vienna, v. 335,
-Mr. James, 2 S. ii. 226, 272.
John, iv. Preface ; vi. 82, 84, 88 ; vi. $275,277,281,282$; vii. $64,73,74$.
——Sir William, vii. 197, 198.
Forcing-houses, their defective construction, i. 5, 99.

i. 99 ; figured, i b.

observations on those of the Romans, i. 147. hoth the appellation misapplied to hothouses, i. 150.
heat in, on the ill effects of excessive heat in, during the night, ii. 130.

- ventilation of, ii. 224.
for, ii. 350.
quired for one, ii. 353.
vi. 378.
in the Garden of the Society,
one on the form which the glass of one ought to have, in order to receive the greatest possible quantity of rays from the sun, ii. 171. curvilinear, ii. 171. for grapes, figured, i. 99.
ii. 171 .
plan of Sir G. S. Mackenzie's,
Fondyce, Mr., i. 280.
Forest-trees, a plan for transplanting large, in parks, vii. 294 ; figured, vii. 295.
Fomman, Wilham, Eqq., his description of a Pine Pit, vii. 87.
Foriest, Mr. Richard, 2 S. i. 535, 540.
Forster, Thomas Furly, Esq., i. 284.

Forster, Dr. John Reinhold, iii. 340 ; iv. 490.

Forsyth, Mr. William, i. Preface; ii. 167 ; iii. 257 ; iii. 321,325 ; v. 536,544 ; 2 S. i. 59,67 .

Wilian, Esq., Apples exhibited by, iii. 313, 316 .
Fortune, Mr. Robert, upon the Achimenes longiflora, 2 S. ii. 508.
account of experiments upon the effects of Kyanized wood, 2 S. ii. 515.
Foster, Right Hon. Augustes, v. 514. Augustus John, vii. 260.
Capt., 2 S. i. 546.
Fothergilh, Dr. John, i. 266, 277, 299, 300,302 ; ii. 94 ; vii. 230.
Foule, Mr., vi. 60.
William, on the cultivation of the Madeira Vaccinium, vi. 59.
Fountains, artificial, unfavourable to the growth of Aquatics, iv. 395.
Fox, Mr., Falmouth, 2 S. ii. 247, 248, 249, 253, 269, 271, 282, 286, 287.
Fox-glove, employed for the destruction of Insects, v. 484.
Fragaria virginiana, iii. 207.
Frame, account and plan of one with rising lights, iii. 130.

- protecting, for Asparagus, Sea Kale, \&c., 2 S. i. 165 ; figured, 165, 166, 167, 168.
- for hotbeds, remarks on the proper construction of, i. 142.
_ improvement in adopting their form to inclined surfaces, i. 142.
——method of training Vines in, i. 143. Cucumber, coverings for, iii. 296.
Frankland, Sit Thomas, iii. 329; vii. 22, 93.

> Apples sent by, iii.
314.
for plants sent by him, iii. 363 .
on the means of destroying Wasps, iv. 107. Charcoal on the root of a Hyacinth, iv. 130.

Melon sent by him
to the Society, iv. 514.
Franklin, Capt., vii. 553.
Fraser, Mr., i. 327, 338; iii. 33.

- Charles, vi. 265, 278.

Huen, 2S. i. 542.
John, iii. 225 ; vi. 287 ; 2 S. i.
256, 275.

Fraser, Mr., vii. 232.
Fraxinus americana, 2 S. ii. 243, 261.
-_ excelsior, vi. 494, 498.
___ excelsior verrucosa, vi. 494.
—_ horizontalis, vi. 498. lentiscifolia, 2 S. ii. 252. nana, vi. 494.
parviflora, vi. 498.
Theophrasti, vi. 494.
Freezing of vegetable fluids, ii. 185*, 186*.
French, Joseph, Esq., ii. 245 ; ii. 331 ; iv.
256 ; an account of his method of forcing
Vines and Nectarines, ii. 245.
Fries, M., vii. 237.
Fritillaria barbata, vii. 279.
obliqua, i. 334.
Frost, Mr. Philip, 2 S. ii. 227.
Frosts, late, 2 S. ii. 9.
Spring, 2 S. i. 353; 2 S. ii. 137, $139,199,327,491$; 2 S. iii. 219 ; vii. 111, 355.
early Autumn, 2 S. i. 191; 2 S. ii. $147,149,547$; 2 S. iii. 183, 231.

- on the good effects of watering frozen branches of Peach and Nectarine trees very early in the morning, ii. 13.
——_ to counteract its effects, iii. 42.
injurious effects of its action on the stems of Fruit-trees, vi. 228.
- report on the effect on certain plants by that of the 29 th April, 1826, vi. 493.
- at Pekin, vi. 536.
-_ in the north of Italy, vi. 536.
——severe, 2 S. i. $299 ; 2$ S. ii. 230.
- intense, 2 S. ii. 319.
severe, in April, 2 S. ii. 325.
observations upon the effects produced on plants by those of $1837-8,2 \mathrm{~S}$. ii. 225.

Fruits, ameliorated varieties of, how produced originally, i. 2.

- every species requires its peculiar soil and situation, i. 30.
new and early, observation on the method of producing, i. 30.
on the means of prolonging the duration of valuable varieties of, 2 S . i. 147.
__ names of several Eastern kinds which may be raised in this country, i. 151.
- list of those cultivated by the Romans, i. 152; and in the English gardens in Tusser's time, i. 154.
- when sufficiently hardy are best flavoured from standard trees, ii. 109.
—_ want of permanence of character in the varieties of, when propagated by grafts and buds, ii. 160.

Fruits, on the preservation of, during winter and spring, ii. 193.
-
exhibit all the characters of a living vegetable for a considerable time after being taken from the tree, ii. 194.
__ insects diverted from, by the Hoya carnosa, ii. 197.

- _ preservation of, from Wasps, iii. 256.
__ notices of varieties exhibited, iv. 203.
___ notices of new or remarkable varieties ripened in the summer and autumn of 1820 , iv. 508.
-_ on the accidental intermixture of character in, v. 63.
—— Tropical, descriptions of, v. 79.
- particularly Melons, acquire their highest state of perfection when their growth is slow and regularly progressive, v. 143.
edible, of Sierra Leone, account of, v. 439 .
-_ notice of varieties exhibited at the meetings of the Society in the years 1823 and 1824, vi. 392.
- observations on the qualities of newlyraised, vi. 529.
- the quantity in proportion to the surface of leaves ought not to be less under glass than in the open air, ii. 112.
and leaves, connection between, ii. 184.
- models of, presented to the Society, iv. 51.
__ maturity of, supposed to be accelerated by the aroma of one previously ripe, v. 228.
_ ability of trees to ripen depends greatly on the quantity of light which falls on their foliage, v. 271.
Fruit buds, how rendered more apt for fructification, i. App. 7.
—— Committee, Report of, ii. 58.
- room, description and plan of one, ii. 76.

Fruitfulness, early or late, of seedling-trees, are habits more or less inherited, ii. 6.
Fruit-trees, management of, in pots, ii. 112.
Mr. Knight's method of training them, i. 79.

Mr. Wilmot's remarks on the present mode of budding and grafting them, i. 215.
advantages of propagating from the roots of old ungrafted, ii. 252.
_ on a method of improving their productiveness, ii. 262.
ringing of, ii. $265,267,382$; iv. 123.
on the effect of watering them early in spring, ii. 271.
their fruit, ii. 288 . at night when ripening

Fruit-trees, on the proper management of those intended for early forcing, ii. 368.
description of a mode of training, by M. Noisette, ii. App. 8 ; figured, ib. treatment of, by Mr. Charles Harrison, iii. 37.
i.. to counteract the effects of frost, iii. 42.
-_ on the causes of decay in, iii. 291.
effects of the application of a ligature on, iv. 123.

- observations on a method of training them in Russia to preserve them from frost during winter, iv. 405.
mode of grafting to induce their early fruiting, iv. 410.
destruction of insects on, v. 76.
blight, v. 175.
gumming of, v. 175.
mildew, v. 175.
wash for, v. 319.
effects of age on, v. 384.
upon the beneficial effects of protecting their stems from frost in early spring, vi. 228.
composition for the destruction of insects on, vi. 541.
—— protecting frame for, vii. 76.

135.

on the alluvial banks of rivers, vii.
planting of, on raised banks, vii. 139.
to furnish naked branches of with new wood, vii. 417.
against walls, upon the causes of the premature death of parts of their branches, 2 S. ii. 34.
$\overline{\mathrm{F}_{\mathrm{RY}}, \mathrm{P}_{\mathrm{E}}}$ pruning of, 2 S . ii. 511.
Fry, Peter, Esq., 2 S. i. 540.
Fubr., iv. 525.
Fuchsias, upon their cultivation, vi. 520.
Fuchsia ampliata, 2 S. iii. 154.
— arborescens, 2 S. iii. 126.
——canescens, 2 S. iii. 158.
vonshire coccinea, inured to the climate of De-
vonshire, i. 175 .
——cordifolia, 2 S. iii. 135.
corollata, 2 S. iii. 158.
dependens, 2 S. iii. 155.
discolor, 2 S. ii. 284.
excorticata, 2 S. ii. 256.
fulgens, 2 S. iii. 122.
gracilis, 2 S. ii. 243, 284.
hirtella, 2 S. iii. 160.
longiflora, 2 S . iii. 155.
loxensis, 2 S. iii. 149. petiolaris, 2 S . iii. 159. scabriuscula, 2 S. iii. 155. xlvii

Fuchsia sessiliflora, 2 S. iii. 155.
—— splendens, 2 S. iii. 131.
——sylvatica, 2 S. iii. 155. verrucosa, 2 S. iii. 160. virgata, 2 S. ii. $243,284$.
Fuel, on the most economical method of employing it in heating flues, iv. 156.
Fumigator, vi. 140 ; figured, vi. 141.
Fungi, copper contained in, 2 S. iii. 53.
Furrell, Mr. John, iv. 455.
Furze, 2 S. ii. 225, 226, 235, 245.
——Irish, 2 S. ii. $235,245$.

G.

Gertner, iv. 489 ; vi. 70.
Gage, Sir Thomas, i. 328.
Gaines, Mr., 2 S. i. 540, 544, 546.
Galanga officinalis, i. 281.
Galatea vespertina, i. 310.
Galaxia grandiflora, i. 314, 315.
———graminea, i. 315.
——mucronularis, i. 315.
obtusa, i. 315.
——ovata, i. 315.
——_ α, i. 314.
——versicolor, i 315.
Galen, iii. 343; iii. App. 26.
Gallesio, iii. App. 3; vii. 259, 260, 261.
Galium Aparine, 2 S. i. 466.
Gallois, Abbe, i. App. 12.
Galton, Samuel, Esq., description of his plan of exposing the branches of vines, v. 567.
Gangi, v. 91.
Ganymedes cernuus, i. 353. effusus, i. 354. pulchellus, i. 354.
Garcinia, v. 117.
——Cambogia, vii. 16.
cochinchinensis, i. 270.
Mangostana, v. 106.
Garden, national, advantages of, i. 246.
_ walls, blackening of, vi. 17.
walls, blackening of, v. 17 . Firticultural Society, First Report on Experiments carried on in it, vi. 373. analysis
of its soil, 2 S . iii. 36.
Gardenia florida, dwarfed by the Chinese, iv. 230.

Gardner, Hon. Mr., vii. 526; 2 S.ii. 177, 178.
Garlick, vii. 93 ; 2 S. iii. 60.
Garlick Pear, v. 99.
Garnier, Rev. J., 2 S. ii. 259, 263, 266.
Rev. Thomas, vi. 173 ; 2 S. i. 531. observations on the
cultivation of strawberries, with remarks on
the rapid formation of their blossoms and fruit, iv. 479.
Garnier, Rev. Thomas, notice of strawberries exhibited by him, iv. 509 .
specimens of the Rosebery Strawherry exhibited by him, v. 260.

Garrya elliptica, 2 S. ii. 243, 261.
— laurifolia, 2 S. iii. 117, 126. macrophylla, 2 S. ii. 397 ; 2 S. iii 124.

Gas-lime, 2 S. iii. 94.
Gas-water or liquor, 2 S. iii. 47, 48, 50, 51, 94, 95, 96, 97, 100, 101.
Gassendi, i. 46.
Gavjac, M., v. 23, 41.
Gaultheria anastomosans, 2 S. iii. 158.
——conferta, 2 S. iii. 159.
——cordifolia, 2 S. iii. 158.

- hirtiflora, 2 S. iii. 127.
———insipida, 2 S. iii. 154. nitida, 2 S. iii. 124. pichinchensis, 2 S. iii. 154. purpurascens, 2 S. iii. 154. ramosissima, $2 \mathrm{~S} . \operatorname{iii} 159$. serpyllifolia, ii. 94.
Gawler, Mr., iii. 378; vii. 457.
Gay, Mr., vii. 421, 422.
Gaylussacia buxifolia, 2 S. iii. 159.
Gazania rigens, 2 S. ii. 271.
Geissorhiza ciliaris, i. 321.
- secunda, i. 321.

Gela lanceolata, vi. 69, 70.
Genista triquetra, 2 S. ii. 275.
Gentiana corymbosa, 2 S. iii. 160. diffusa, 2 S . iii. 156.
—— limoselloides, 2 S. iii. 156.
— rupicola, 2 S. iii. 156.
$\overline{\text { Gentil, }}$ author of 'Le Jardinier Solitaire,' ii. 52 .

Genus, its definition, iv. 21.
Georgina, iii. 219.

- coccinea, i. 92 ; iii. 222.
frustranea, iii. 222.
purpurea, i. 91 ; iii. 221, 226.
rosea, iii. 222.
superflua, iii. 221.
variabilis \propto (purpurea), iii. 221 ; \propto lilacina, iii. 222.
Geranium anemonefolium, vii. 42.
Germination, description of the process of, i. 217.

Geroit, M. V., 2 S. ï. 401.
Grrrarde, i. 9,123 ; ii. 274 ; iii. 19, 108, $342,348,438,442$; v. 5.
Gesnkr, iii. 343. xiviii

Gesnera Douglasii, vii. 62.
__ ulmifolia, 2 S. iii. 154.
Gethyra occidentalis, i. 282.
Gibbs, Mr. Thomas, i. 359 ; vi. 153, 184 ; 2 S. i. 535 ; notice of varieties of the common Cowslip sent by him, iii. 357.
Gibson, Bishop, i. 329.
Mr. William, account of his method of growing Pine Apples under a frame, with the heat of leaves alone, v. 486.
Giles, Daniel, Esq., ii. 336 ; vi. 579.
Apples exhibited by, iii. 312.

Gilia achilleæfolia, 2 S. i. 478.
—— liniflora, 2 S. i, 478.
—— pharnaceoides, 2 S. i. 478.
——tenuiflora, 2 S. i. 478.

- tricolor, 2 S. i. 478.

Gill, Mr., vi. 413.
Gillies, Dr. John, vii. 53, 72.
Gilliesia graminea, vii. 72.
Gilpin, William, Esq., i. 104 ; iii. 334, 336.

Ginger, on the cultivation of, in a glazed pit, vi. 307.

Gingerbread Plum of Sierra Leone, v. 452.
Girolamo, v. 91.
Gissanthe spiralis, i. 279.
Gladioli, African, iv. 23.
—_and European, remarks on mule productions from, iv. $23,39,46$.
borders, iv. 153.
Gladiolus abbreviatus, i. 324.
—— æthiopicus, i. 324.
blando-cardinalis, iii. 196.
blandus, iii. 196.
——cardinali-blandus, iii. 196.
cardinalis, i. 325 ; iii. 196 ; iv. 155.
concolor, i. 325.
hirsutus, iv. 154.
lineatus, i. 319 ; vi. 292.
longiflorus, i. 318.
polystachyus, i. 323.
precox, i. 325.
psittacinus, 2 S. ii. 243, 268.
quadrangularis, i. 324.
ringenti-tristis, fig. iv. 47.
tristis, iv. 154. β, i. 325.
tristi-blandus, fig. iv. 47.
tristi-hirsutus, figured, iv. 47.
Watsonius, i. 325.
Glass. Bouguer's table of rays reflected from, i. 163 .

Glasshouses, temporary, mode of constructing, vi. 544 ; figured, vi. 545.

Glass, hand, for placing over newly-grafted orange and lemon-trees, iii. 92.
Glazier, appellation of that tradesman among the Romans, i. 149.
Glazing, circular, iv. 86 ; figured, iv. 87.

- copper lap, iv. 89 ; figured, iv. 91.
- horizontal, iv. 85 ; figured, iv. 87.
of hothouses and conservatories, iii. 244 ; iv. 84.
hotbed lights and the roofs of forcinghouses, mode of, vi. 112 ; figured, vi. 113.
—— lead lap, iv. 90 ; figured, iv. 91.
—— rhomboidal, figured, iv. 87.
shield, iv. 89 ; figured, iv. 87
Stewart's patent, iv. 89.
Gleditschia chinensis, vi. 495; 2 S. ii. 253.
——horrida, vi. 495.
—— macrantha, vi. 495. macrostachya, vi. 495.
triacanthos, vi. 495.
Glenny, Mr., 2 S. i. 535, 536, 542, 545.
Globba nutans, i. 279.
Gloriosa superba, i. 331 ; vi. 277.
- on the proper treatment of, virescens, vi. 277.
Glycine Apios, iv. 445.
243 sinensis, vi. 496 ; 2 S. i. 305 ; 2 S. ii. 243, 252.
account of, vi. 460.
Glycosmis citrifolia, vi. 72.
Gnidia flava, 2 S. ii. 271.
$\overline{\text { Gonplex, iii. } 362 \text {; } 2 \text { S. ii. } 271 . ~ . ~ . ~}$
Goderrox, M., vii. 235.
Gexppert, M., 2 S. ii. 299, 300.
「orvunis, v. 18.
Goldbach, Dr., vii. 421.
Goldnet, Francis, Esq., i. 293.
Goldsmid, Abraham, Esq., iii. 321.
Gome Isaac Lyon, Esq., v. 346.
Gomeza recurva, vii. 67.
Gomortega nitida, v. 104.
Gondouin, M., 2 S. i. 281.
Good, Mr. Peter, a celebrated botanic gardener, i. 327, 328.
Goodia intermedia, iv. 46.
\bar{l} latifolia, 2 S. ii. 249.
Goodhall, Henry, Esq., v. 415.
Goodricke, Sir Henry, Account communicated by him of the original tree of the Ribston Pippin, iii. 140.
Goose, Mrs., iv. 69.
Gooseberry, the raising superior varieties of, one of the objects for which premiums were intended to be given by the Horticultural Society, i., App. 2.
slix

Gooseberry, mode of destroying the caterpillar on the, ii. 150 .
method of training the trees, iv. 194; v. 76 ; vii. 403.
method of forcing, iv. 415.
568.
v. 490 .
_- vi. 497.
account of varieties of, 2 S. i. 218.
Admirable, Grange's, 2 S. i. 239.
Amber, 2 S. i. 224,231 ; 2 S. iii. 63. Hairy, 2 S. i. 230. Smooth, 2 S. i. 231.
—— Aston, 2 S. i. 229.
231.
\longrightarrow seedling, 2 S. i. 229.
Ball, yellow, 2 S. i. 224, 232.

- Belmont's green, 2 S. i. 233.
——Beaumont's red, 2 S. i. 224, 229.
- Bright Venus, Taylor's, 2 S. i. 238, 244.
- British Crown, Boardman's, 2 S. i. 236, 239.
\longrightarrow Champagne, red, 2 S. i. 223, 227 ; 2 S. iii. 62.

White, 2 S. i. 225, 234.
Yellow, 2 S. i. 224, 230.
—— Chance, Great, 2 S. i. $240,241$.
Cheshire Lass, Saunders's, 2 S. i. 238, 245.

Countess of Errol, 2 S. i. 227.
Crown Bob, Milling's, 2 S. i. 236,
239.

Crystal, 2 S. i. 226, 235. white, 2 S. iii. $62 ; 2$ S. i. 225, 234.

Damson, white, 2 S. i. 226, 235.
Dark rough red, 2 S. iii. 62.
Dr. Davies's Upright, 2 S. i. 227.
Duke of York, Allcock's, 2 S. i. 239.
Early Green hairy, 2 S. i. 225, 232.
Red, Wilmot's, 2 S. i. 236, 240.
White, 2S. i. 226, 235.
Elisha, Lovart's, 2 S. i. 237, 242.
—— Farmer's Glory, Berry s, 2 S. i. 236,
240.

Glenton green, 2 S. i. 225, 222.
Globe, small red, 2 S. i. 223, 227.
Glory of Rateliff, Allen's, 2 S. i.
225, 234.
Golden Ball, 2 S. i. 231.
Bull, 2 S. i. 231.
Yellow, Dixon's, 2 S. i. 237,
241.

Gooseberry, Green Gage, Pitmaston, 2 S.i. 225, 233.

Green, Sabine's, 2 S. i. 225, 233.
Green seedling, 2 S. i. 225, 232.
Greenwood, Berry's, 2 S. i. 237, 243.
hairy red, Barton's, 2 S. i. 223, 226.
243.
232.

Hebburn Green Prolific, 2S. i. 225,
Hedgehog, 2 S. i. 225, 234.
Honey, white, 2 S. i. 226, 235.
Independent, Briggs's, 2 S. i. 237,
243.

Ironmonger, 2 S. i. 227.
242.

Jolly Angler, Collier's, 2 S. i. 237, Collins, 2 S. i. 242.
Tar, Edward's, 2 S. i. 237, 243.
Keens' seedling, 2 S. i. 223, 228.
iii. 63 .

2 Lancashire Lad, Hartshorn's, 2 S. i. 236, 238.
—— Large Red Oval, 2 S. i. 236, 240.
Late green, 2 S. i. 225, 233.
Laurel, Parkinson's, 2 S. i. 237, 242.
Lord Crewe, Hopley's, 2 S. i. 237,
242.
of the Manor, Bratherton's, 2 S. i. 236, 238.
238 Maid of the Mill, Stringer's, $2 \mathrm{~S} . \mathrm{i}$. 238, 245.

Miss Bold, 2 S. i. 224, 230.
Mogul, Red, 2 S. i. 223, 228.
Moss's Seedling, 2 S. i. 231.
Perfection, Gregory's, 2 S. i. 237,
242.

Pigeon's Egg, 2 S. i. 230.
Porcupine, 2S. iii. 63.
Prince of Orange, 2 S. i. 241.
Princess Royal, 2 S. i. 237, 242.
Queen Charlotte, Peers's, 2 S. i. 238, 245.

Raspberry, 2 S. i. 224, 228.
Red Rose, 2 S. i. 236, 240.
Rifleman, Leigh's, 2 S. i. 236, 239.
Roaring Lion, Farrow's, 2 S. i. 236, 240.

- Robin Hood, 2 S. i. 241.

Rough Red, 2 S. i. 223, 226.
227.

Small Dark, 2 S. i. 223,
Royal Anne, Yates's, 2 S. i. 239.
Rumbullion, 2 S. i. 224, 231.
Scented Lemon, Rider's, 2 S. i. 236,
241.

Gooseberry, Scotch best Jam, 2 S. i. 223, 227.
298, Sheba Queen, Crompton's, 2 S. i. 238, 244.

- Smiling Beauty, Beaumont's, 2 S. i. 237, 242.
- Smooth Green, large, 2 S. i. 237, 243.

Scotch, 2 S. i. 227.

- Sulphur, 2 S. i. 224, 230.
\longrightarrow Early, 2 S. i. 224, 231.
—— Tarragon, 2 S. i. 241.

230.

- Victory, Lomas's, 2 S. i. 236, 239.

Volunteer, 2 S. i. 229.
Walnut, Green, 2 S. i. 225, 233.
White, 2 S. iii. 62.

- Warrington, Red, 2 S. i. 224, 229.

244.
245.

White Eagle, Cook's, 2 S. i. 238, 244.

Lion, Cleworth's, 2 S. i. 238, 238, 244 ; 2 S. iii. 62.
236, Wilmot's Early, iv. 206; 2 S. i. 236, 240.

$$
\text { Late, iv. } 207 .
$$

York seedling, 2 S. i. 232.
Missouri, vii. 243.
Gordon, Duke of, vii. 200.

- Mr. George, 2 S. ii. 455 ; upon the varieties of the Bean, $2 \mathrm{~S} . \mathrm{i} .369$.
Pea, 2 S. i. 374. upon the varieties of the
Pea, 2 S. i. 374.

upon raising Coniferous

Plants from seed, 2 S. ii. 344.

- Mr. James, i. 350 ; iii. 204.
-_ Robert, Esq., 2 S. i. 546.
- Sir Robert, 2 S. ii. 177.

2 R. Rt. Hon. Robert, plant received from, 2 S. ii. 418.
Gordon Castle, account of Holly-trees at, vii. 200.

Gordonia anomala, vii. 531.
Gore, Colonel, iv. 95.
Gorrie, Mr. Archibald, on the effects produced on vegetation by the combination of heat and moisture at different periods of the year, vi. 432.

an account of Scoteh

pears, vii. 299.
Gorteria rigens, vi. 438.
Goss, Mr., 377, 378, 379, on the variation in the colour of peas, occasioned by cross-impregnation, v. 234.

Gouan, Professor, i. 347, 348.
Gouffé, M. Delacour, vii. 12.
Gourd, v. 465 ; 2 S. iii. 60.

- observations on its rate of growth at different periods of the day, 2 S . iii. 247.
- Bottle, iv. 52 ; vi. 56 .

Club, vi. 56.
large, iii. 364.
_—Potiron jaune, iii. 364; 2 S. ii. 113.
_- Turk's Turban, vi. 56.
Gowans, Mr. William, on the grafting of vines, 2 S. ii. 114.
Gowen, James Robert, Esq., iii. 189 ; iv. 84, 86, 89, 92 ; v. 339, 340.
the glazing of hot-houses and conservatories, iii. 244.

艮 thod of constructing flues for hot-houses, iii. 252.
observations on the method of glazing hot-houses recommended by him, iv. 84.
on the produc-
tion of a hybrid Amaryllis, iv. 498.
description of
Amaryllis psittacinâ-Johnsoni, v. 361.
Amaryllis, v. 390 .
Gower, William Leveson, Esq., 2 S. i. 520, 521.
Grafting, observations respecting, i. 60.

- disadvantage attending that method of rearing trees, i. 65 .
——methods of, figured, i. 239.
Mr. Knight's new method of, i. 239, 240, 241.
reverse, account of, v. 396.
saddle, figured, v. 148.
the Cactus, v. 485.
of chestnut trees, i. 140.
the Dahlia, iv. 476.
remarks on the mode of, as regards fruit-trees, i. 215, 216.
vi. 541 on the large branches of old trees, v. 541.

- of roses, vi. 317.

enced or budding, colour of roses influenced by, v. 492.
slender scions of trees, v. 146; method of, figured, v. 148.
——the walnut tree, 2 S. i. 214.
_——composition for roses, vi. 317.
wax, ii. 407; v. 284.
376 . further notes respecting it, v .

Graham, J. G., Esq., vii. Pref.
Graine de Beurre, v. 35.
Granada, iii. 111.
Granadilla, iii. 99, 101, 109 ; 2 S. iii. 157
—_ on its cultivation, iv. 60.
of Monardus, iii. 112.
vine, iii. 100.
Grandi, M., v. 38.
Grange, Mr. James, i. 117 ; ii. 378 ; vi. 198 ; 2 S. i. 239.
312.

> apples exhibited by, iii.
exhibited by him, iv. 508.
Grant, H. J., Esq., 2 S. i. 388.

- John Henry, Esq., 2 S. i. 541.

Grantham, Lady, vii. 143.
Grapes, experiments by Mr. Knight for raising new varieties of, i. 37.

- richer in consequence of ventilation, ii. 109 .
- cause of their imperfect maturation, ii. 135.
——_from Dukhun, 2 S. ii. 170.
__method of ripening by dung-heat, ii. 330.
to obtain early and late, in the same house, iii. 13.
for a late crop, iii. 95.
-_on a method of retarding their ripening, so as to obtain a supply in winter, iii. 95 .
on the management of, in vineries, iv. 98.
varieties grown at Woodhall, iv. 105.
produce of, in a vinery, iv. 105.
——mode of preserving till late in the season, iv. 131.
varieties grown under a mode by which they are kept till late in the season, iv. 132.
——thinning, iv. 255.
method of preserving them late on the vines, iv. 143.
method of obtaining an early crop in the pine stove, iv. 415.
- mode of forcing them in Denmark, v. 471.
——colouring of, v. 472.
—— forced slowly, keep longest, v. 477.
mode of hastening their maturity on open walls, v. 484.
of, vi. 232.
——shrivelling of, vi. 300 .
plan for forcing, in borders, vi. 454; figured, 455.
observations on the growth of early and late, under glass, vii. 1.

INDEX.

Grapes, comments on those described by Speechly, vii. 263.

- cultivation of, on flued walls, 2 S. ii. 525.
experiments by Mr. Knight for raising new varieties of, i. 36, 37, 38 .
——description of a forcing-house for, i. 99.
—_remarks on a method of hastening their maturation, i. 107.
___account of a hot-bed and frame for forcing, i. 143.
- degree of perfection to which they are brought by the English, i. 150.
the raising of a variety better adapted to the climate of Britain, an object for which the Horticultural Society intended to give premiums, i. App. 2.
account, by Mr. Knight, of two varieties, each bearing bunches of different colours, i. 258.
.i. on an early variety of, from Amiens, ii. 10 .
-_ Ahbee, 2 S. ii. 172.
- Aleppo, vii. 266.
- Alexandrian Ciotat, figured, iv. 8.

Alicant, vii. 271.
D'Arboyce, vii. 272.
Auvernat, iii. 249 ; vii. 272.
Bè Dana, 2 S. ii. 171.
Bhokree, 2 S. ii. 174.
Black Cluster, Mr. Knight's experiment with, i. 36.

$$
\text { - large, vii. } 272 .
$$

Nice, 2 S. ii. 112. small, vii. 272.
Black Corinth, iv. 515.
Damascus, iii. 95, 97 ; vii. 7.
mode of fertilizing
its blossoms, vi. 119.
——Black Hamburgh, iii. 117 ; iv. 105.
—— Lisbon, vii. 274.
—— from Palestine, vii. 274.
Raisin, iii. 95.
Spanish, vii. 271, 274.
Teneriffe, iii. 95 .
from Tripoli, vii. 265.
Braddick's Hamburgh, iv. 54.
Brick, vii. 271.
Burgundy, i. 36.
Miller's, vii. 272.
_- Le Ccur, vii. 267.
169.

Cannon Hall Muscat, figured, 2 S. i.
Chasselas, vii. 271.
White, v. 471.
Ciotat, vii. 274.
Claret, vii. 272.

Grape, Claret, on making wine from its leaves, ii. 123.
-_Constantia, Purple, vii. 268.
White, vii. 268.
Corinth, Black, iv. 515 ; figured, 2 S. i. 246 .

White, vii. 274.
Cornichon, vii. 274.
Cat's, vii. 273.
Dactylides, or Finger-shaped, grown by the Romans, i. 153.
——Damascus, Black, vii. 264.

- Damson, vii. 273.
—— Early White, from Teneriffe, vii. 273.
Elford Seedling, v. 399.
Esperione, 2 S. iii. 63.
account of, iii. 93; figured, ib.
—— Frankendal, v. 471.
Frontignan, i. 37. Black, vii. 268.
Blue, vii. 269.
Grizzly, vii. 268.
Purple, vii. 268.
Red, vii. 269.
Violet, vii. 269.
White, vii. 268.
—— Fukree, 2 S. ii. 171, 173.
Gibraltar, vii. 270.
——Golden Galician, vii. 267.
———Greek, vii. 274.
Grove-End Swéetwater, v. 263.
Hamburgh, 2 S. iii. 63.
Black, vii. 270.
Red, vii. 270.
White, vii. 270, 273.
Hubshee, 2 S. ii. 171.
July, Early Black, vii. 273.
Kalee, 2 S. ii. 171.
Keernee, 2 S. ii. 171.
Kishmiss, 2 S. ii. 171.
Kishmish, figured, iv. 212.
Lombardy, vii. 271.
Malvoisie, vii. 270.
Meunier, vii. 272.
Morocco, vii. 267.
Muscadel, Black, vii. 267, 273.
Red, vii. 268.
Morillon noir hâtif, vii. 273.
White, vii. 272.
Muscadine, Black, vii. 271.
Malmsey, vii. 272.
Royal, vii. 272.
White, vii. 271, 273.
Muscat of Alexandria, ii. 135 ; vii. 7. White, vii. 264. produced
applied to the stem of the vine, 2 S . ii. 111.

Grape, Muscat of Lunel, White, vii. 274.
Tottenham Park, vi. 122.

- Noir précoce, vii. 269.

Parsley-leaved, White, vii. 274.
Party-coloured, 2 S. ii. 67.
Petersburgh, iv. 212.
Pitmaston White Cluster, figured, iii. 249.

Poonah, iv. 516.
Portugal, vii. $270 ; 2$ S. iii. 63.
174.

Round Black, 2 S. ii. 172,
Small White, vii. 272.
Raisin, Black, vii. 273.
White, vii. 273.
Red Frontignan and White Sweetwater, variety from, i. 37.
—— Red Hamburgh, iii. 117.
—— Red, from Syracuse, vii. 266.
—— Royal Muscadine, iii. 365.

- Sahibee, 2 S. ii. 171.

274.

St. Peter's, iii. 95, 96, 97 ; vii. 7, 273,
Small Black Cluster, iii. 249.
Smyrna, vii. 271.
Sooltanee, 2 S. ii. 172.
Sukree, 2 S. ii. 172.
Sweetwater, experiment with, i. 36.
Black, vii. 269.
Stillward's, vii. 269.
White, vii. 269.

- Syrian, iii. 95,97 ; vii. 272.

Tokay, Blue, vii. 270.
Flame-coloured, vii. 271.
Genuine, vii. 270.
Turner's, iii. 94.
Van der Laan Hâtive, ii. 11.
Variegated Chasselas, figured, i. 259.
Verdelho, ii. 327; figured, ii. 106.
Vroge Van der Laan, v. 471.
Wantage, v. 264.
Warner's, vii. 270.
Warner's Hamburgh, iii. 117.
White, from Alcobaça, vii. 268.
White Muscat of Alexandria, iii. 95, 97.
White Nice, iii. $95,97$.
White Chasselas and Aleppo, variety from, i. 37.
water, crossed, i. 37. and White Sweet-
ing, i. 36. employed for cross-

- Wortley Hall Seedling, iv. 516.

Gante, iv. 515.
Grapes of China, v. 123.

Grape Country, of Sierra Leone, v. 447.
——Sea-side, v. 99.

- houses, for what purpose constructed by the Romans, i. 149.
Gravid flower, ii. 157.
Gravitation, its influence upon the motion of the
sap, i. 218, 238.
- influence of, upon the forms of plants, vii. 415.
Gray, Dr. Edward Whitaker, i. 353.
- Edward, Esq., vii. 550.

Green, Mr. John, on the management of the cactus, 2 S. i. 401.
——Mr., 2 S. i. $540,541,542,543$.
——Mrs., i. 271.

- Timothy, Esq., vi. 415.

Green-house in the Garden of the Society, vi. 374.

Description of one at Valleyfield, vi. 225 ; plan of, 226.

Greening, Mr., ii. 164.
Greenshields, Mr. William, 2 S. i. 543. on the cultivation of Pine Apples, vi. 235.
his method of growing crops of Melons on open borders, vii. 172.
and managing Dwarf Standard Apple and Pear Trees, vii. 291.
Greens, winter, their description, qualities, and cultivation, ii. 307.
Green vitriol, 2 S. iii. 43.
Greenwell, Mr., vi. 207.
Gregory, Gregory, Esq., Model of a Block and Rafter for temporary glass-houses exhibited by him, vi. 545 .
Gregson, Mr. Isaac, iv. 319.
Grenadillas, v. 102.
Grenville, Lord, 2 S. i. 531.
Lady, 2 S. ii. ${ }^{227 .}$
Greshan, Sir Thomas, ii. "Prelimináry Observations."
Greville, Right Hon. Charles, i. Preface, 333; i. 276, 284, 286, 292.

Mr. Charles, i. 270, 285, 286, 325.
Mr., ii. 164 ; vi. 474.
Hon. Charles, vi. 476, 488 ; vii.
532.

Hon. Robert Fulk, notice of a citron sent by him to the Society, iv. 417.
Grevillea juniperina, 2 S. ii. 249.
rosmarinifolia, 2 S. ii. 240, 248.
Grewia affinis, vi. 265, 266.
Grey, Earl, v. 164.
Earl de, 2 S. i. 540.
Grias cauliflora, v. 98.

Griffin, William, Esq., iv. 422 ; v. 69, 361, 363.
his mode of cultivating Lilium japonicum, iv. 554.
hybrid variety of Amaryllis raised by, v. 361, 363.
ii. Mr. William, apples exhibited by, iii. 313 ; on the management of grapes in vineries, iv. 98.
Griffinia hyacinthina, vii. 73.
Griffith, John Wynne, Esq., notice of abundant produce of pears from recent grafts on old trees in his garden, 2 S. ii. 111.
Grimwood, Messrs., i. 290.
Griottiers, 2 S. i. 250.
Gronovius, iii. 110.
Groom, Mr. Henry, 2 S. i. 384, 542 ; upon a method of obtaining late flowers of Ranunculuses, vii. 394.
Grosvenor, Earl, vii. 285.
Growth of plants, rate of, at different periods of the day, 2 S . iii. $103 ; 2 \mathrm{~S}$. iii. 247.
Grub, onion, destruction of, vii. 93.
Guanajuata, its vegetation, 2 S. iii. 117.
Guando, 2S. iii. 151.
Guano, 2 S. iii. $45,48,50,51,91,99$.
Guatemala, plants collected in, 2 S. iii. 146.
Guatteria rufa, vi. 66.
Guava, iv. 315 ; v. 83,$86 ; 2$ S. iii. 241 , 243.
apple-shaped, v. 86.
Chinese, v. 80.
Marmalade, v. 86.
Pear-shaped, v. 86.
Wild (of Sierra-Leone), v. 449.
Guernsey Lily, culture of, iii. 399, 447 ; iv. 176 ; vi. 259.
iii 460 effects of high temperature on, iii. 460.

Guigniers, 2 S. i. 249.
Gul Ibrisim, vi. 39.
Gum cistus, 2 S. ii. 242, 272.
Gunter, Robert, Esq., account of the effects of steam as a means of bottom-heat for pineapple plants, iv. 408 ; vi. 151.
Gurdon, Mrs., v. 539.
Gurley, Mr., v. 541.
Gustavia speciosa, 2 S. iii. 161.
Gwydir, Lord, iv. 286.
Gyas florida,i. 299.

- humilis, i. 300.
- verecunda, i. 299.

Gymnogramma peruviana, iii. 341.
Gynandropsis pulchella, vii. 65.
Gypsum, 2 S. ïi. 41, 48, 50, 51, 73, 95, 96, 97, 98.
Gyrotheca tinctoria, i. 327.

H.

Habenaria bifolia, i. 288.
Habit of plants, inverting of the, iv. 178.
Habranthus concolor, 2 S. iii. 118.
Hablitzia tamoides, 2 S. ii. 275.
Habrothamnus fasciculatus, figured, 2 S. iii. 124.

Haddington, Earl of, vii. 195, 196.
Hæmadictyon venosum, vi. 70.
Hæmanthus toxicarius, 2 S. ii. 221.
Hague, Mr., account of a steam-apparatus invented by him, iv. 434.
Haigh, D., Esq., 2 S. i. 535.
Hail-storm, 2 S. ii. 205.

- storms, destructive, 2 S. ii. 143.
- in August, 2 S. i. 359.
- in July, 2 S. i. 185, 497.

Hakea acicularis, 2 S. ii. 249.
-_ ceratophylla, 2 S. ii. 249.

- linearis, 2 S. ii. 249.
——macrocarpa, 2 S. ii. 249.
pugioniformis, 2 S. ii. 249.
Halleria lucida, 2 S. ii. 269.
Halesia diptera, 2 S. ii. 261.
Hallett, Robert, Esq., iv. 487 ; v. 278. on the cultivation
of the American cranberry, iv. 483.
Hamelia patens, 2 S. ii. 241, 257.
Hamilton, Capt., vi. 413.
Hammond, James, Esq., Melon sent by him to the Society, iv. 514.
Hanbury, William, Esq., iv. 246, 411; v. 493 ; vi. 165, 171 ; vii. 93.
Hand of Mary (Vitex Agnus-castus), vi. 46.
Hand tree, 2 S. iii. 132.
Hardenpont, M., v. 130, 410.
Hardwicke, Earl of, vi. 110 ; vii. 184, 188.
Hare, Sir Thomas, iv. 524, 560.
- Thomas, Esq., account of an original plant of the Moss Rose de Meaux, with Physiological observations, ii. 241.
blanching Garden on the advantages of purposes, ii. 258.

Apples exhibited by, iii.
316.
\longrightarrow Mr., vii. 190.
Harewood, Lord, iii. 100.
Earl of, vi. 365.
Haricot, Noir de Belge, 2 S. iii. 59.
Harris, Thomas, Esq., 2 S. ii. 459, 460.
Harrison, Arnold, Esq., 2 S. i. 44.
Mr. Charles, some observations
on the treatment of Pear trees, iii. 146.
mode of treating
Fruit-trees practised by him, iii. 37 .

Harrison, Mr. Charles, account of the produce of the Peach-trees in the Garden at Wortley Hall, iv. 79.

Seedling Grape exhibited by him, iv. 516. plan for obtaining a second crop of Melons, vi. 406.
on blackening Garden walls, vi. 452.

Joseph, upon an improved mode of raising hardy Annuals, 2 S. i. 75. on the application of Tobacco liquor for the destruction of insects, vi. 532.
on the cultivation of
Camellias in an open border, vii. 168.
177, Richard, Esq., 2 S. i. 44 ; ii. 177, 178, 179, 378.
W., Esq., Rio Janeiro, 2 S. i. 45.

William, Esq., Cheshunt, 2 S. i. 543 ; 2 S. ii. 257, 270.
Harting, 2 S. iii. 108.
Hartweg, Mr. Theodor, 2 S. ii. 239, 378, 409, 508. account of his mission, 2 S. ii. 377. notes of a visit to Mexico, Guatemala, and equatorial America, 1836 to 1843 , in search of plants and seeds for the Horticultural Society, 2 S. iii. 115.

Plants collected
by, 2 S. ii. $400 ; 2$ S. iii. 125.
Hartwegia purpurea, 2 S. iii. 116.
Hanvey, Major James, vi. 525.
$\mathrm{H}_{\text {abselpuist, vi. } 48 .}$
Haten, Mrs. iii. 234.
Hatchard, Mr., meeting for the establishment of the Society held at his house, i. Preface.
Hatun condenado, 2 S. iii. 152.
Hausmann, ii. 162 ; iii. 60.
Hawkesworth, iv. 489.
Hawkins, Abraham, Esq., ii. 119.
his observations on some Exotics which endure the open air in Devonshire, i. 175, 242.
and Lemen on raising Oranges
and Lemons from cuttings, ii. 12.
hissuccessful treat-
ment of the Gnidia simplex, iii. 362 .
the for notice relative to
the flowering of the American Aloe, iv. 389.
Apples Christopher, Esq., account of two
Apples and a Winter Potato cultivated in
Cornwall, ii. 74.
Iv Sir John, i. 11.

Hawkins, John, Esq., i. Preface.
Dr., 2 S. i. 95.
Mr., i. 223.
Haworth, Adrian Hardy, Esq., i. 263, 351 ; vii. $23,426,435,440,442,445,446,448$, $449,450,452,457,464,467,476 ; 2$ S. ii. 459.
on the cul-
tivation of Crocuses and their species, i. 122.
Hawthorn, 2 S. ii. 228, 243, 250, 255, 260.
Hay, Mr. James, his mode of obtaining an early crop of Grapes in the Pine Stove, iv. 415 -and of forcing Gooseberries and Currants, ib.

John, description, with plans, of a hot-wall, vii. 218 ; vi. $523,525$.
Haythorn, Mr. John, vii. 470.
for the growth of melons and cucumbers, vi. 505 .

Hafward, Mr. Joseph, his observations on a mode of training vines, i. 171.
account of a steamapparatus, iv. 434.
Heat, excessive during the night, ill effects of, in forcing-houses, ii. 130.
—_damp, causes elongation rather than growth, ii. 135.

- excessive, notice of a method of protecting young vegetables from its effects, iv. 51.
—— from steam, effect of, iv. 408.
-_ of the sun's rays, vi. 3 .
__ and moisture, their effects on vegetation at different periods of the year, vi. 432.
Heating, economical plan for, iii. 121.
- by means of hot-water, vii. 203 ; vii. 568 ; 2 S. ii. 364.
- by steam, iv. 56.
—— plans of, figured, 2 S. i. 197. by fire and steam jointly, vi. 440.
Heathcote, Henry, Esq., 2 S. i. 7.
Heaven, William, Esq., v. 359.
Heaths, 2 S. ii. 225, 226, 243, 258, 270, 271, 274.
—— remarks on cross-breeding, iv. 27, 28.

183.

- (Erica anstralis), experiment with, vii. 183.

Hedera chrysocarpa, vi. 42, 43.
Hedges, Holly, account of some remarkable ones in Scotland, vii. 194.
Hedges, Mr. William, his method of cultivating the Lobelia fulgens, ii. 396.
account of experiments on the production of blue instead of red flowers on the Hydrangea hortensis,
with some notes on the propagation and management of the plants, iii. 173.
Hedgehogs, Crocine, i. 130.
Hedychium, on the cultivation of its species and varieties in a stove, vi. 449.
——acuminatum, vi. 450.
——_ angustifolium, vi. 450.
aurantiacum, vi. 450.
carneum, vi. 451.
coccineum, vi. 451.
coronarium, vi. 451.
elatum, vi. 451.
ellipticum, vi. 451.
flavescens, vi. 451.
flavum, vi. 451.
Gardnerianum, vi. 451.
glaucum, vi. 451. longifolium, vi. 451. maximum, vi. 451. spicatum, vi. 451. thyrsiflorum, vi. 451. villosum, vi. 451.
Heliconia Bihai, i. 273.
H-psittacorum, i. 272.
Heliotrope, Peruvian, vii. 26.
Heliotropium peruvianum, vii. 40 .
Helix hortensis, ii. 151.
Helixyra flava, i. 305.
Hellenia abnormis, vii. 60.
Allughas, i. 281.
Hemerocallis alba, i. 335.
cærulea, i. 335.
graminea, i. 334, 335.
japonica, i. 335.
valentina, i. 341.
Hemionitis dealbata, iii. 339, 341.

- rufa, iii. 341.

Hemp, plants of, prevent the butterfly from infesting cabbage plants, iv. 569.
Hempel, Rev. George Charles Lewis, ii. 263, 265, $269,382$.
trans-
lation of his tract on improving fruit trees, ii. App. 1.
count of the effects of ringing the bark, iv. 557.

Henderson, Dr., 2 S. i. 534, 535 ; 2 S. iii. 35. Mr. Andrew, vi. 171.
Mr. John Andrew, 2 S. i. 530, 534, 540.
i. 546 .

Mr., gardener to C. Foster, 2 S .

- Mr. Walter, account of a mode of managing peach trees, in an early peachhouse, vii. 209.
Henderson, Mr., Zacatecas, 2 S. ii. 391.

Henon, M., 2 S. iii. 29.
Henry IV., daffodils cultivated at Paris in his time, i. 349.
Henslow, Rev. Professor, 2 S. ii. 227, 231, 277.

Herbert, Mr. John, vi. 309.

- Hon. and Rev. William, iii. 141, 254 ; iv. 260, 367, 369, 422, 423, 500, 502 ; v. $293,337,338,391$; vi. 87,89 ; vii. 75 ; 2 S. i. 530 ; 2 S. ii. 32, 33, 227, 236, 258, 266, 268, 281, 289, 461.
information collected by him respecting the original Ribston Pippin tree, iii. 141.
tions for the treatment of the Amaryllis longifolia, as a hardy aquatic, with some observations on the production of Hybrid plants, and the treatment of the bulbs of the genera Crinum and Amaryllis, iii. 187.

notice of

the flues in his hot-houses, iii. 255.
production of Hybrid vegetables, with the results of many experiments made in the investigation of the subject, iv. 15.
on the culture of the African Gladioli, and other Cape bulbs, in the open borders, iv. 153.
culture of hyacinths, iv. 163.
on the
on the
culture of the Guernsey Lily, and other bulbs
of the genera Nerine, Coburgia, and Brunsvigia, iv. 176.
treatment of the Dendrobia, Aerides, and other parasitical plants, iv. 241.
notice of
certain seedling varieties of Amaryllis presented by him to the Society, v. 337.
Heritiera Gmelini, i. 327.

$$
\text { tinctorium, i. } 327 \text {. }
$$

Hermann, ii. 37.
Hermannia flammea, 2 S. ii. 271.
— hirsuta, 2 S. ii. 271.
\ldots plicata, 2 S. ii. 271.
Herminium Monorchis, vi. 405.
Hermione ambigena, i. 361.
——bifrons, i. 359. crenularis, i. 363. cupularis, i. 361, 362.
floribunda, i. 362. jasminea, i. 360.
junciflora, i. 357.
lecuoifolia, i. 359.

INDEX.

Hermione similis, i. 358.

- stellaris, i. 359 .
stylosa, i. 360.
tegulæflora, i. 363.
Hermodactylus tuberosus, i. 304.
Hernandez, i. 47, 343,345 ; 2 S. i. 42 ; 2 S. ii. 396.
his evidence respecting the Tuberose, i. 48.
his account of some species of the Dablia, i. 84, 85.
Hernandia sonora, vii. 391.
Heron, Sir Robert, vi. 161.
Herriot, Thomas, his account of the Openawk plant, i. 9.
Hertford, Marquis of, iii. 118 ; v. 206.
Hervy, M., Director of the Luxembourg Garden at Paris, v. 125, 128 ; 2 S. i. 63, 289, 330.
account of pears received from, v. 126.

Hegketh, Robert, Esq., vi. 274, 279 ; vii. 65.
Hesperanthus tenuifolius, i. 321.
radiatus, γ, i. 321.
Hesperis matronalis, ii. 155. produce of oil, v. 41.
Hérierington, Thomas Wilonon, Esq., vii. 153.

Hewitt, Rev. Augustus, 2 S. ii. 234.
Hexaglottis longifolia, i. 313, 314.
Hibbert, George, Esq., i. 262, 268, 288, $305,311,312,315,335$; vi. 476,477 , 478.
account of some
plants introduced by him, i. $267,268,288$, 305, 335.
Hibiscus esculentus, vi. 53.
\longrightarrow militaris, 2 S. ii. 302.

- Rosa sinensis, 2 S. ii. 302, 304.

Hick, Charliacus, vii. 41 ; 2 S. ii. 275. bited by, iii. 312.
Hildyard, Mr. Elias, description of a mode of destroying the onion grub, vii. 93.
Hili, Daniel, Esq., his remarks on the utility of oxygen in promoting vegetation, i. 203.

- Dr., account of his successful application
of oxygen gas to an orange tree, iv. 134.
Lim, Lord, plants received from, 2 S. ii. 416.
Himia salicifolia, 2 S. ii. 284.
Hippophaë conferta, 2 S. ii. 265.
Hird, Mrs., i. 299.
Hirschfeld, iv. 523.
Hitt, 2 S. i. 59, 329.
$\overline{H_{0 a-o u a n g}}$ his directions for training trees, i. 171.
Hoa-ouang, vi. 485.
Hobson, Capt. George, iii. 120.

Hodgson, Thomas, a garden labourer, pressed for a sailor, sent home wounded from the siege of Carthagena, brought with him the Hymenocallis littoralis, i. 338.
Hodson, Mr., vii. 438.
Hoe, Chinese, v. 51.
Hoffman, Martin, Esq., vi. 410.
Hog-plums, v. $90,450,451$.
Hog-plum of the West Indies, v. 99.
Hogan, Mr. William, v. 308.
vating the frushroom, v. 305 .
Hogq, Mr., 2 S. i. 536, 542, 543.

- Mr. Thomas, ii. 361.
account of a method of growing early forced potatoes, ii. 144.
. on the cultivation of pinks, iv. 451.
- Mr. Walter, his mode of treating large pine-apple plants, iv. 555.
Holden, Robert, Esq., iii. 329 ; apples exhibited by, iii. 315 .
description of a screen for protecting wall trees, iv. 93.
Holford, Charles, Esq., vi. 570.
to walls, iv. 569.
description of a pine-house
and pits, v. 499 ; plans and sections of, v. 501.

Holland, Right Hon. Lady, species of Dahlias introduced by her, i. 92, 97. iii. 224.

Lancelot, Esq., 2 S. ii. 231.
Hollist, Hasler, Esq., 2 S. ii. 160.
Holly, 2 S. ii. 226, 243, 261.
——eligible for garden fences, ii. 355.

- season for transplanting, ii. 357.
- berries of the, not ripe till March or April, ii. 357.
- time and manner of sowing, ii. 357.

Holly-hedges and trees in Scotland, account of some remarkable, vii. 194
Home, Sir Everard, vi. 59.
Holmes, Mr. Joseph, observations made by him on the growth of plants at different periods of the day, 2 S. iii. 247.

Mr. William, notice of a seedling peach raised by him, vi. 393.
Homer, vi. 35.
Homeria collina, i. 307.
ochroleuca, i. 308.
Homoglossum pracox, i. 325.
Honey-dew, iii. 56.
Honey-gift, ii. 157.
Honeysuckles (Passiflora), iii. 102.
Hood, Mr. C., 2 S. ii. 372.

Hooker, Mr. Stephen, 2 S. i. 535, 541, 542, 546 ; 2 S. ii. 227, 233, 294.
notice of specimens of a Peach sent by him to the Society, vi. 394.

Williasf, Esq., i. 198, 285 ; ii. 62, $137,143,217,279,287,400$; iii. 5,267 , 304,397 ; iv. 212, 316, 330, 523 ; v. 136, 536, 539, 548, 549 ; 2 S. i. 246.
an account of some specimens of apples imported from Rouen, in Normandy, ii. 298.
notice of a Plum exhibited by him, ii. 402.
account and description of Wilmot's New Early Orleans Plum, iii. 392.
of cultivating Pine-Apples, iv. 363.
Bon Chrétien, ii. 250.
Sir William Jackson, iii. 339, 457;
vi. $93,94,96,262,264,269,273,279,281$, 283 ; vii. 245,498 ; 2 S. ii. 376.
Hop, observations on its rate of growth at different periods of the day, 2 S. iii. 247.
Hope, Dr., i. 267, 361.
Hopetoun, Earl of, vi. 111, 429 ; vii. 199.
Hopetoun-House, account of Holly Hedges at, vii. 199.
Hopwood, Mr., 2 S. i. 536, 543.
Hornemann, v. 33 ; vi. 94.
Horrex, Mrs., iv. 69.
Horse-radish, v. 42; 2 S. iii. 62. its cultivation, i. 207 ; v. 302.
as practised in Denmark, 2 S. i. 91.
Horticulture, amidst national and domestic improvements, had been neglected, i. 2.

- susceptible of essential improvement, i. 7.
i. 41.
appreciated by all ranks of men,

$$
10
$$

,observations on the expediency of giving it a scientific form, ii. 290.

Chinese, v. 49.
Horticultural Society, remarks on its objects, i. $1,41,122,157,230$.

Report on the Progress of the, 2 S. ii. 372.
Hosack, Dr., account of the Seckel Pear, iii. 256 ; iv. 520 ; vi. 162.
Hot air, chamber for, in a stove, ii. 387.
Hot-beds, few of them made in the most advantageous form, i. 5 .
\square remarks on the proper construction of their frames, i. 142.

Hot-beds, improved method of placing them on inclined planes of earth, i. 142.
account of some improvements in their construction, vii. 281 ; figured, 282.
Hot-houses, observations on those of the Romans, i. 147.

- imperfectly constructed formerly, i. 149 .
little used in England at the beginning of the last century, i. 150.
- future probable mode of their construction, i. 151.
- angle of inclination of their roofs, diagrams of, i. 155.

197. 197.

mode of heating, 2 S. i. 202 ; figured,
economical plan for heating, iii. 121. glazing of, iii. 244.
Hot-house, section of Mr. Knight's curvilinear, v. 233.

Hot-houses, self-regulating ventilator for, \mathbf{v}. 502.
\longrightarrow advantages and disadvantages of curvilinear iron roofs to, v. 227.
_advantages of an external covering for, vi. 22.

- on the management of their flues so during the night, vi. 247 .
in the garden of the Society, vi. 373.
Hot-wall, plan of one exhibited, iv. 139.
vii. 220.

Hot water employed as a means of heating by Anthony Bacon, Esq., in 1822, vii. 204. upon its application in heating hothouses, vii. 568.
, apparatus, Mr. Cruikshank's, 2 S. i. 513 ; figured, 514.
Houblon, John Archer, Esq., ii. 229.
$\xrightarrow{-}$ Mr., introduced the Florence Cherry, ii. 229.

House-leek, vi. 313.
Houston, Dr., i. 276.
Howard, Hon. Fulke Greville, iv. 560 ; v. 399; 2 S. i. 8, 21.
-_Mr. Luke, vii. 100, 129.
Howison, Dr., iv. 226, 230.
Hovenia acerba, 2 S. ii. 265.
dulcis, v. 125.
Hov, Mr., i. 327 ; vii. 17.
Hoya, on the species of, vii. 16.

- acuta, vii. 23.
_- albens, vii. 23.
- carnosa, vii. 19.
ii. 197.

INDEX.

Hoya carnosa, its property of attracting insects doubted, iv. 108.

- cochin-chinensis, vii. 28.
- lanceolata, vii. 23, 28.
- linearis, vii. 28.
- nicobarica, vii. 28.
- pallida, vii. 23.
- parasitica, vii. 23.
- Pottsii, figured, vii. 25.
- trinervis, vii. 26.
- viridiflora, vii. 27.

Hoyte, Mr., vi. 414.
Hudson, Mr., i. 266.
Hügel, Baron, 2 S. ii. 409.
414.

Humboldt, Baron, iii. 220, 226, 351 ; v. 82 , 100,250 ; vii. 51 ; 2 S. i. 42,460 ; 2 S. ii. 223, 286.
citation from his Personal
Narrative, respecting Fruits of the Torrid Zone, v. 82.
Hume, Sir Abraham, Bart., ii. 279, 330 ; ii. App. 4 ; iii. 195 ; iv. 333, 337, 338, 341, $343,345,346,347,421$; vi. $325,470,472$, 475 ; vii. 286.
description of a Stove for tropical Plants in his Garden, ii., App. 4. the Magnolia conscount of a plant of spicua, iv. 59.
mums introduced by, iv. 333 .
_ Lady Amelia, iv. 422 ; vii. 539.
Humidity in Hot-houses, vi. 382.
fin with a change of air, beneficial effects of, vii. 414.
Humus, Woolwich, 2 S. iii. 94, 96, 97, 99.
Hunnáb agaghi, vi. 37.
Honneman, Mr., iii. 72.
JoHn, roots of the Teltow
Tumip sent by him, with an account of its cultivation, vi. 113.
Hunt, Mr., iv. 125
——, Esq., Stratford-on-Avon, v. 206. 525.
result of his experi564.

Me. Thomas, vii. 263.
Hunter, Dr., i. 57.
-Mr. James Augustus, vi. 178.
Huri James, Esq., vii. 303.
Hurricane, 2 S. ii. 151, 337, 483.
Hurtle-berries, i. 155.
Hохнам, Dr., i. 176.
Hyacinths, vi. 439 .

Hyacinths, experiments by applying oxygen to their roots, i. 234.
on their culture, iv. 163. 163. compost used for at Haarlem, iv. . experiments with, and analysis of, 2 S . iii. 56.

- Bouquet tendre, iv. 414.

Oriental, ii. 98, 99.
Waterloo, iv. 413.
Hyacinthus muscari, i. 352.

- serotinus, i. App. 20.

Hyalis aulica; i. 318.
-_gracilis, i. 317.
———latifolia, i. 317.
—— longiflora, i. 318.

- marginifolia, i. 318.

Hybrids, naming of, iv. 260.

- observations on, iv. 367.

Hybrid plants, on their production, iii. 187.

- vegetables, on their production, with the result of experiments made in the investigation of the subject, iv. 15.
- productions, v. 337.

Hydastylus californicus, i. 310.
Hydrangea, 2 S. i. 465.
hortensis, vi. 438,$496 ; 2$ S. ii. 243, 253.
experiments on changing the colour of its flowers, iii. 173.
to render the flowers
blue, iv. 568.
Hydrocharis morsus-ranx, iv. 399.
Hydrophyllum virginicum, iv. 445.
Hydrutznia meleagris, 2 S. iii. 122.
Hygrometer, a nseful appendage to the hothouse, ii. 111.
necessity of attending to its indi-
cations, vi. 27.
Hymenocallis fragrans, i. 340.
—— lacera, i. 338.
littoralis, i. 338.
paludosa, i. 338.
sessilis, i. 339 .
speciosa, i. 340 .
tubiflora, i. 341.
Hymenocharis obliqua, i. 276.
Hymenotheca latifolia, i. 268.
Hypericum ægypticum, vii. 34.
balearicum, vii. 33.
cochin-chinense, vi. 67.
Coris, vii. 41.
hircinum, 2 S. ii. 275.
monogynum, vii. 41.
laricifolium, 2 S. iii. 150.
Hypocistis, vi. 46.
Hypocism purum, vi. 437.
Hypum

INDEX.

Hypnum Schreberi, vi. 437. squarrosum, vi. 437.

I.

Iberis semperflorens, vii. 41.
Ibidium crystalligerum, i. 292.
_- elatum, i. 291. speciosum, i. 291. spirale, i. 291.
Icaco Plum (Chrysobalanus Icaco), v. 453.
Ice, to render it safe, more intense frost required in the beginning thian in the end of winter, 2 S. ii. 97.

- plant, v. 275.

Ighidé agaghi, vi. 36 .
Ilex, 2 S. i. 465.

- opaca, 2 S. ii. 261.
——Aquifolium, 2 S. ii. 226, 243, 261.
- balearica, 2 S. ii. 261, 275.

Perado, 2 S. ii. 261.
prinoides, 2 S. ii. 261.
vomitoria, 2 S. ii. 261.
Illicium anisatum, 2 S. ii. 253.
——floridanum, 2 S. ii. 261.
Illiger, iii. 60.
Impatiens balsamina, iii. 127, 406.
\longrightarrow propagation, 2 S. i. 151.
Inarching leafless branches of Peach-trees, ii. 30.

Inclined planes of earth, improved method of constructing hot-beds upon, i. 142.
India-rubber tree, 2 S. iii. 160.
Indian shot, 2 S. iii. 241.
——corn, 2 S. iii. 129, 140.
dwarf, iv. 53.
Indivia longa, vi. 139.
-riecia, vi. 138.
Infernal Fig, vi. 45.
Inga biglobosa, v. 444.
Inaledew, Willias, Esq., his description of the method of rearing seed in the East Indies, of the carrot, turnip, and radish, to prevent the deterioration of these vegetables, v. 516.

Ingram, Mr. James, new method of destroying insects in stoves and green-houses, 2 S . ii. 183.

Mr. Thomas, 2 S. i. 545.
Ink plant, 2 S. iii. 129.
Insects, hints for the destruction of, i. 297.

- on some vulgar errors respecting their
destruetion by cold, ii. 148.
- destruction of, v. 484.
on fruit-trees, composition for their destruction, vi. 541.

Insects, on the application of tobacco-liquor for their destruction, vi. 532.
__ suggestions for their destruction, iv. 78. 393.
composition for their destruction, 2 S . ii. 39.
receipt for a wash for their destruction on fruit trees, iv. 143.

- account of a lime-duster for their destruction on fruit trees, vi. 124.
-_ on one (Tortrix Wœeberana) occasionally very injurious to fruit trees, ii. 25.
- destruction of, in a hot-house, iii. 287. on two species injurious to the pear tree, 2 S. ii. 104.
on pear trees, composition for their destruction, iii. 151.
——on pine-apple plants, vii. 415.
- in stoves and greenhouses, new method of destroying them, 2.S. ii. 183.
- Acarus, iii. 289.
——_telarius, i. 297.
- American Apple Bug, vi. 547.

American Blight, mode of destroying, iii. 361.
ants, expeditious mode of destroying, iii. 359 .

Aphis, ii. 133; ;iii. 289.
lanigera, ii. 162; figured, ib.; iii. 62.
destruction, iii. 54.
experiments for its

Leach, iii. 60. note on, by Dr. W. E.
iii. 361 . mode of destroying,
21. 361.
pyri mali, ii. 162.
-_ aphides, i. 297.
——apple-tree insect, ii. 162.
Brown Tartle, hint for its destruction, i. 297.
bug on pine-apple plants, vi. 117.
caterpillars, mode of destroying them,
vii. 403.
caterpillar, cabbage, ii. 149.

- on cabbages, iv. 568.

Coccus adonidum, i. 297.

- hesperidium, i. 297.
laricis, iii. 170.
i. 297.
Cynips rosx, ii. 242.
_-Gooseberry Caterpillar, iv. 568.
various trees and plants, besides the Ribes
species, ii. 150.

Insects, Gooseberry Caterpillar, mode of destroying, ii. 150.
-Gooseberry Moth, ii. 149.
Green Fly, iii. 289; vi. 533; 2 S. ii. 183.
——Grub, ii. 149.
Ichneumon, ii. 151.
Mealy, i. 297.
170. which infests the larch, iii.
L-
_ Bug, iii. 289 ; vii. 415.
—— Noctua brassicx, ii. 33.
Papilio brassicæ, ii. 149.
-_Phalæna bombyx chrysorrhee, ii. 148.
of its moths and caterpillars, iv. 135.
149.
geometra grossululariata, ii.
Tortrix Wœberana, ii. 30.
——Psylla pyri, 2 S. ii. 106.
Pyralis Weberana, ii. 30.
Red Spider, i. 297; ii. 133, 222; iii. 289 ; v. 240 ; vii. 416; 2 S. ii. $29,183$. suggestion of means for its destruction, iv. 78.
means of destroying it in
melon-frames, 2 S. ii. 126, 163.

- Scale, on pine-apple plants, vi. 117.
—— Scaly, iii. 289.
Skipping (Thrips), on the mode of destroying, i. 297.
Thrips, in melon-frames, means of destroying them, 2 S. ii. 163.
——Tinea Clerckella, 2 S. ii. 104.
——Tipula oleracea, ii. 149.
——Tortrix ornatana, ii. 30. Weberana, ii. 25. wasps prefer the honied exudations of the Hoya carnosa to fruits, ii. 197.

256.

preservation of fruits from, iii.
107 on the means of destroying, iv.
107.

Intriguer of the night, appellation of the Tuberose, i. 48.
Inundations, 2 S. iii. 3 .
Ionopsis utricularioides, vi. 282.
Ipommea coccinea, vi. 55 .

- longifolia, 2 S. iii. 118.
- paniculata, vi. 79.
- purpurea, vi. 55.
figured, $i b$. figured, $i b$. its mode of culture and ma-

nagement, i. 185.

- villosa, vi. 55.
_insignis, vii. 392.

Ipomœea Jalapa, vii. 392.
Ipswich Horticultural Society, 2 S. i. 332.
Iridium crystalligerum, i. 292.
Irible, vii. 130.
Iris alata, i. 304, 414. biflora; i. 303.

- chinensis, i. 303.
- compressa, i. 307.
- dalmatica major, i. 302.
——English, iii. 413, 414.
- fimbriata, i. 303.
- fragrans, i. 303.
- glauca, i. 302.
- juncea, i. 305 ; iii. 414.
- latifolia major, i. 303.
—— lusitanica, i. 303 ; ;iii. 414.
- major latifolia, i. 302.
——martinicensis, i. 308.
- microptera, i. 304.
- moræoides, i. 307.
- pallida, i. 302.
-_ sambucina, i. 302.
—— scorpioides, i. 303.
- sordida, i. 303.
- Spanish, iii. 414.
- subbiflora, i. 303.
- tristis, i. 306.
—— tuberosa, i. 304.
——xiphioides, instructions for raising varieties of, iii. 412.
- Xiphium, iii. 414.

Irrigation, on its advantages, 2 S. i. 340.
Irwin, Viscount, i. 278.
Ismene crinifolia, i. 342.
Isochilus linearis, 2 S . iii. 116.
Israkl, Solomon, notice of melons raised by him, iii. 115, 116.
Iry, 2 S. i. 456 ; 2 S. ii. 225, 226.

- Black, vi. 42.

White, vi. 42.
Yellow-berried, vi. 42.
Iwara Mamady of the Telingas, v. 119.
Ixias, Cape species, 2 S. ii. 243.
Ixia aulica, i. 318.

- Bulbocodium, i. 317.
capillaris, α, i. 317.
——capilaris, a, i. \quad, $317 ; ~ \boldsymbol{\gamma}, 318$.
- chinensis, i. 313.
ciliaris, i. 321.
——crispa, i. 320 .
——crocata, iv. 19.
- erecta, i. 320.
- excisa, i. 323.
- flexuosa, iv. $19,154$.
fenestrata, iv. 19.
lancea, i. 318.
-longiflora, i. 318 ; iv. 154.

INDEX.

Ixia longifolia, i. 314.
——maculata, γ, i. 320.

- miniata, iv. 19.
—— polystachya, i. 320 ; iv. 19.
- pulchra, i. 320.
- pusilla, i. 321.
-_ rochensis, i. 322.
_rubro-cyanea, i. 322.
-_secunda, i. 321.
- serotina, i. 320.
- squalida, iv. 19.
- thyrsiflora, i. 312.
- Xiphidium, i. 327.

Ixora barbata, vi. 73.

- rosea, vii. 49.
- undulata, vii. 50.

J.

Jaborosa integrifolia, 2 S. ii. 284.
Jacaranda mimosæfolia, vii. 390.
Jack Fruit, v. 108.
$J_{\text {ackson, Mr }}$. John, upon the utility of yeast in bark-beds, 2 S. i. 474.
Jacquin, Baron, notice of a sweet variety of the common barberry, iv. 407.
plants received from, 2 S . ii. 410, 413, 414.
Jacuacanga, vi. 274.
Jamaica, plants collected in, by Mr. Hartweg, $2 \mathrm{~S} . \mathrm{iii} .162$.
Jambolifera pedunculata, vi. 69.
Jambon des Jardiniers, vi. 580.
Jambosa domestica, v. 111.
_ nigra, v. 111.
James, Mr., Lambeth Marsh, iii. 374.
Thomas, his mode of growing onions, iv. 130.
Jamieson, Capt., vii. 544.
Jamin, M., fruit-trees received from, 2 S. ii. 415.

Jamrosade, description and cultivation of, i. App. 11.
the ingenious method of preparing the seeds for sowing, i. App. 14.
Jambu, v. 110.
——ayer-mawar, v. 111.
cloncong, v. 111.
Kling, v. 111, 112.
Merah, v. 111.
———Rose-water, v. 111.
utan puti, v. 112.

- yellow, v. 80.

Jardin des Plantes, advantage of that establishment, i. 246.

Jardin des Plantes, manner in which Alpine plants were cultivated there, i. App. 25.
Jarvis, Mr., 2 S. i. 544, 546.
Jasmine, 2 S. iii. 245.
Jasminum fruticans, 2 S. ii. 243, 275. grandiflorum, 2 S. iii. 239. heterophyllum, 2 S. ii. 265. humile, 2 S. ii. 275, officinale, 2 S. ii. 243, 275. revolutum, vii. 37 ; 2 S. ii. 244, 265.
-Wallichianum, 2 S. ii. 265.
Jatropha Manihot, 2 S. iii. 149.
Jeeves, Mr. Stephen, iii. 325.
growing mushrooms under glass, ii. 212.
notice of bottle gourds exhibited by him, iv. 52.
on a method of training gooseberry trees, iv. 194.
Jeffery, John, Esq., iii. 102; vi. 566.
Mr., v. App. i. ; 2 S. i. 283.
Jenkins, Mr. Thomas, iv. 363; vi. 474.

- and Gwyther, i. 270, 276, 286.

Jenkinson, Hon. Robert, ii. 157.
-_ Robert Henry, Esq., vi. 336.
Jenner, Sir Herbert, 2 S. i. 535.
Jennings, Mr. John, 2 S. ii. 455.
Jerusalem artichoke, observations on its rate of growth at different periods of the day, 2 S. iii. 253.
Jessop, Mr., 2 S. i. 527, 528.
Job's Tears, 2 S. iii. 243.
Johnson, i. 123; iii. 108, 112, 234 ; iv. 501, 502.

Mr. George Wililam, account of the effect produced on vegetables by the mixture of small quantities of salt in the soil, vi. 541.
Jones, Sir Harfond, i. 175 ; v. 240.
——Mr. J., 2 S. ii. 357. vii. 92.

Sir William, i, 271 ; v. 118.
Jonquils, account of a disease to which they are liable, i. 357.
Josephine, Empress, vi. 475.
Judd, Mr., vii. 190 ; 2 S. i. 334.

- Mr. Daniel, on the cultivation of aspuragus, ii. 234.
iii. 45.
on the cultivation of celery, . on a method of forcing rhubarb, iii. 143.

apples sent by, iii. 317.
account of an improved
method of planting vines for forcing, iv. 4.

INDEX.

Judd, Mr. Daniel, on transplanting peas for early crops, v. 436.
ing of grapes, and the means of preventing it, vi. 300 .
Juglans, vi. 498.

- derivation of the name, i. 154. cathartica, vi. 499.
___ fraxinifolia, vi. 495 ; 2 S. ii. 279. nigra, vi. 498; 2 S. iii. 124.
Jujube, v. 117, 123 ; vi. 37.
Juncus maritimus, i. 265.
Juniper, vi. 495.
its manner of growth on the Pyrenees, i. App. 18.

Juniperus chinensis, 2 S. ii. 244, 253.
—— Lycia, 2 S. ii. 244, 276.
——macrocarpa, 2 S. ii. 275.
-_mexicana, 2 S. iii. 135. oxycedrus, 2 S. ii. 276. phoenicea, 2 S. ii. 244, 276. recurva, 2 S. ii. 244, 265.
Jussiev, i. 263; v. 445 ; vi. 270.
Justicia inæqualis, 2 S. iii. 136.
-_macrantha, 2 S. iii. 136.
nervosa, vi. 4.
umbrosa, 2 S. iii. 136.

K.

 124,125 ; vi. $468,486,487$; vii. 529,532 , 560, 562.
Kæmpferia Galanga, i. 286. longa, i. 286. plantaginifolia, i. 286. rotunda, i. 286. sessilis, i. 286.
versicolor, i. 286.
Kageneckia cratægifolia, 2 S. ii. 284.
Kah loo, a Chinese implement, 2 S. iii. 239.
Kaki, Japanese name for the Diospyros Kaki, iii. 245 .

Kaki, Ono, Kineri, and Ssibu, v. 124.
Kale, Brown, ii. 312 ; v. 10.
ii. 312 .

- Buda, ii. 317 ; v. 24.
———experiment with, iv. 570.
Kale, blanched in the manner of Sea
- Curled, ii. 313.
- Egyptian, ii. 315; v. 24.
- German, ii. 313.
- Jerusalem, ii. 316; v. 24.
- Manchester, ii. 317.

Kale, Prussian, ii. 317.

- Rabi, ii. 315; v. 24.
—— Ragged Jack, ii. 316 ; v. 24.
_ Russian, ii. 317.
—— Scotch, ii. 310, 318 ; v. 10 ; 2 S. iii. 60.
- Woburn perennial, v. 297.

Kamel, i. 46 ; vii. 521.
Kang-Hi, v. 123.
Kacia of Theoph., vi. 42.
Keens, Mr. Michael, v. 260 ; vi. 155, 201. account of a seedling strawberry, called the Imperial, ii. 101. on the cultivation of strawberries in the open ground, ii. 390 . notice of strawberries exhibited by him, iv. 205 ; v. $260,261$.
Kef Marjam, v. 46.
Kendall, Peter, Esq., iv. 209.
fruit from birds, 2 S. i. 390 .
Kennard, Mr., iv. 505.
Kennedy, Mr. Lewis, iii. 328.
Kennedya bimaculata, 2 S. ii. 249.
——monophylla, 2 S. ii. 249.
Kenrick, Mr., fruit trees received from, 2 S . ii. 415 .

Kent, Duke of, iii. 207 ; vi. 160.
-Mr., iv. 73, 238; v. 393; vi. 95.
Kent, William, Esq., ii. 387 ; iii. 269; vii. 542. provements in the construction of a stove for plants by which bottom heat is imparted to their roots without the use of tan, ii. 387.
account of the management of aquatic plants, with descriptions of several species cultivated in England, iii. 24.
on the management of a stove for tropical plants without the use of tan, iii. 287.
Ken, 一, i. 316, 339, 346, 359, 364 ; iii. 189, 193; iv. $339,422,500,557$; vi. 82,277 , 475 ; vii. $180,428,435,438,444,448$, 457, 459, 520.

- Henty Bellenden, Esq., account of a mode of cultivating the water-cress, iv. 537.
$K_{\varepsilon \varrho}{ }^{x}$ is, vi. 33.
Kerr, Mr. Willian, iv. 171. observations on his botanical mission to Canton, iii. 424.
Kerria japonica, 2 S. ii. 259.
Keule, v. 104.
Kharoob, vi. 35.
Khol-rabi, v. 18.
Kixis, or Krexis, of Theoph., vi. 33.

INDEX.

Kidney Bean, 2 S. ii. 238.
Kik, Kikf, or Kikku, Japanese names for the Chrysanthemum, iv. 332.
Kiko no Fanna, chrysanthemums so called by the Japanese, iv. 329, 332.
Kikokf, iv. 332.
Kineri Kaki, v. 124.
King of the Belgians, 2 S. ii. 227, 232, 424.

King of Flowers, vi. 485.
King, Lord, ii. 206.
—— Capt. P. P., 2 S. i. 523.

- Thomas, Esq., iv. 237. Wililam, Esq., 2 S. i. 535.
Kinmont, Mr., vii. 303.
Kinnoul, Earl of, 2 S. i. 230.
Kirike, Mr. Joseph, iii. 326 ; iv. 513 ; vi. 204 ; 2 S. i. 227, 546.
notice of a variety of nut presented by him to the Society, ii. 402.
notice of the White-ear carnation exhibited by him, ii. 404. 313.
apples exhibited by, iii.
Royal Muscadine Grape exhibited by, iii. 365 .
- Rosanne Peach, from a standard, exhibited by, iv. 513.

267.

Kirkpatrick, Capt., i. 333 ; vii. 526.
Kissing-comfits of Falstaff, i. 11.
Kitaibel, v. 33, 34.
Kitapan, v. 117.
Knevett, Mr. Charles, 2 S. i. 542. iv. 518.

Knight, Miss Elizabeth, 2 S. i. 258.
Jons, Esq., notice of a fruit of the Dimocarpus Longan, sent by him to the Society, ii. 400.

Mr. Joserpu, i. 262, 270 ; ii. 96, 157 ; vi. 477 ; vii. 544,547 ; 2 S. ii. 424.
horse-radish, i. 207.
Thomas Andrew, Esq., i. Pref.; ii. $9,171,176,333,334$; iii. $129,140,250$, 252,405 ; iv. $17,18,20,25,177,210,412$, 519 ; v. 140, 406, 409, 411, 436, 437, 438; vi. $16,176,177,178,185,186,187,489$; vii. 191, 342,403 ; 2 S. i. $11,68,69,153$, $156,158,159,160,161,257,258,267$, $445,446,447,448,524,527$; 2 S. ii. 119 , 120, 156, 160, 161, 297, 433, 522, 523.
his remarks relative to the objects which the Horticultural Society have in view, i. 1.

Knight, Thomas Andrew, Esq., observations on the method of producing new and early fruits, i. 30.

> experiment in rearing the apple from the seed, i. 34.
experiments
with the grape, i. 36, 37.
experiments
with the peach, i. 38. new and early varieties of the potato, i. 57.
vantages of grafting walnut, mulberry, and chesnut trees, i. 60.

- on a method of training fruit trees, i. 79. of a forcing-house for grapes, i. 99 . his theory of the returning sap of trees, i. 109, 255.

remarks on

 the proper construction of frames for hotbeds, i. 142.the Downton Apple, i. 145.
account of the Downon Apple, i. 145. on the management of the onion, i. 157. method of cultivating the Alpine strawberry, i. 159.

- farther observations respecting some new varieties of the peach, i. 165.
variety of the pear, i. 178. on a new on the culture of potatoes, i. 187. remarks on a new and expeditious mode of budding, i. 194. on the best method of constructing a peach-house, i. 199. ture of the potato in hot-beds, i. 211.
f he illustration of his theory of vegetation in observations on the culture of the melon, i. 217.
account of some apples and pears, grafts of which were presented to the Horticultural Society, i. 226.
new method of grafting, i. 239. remarks on some early varieties of the potato, and the best method of forcing them, i. 244.

INDEX.

Knight, Thomas Andrew, Esq., on the advantages of employing vegetable matter in a fresh state, i. 248.
on facilitating the emission of roots from layers, i. 255.
varieties of the grape, i. 258.
mendation of charcoal to prevent plants from damping off, i. 311.
the Elton Pear, ii. 1.
account of
— on the transplantation of blossom-buds, ii. 7.
variety of grape, ii. 10.
on an early

$$
50810
$$

on the proper stock for the Moorpark Apricot, ii. 19. ing leafless branches of peach trees, ii. 35 . ease called the Curl in the potato, ii. 64. on the culture of the mulberry, ii. 68.
on the early puberty of the peach tree, ii. 70.
on the prevention of mildew in particular cases, ii. 82.
on the cul-
ture of the shallot, ii. 97.
on the pro-
pagation of the mulberry tree by cuttings, ii. 114.
neficial results of planting potatoes which have been grown late in the preceding year, ii. 125 .
on the ap-
plication of manure in a liquid form to plants in pots, ii. 127.
on the ill
effects of excessive heat in forcing-houses during the night, ii. 130.
two varieties of cherry, ii. 137.
account of the Acton Scot peach, ii. 140.
on the want of permanence of character in varieties of fruit, when propagated by grafts and buds, ii. 160 .
on the mode
of propagation of the Lycoperdon cancellatum, a species of fungus which destroys the leaves and branches of the pear tree, ii. 178.

Knight, Thomas Andrew, Esq., on the pre-. servation of fruits during the winter and spring, ii. 193.
fects of different kinds of stocks in grafting, ii. 199 .
account of three varieties of cherries, ii. 208. three new varieties of peaches, ii. 215. ture of the peach and apricot on espalier trees, ii. 219.
tilation of forcing-houses, ii. 224.
on the vend upon the advantages of propagating from the roots of old ungrafted fruit trees, ii. 252.
of preserving broccoli in winter, ii. 304.

- observations on Mr. Brown's steam apparatus, with suggestions for its improvement, ii. 324.
on the Verdelho grape, ii. 327.
observations - suggestions for the improvement of Sir George Stuart Mackenzie's plan for forcing-houses (curvilinear), ii. 350.
upon the proper mode of pruning the peach tree in cold and late situations, ii. 364.
observations on the proper management of fruit trees intended for early forcing, ii. 368.
- notice of potatoes sent by him to the Society, for distribution, ii. 407.
of a peach tree produced from the seed of the almond tree, with some observations on the origin of the peach tree, iii. 1.
- on the best mode of pruning and training the mulberry tree, when trained to a wall, in a cold climate, iii. 63.
upon the variations of the red currant (Ribez rubrum) when propagated by seed, iii. 86 . propagation of varieties of the walnut tree by budding, iii. 133.
thod of forcing rhubarb in pots, iii. 154.
upon the pruning and management of transplanted standard trees, iii. 157.

INDEX.

Knight, Thomas Andrew, Esq., upon the preservation of fruits from wasps, iii. 256. variations of the scarlet strawberry when propagated by seeds, iii. 207.
and account of a new early black cherry, iii. 211.
description
of a new seedling plum, iii. 214.
on training
the fig tree, iii. 307.
on the su-
perior healthfulness of scions taken from the trunks of apple trees, iii. 387.
observations upon the most advantageous form of gardenpots, iii. 389.
upon the culture of the Guernsey lily, iii. 399.
upon the effects of very high temperature on some species of plants, iii. 459.
means of giving strength to the stems of plants growing under glass, iv. 1.
culture of the pine apple, without bark, or other hot-bed, iv. 72.
on the most economical method of employing fuel in heating the flues of forcing-houses, iv. 156.
physiological observations upon the effects of partial decortication, or ringing the stems or branches of fruit trees, iv. 156.
further particulars of the Downton strawberry, iv. 197.
upon the culture of the fig tree in a stove, iv .200.
notice of a peach raised by him, its parentage consisting of a peach and a nectarine, iv. 210.
on the cul-
tivation of the cocks-comb, iv. 321.
on hybrids, iv. 367.
observations - directions for preserving buds of fruit trees in a vegetating state, when sent to considerable distances, iv. 403.
upon prun-
ing and training the plum tree, iv. 426.
managing of fruit trees in pots, iv. 439.

Knight, Thomas Andrew, Esq., account of an improved method of raising early potatoes in the open ground, iv. 447.

on grafting

the vine, iv. 495.
specimens
of pears sent by, iv. 521.
tivation of the pine apple, iv. 543.
observations
on Mr. Turner's paper on the accidental intermixture of character in certain fruits, v. 67.
observations
on the cultivation of the pine apple, v. 142.
notice of a new variety of Ulmus suberosa, and of a successful method of grafting slender scions of trees, v. 146.
of a melon and pine pit, v. 223.
description upon the advantages and disadvantages of curvilinear iron roofs to hot-houses, v. 227.
on a new and improved method of cultivating the melon, v. 238.
cherry raised by, v. 262. notice of a - observations on the flat peach of China, v. 271.
the injurious influence of the plum stock on the Moorpark apricot, v. 287.
account of
some mule plants, v. 292.
account of an improved method of obtaining early crops of peas, after severe winters, v. 341.

> some re- marks on the supposed influence of the pollen, in cross breeding, upon the colour of the seed-coats of plants and the quality of their fruits, v. 377.
account of the Downton Imperatrice plum, v. 381.
observations upon the effects of age upon fruit trees of different kinds; with an account of some new varieties of nectarines, v. 384.
on the pre-
paration of strawberry plants for early forcing, v. 432.
on the pro-
tection of the blossoms of wall trees, v. 505. on the cal-
tivation of strawberries, vi. 101.

INDEX.

Knight, Thomas Andrew, Esq., upon the beneficial effects of protecting the stems of fruit trees in early spring, vi. 228.
a method of obtaining very early crops of the grape and fig, vi. 233.
ture of strawberries, vi. 255.
on the cul-- on the cultivation of the Amaryllis sarniensis or Guernsey lily, vi. 259.
plantation of plants with spindle-shaped roots, vi. 370 .
of nectarines sent by him to specimens 394, 395.
variety of pear from China, vi. 396.
some new seedling pears, vi. 446.
observations
on the qualities of newly raised fruits, exemplified in plums, vi. 529.
notice of the
Siberian bitter-sweet apple, vi. 547.
culture of upon the culture of celery, vii. 43.
upon the culture of the Prunus pseudo-cerasus, vii. 180. respecting the culture of the suggestions Cherimoyer, vii. 254.
of some improvements in the construction of hot-beds, vii. 281.
ture of the potato, vii. 405.
on the culon the cultivation of the pine-apple, vii. 409.
supposed supposed changes of the climate of England, vii. 563.
eon the degeneracy of the larger and finer varieties of Persian melons, vii. 584.
an economical mode of obtaining very early crops of new potatoes, 2 S. i. 35 .
an account
of a new variety of plum, $2 \mathrm{~S} . \mathrm{i} .53$.
a method of obtaining very early crops of green peas, 2 S. i. 79.
cultivation of the Persian varieties of melon, 2 S. i. 85.

Knight, Thomas Andrew, Esq., on the potato, 2 S. i. 93.
-_ remarks on - the qualities of seedling pears raised by him, 2 S. i. 103.
account of the striped Hoosainee melon, 2 S. i. 137. means of prolonging the duration of valuable varieties of fruits, 2 S. i. 147.
ing the walnut tree, 2 S. i. 214.
on the beneficial effects of the accumulation of sap in annual plants, 2 S. i. 323.
and on the advantages of irrigating garden grounds by means of tanks or ponds, 2 S. i. 340 .
on the cultivation of the Hautbois strawberry, 2 S. i. 399.
ture of the potate, 2 S. i. 415.
caus upon the causes of the diseases and deformities of the leaves of the peach tree, 2 S. ii. 27.
upon the causes of the premature death of parts of the branches of the Moorpark apricot and some other wall fruit trees, 2 S. ii. 34.

- on the means employed in raising a tree of the Imperatrice nectarine, 2 S. ii. 47.

notes on se-

 veral new varieties of fruits raised by him from seed, 2 S. ii. 62.- on two species of inseets which are found injurious to the pear tree, 2 S . ii. 104.
upon the supposed absorbent powers of the cellular points or spongioles of the roots of trees and other plants, 2 S. ii. 117.
note on the Althorp Crassane pear, 2 S. ii. 120. on the means of destroying the red spider in melon frames, 2 S. ii. 126.
on the cultivation of figs, 2 S. ii. 165. upon the culture of the strawberry, 2S. ii. 175. on the preservation of the early foliage of peach and nectarine trees, $2 \mathrm{~S} . \mathrm{in}$. 180.
conomical use of melon frames, 2 S . ii. 185.

Knight, Thomas Andrew, Esq., on the propagation of trees by cuttings in summer, 2 S . ii. 216.
—Mr, of Lee Castle, v. 80, 124.
Knol-kohl, v. 18.
Knoll-sellerie, iii. 71; vi. 410.
Knoop, iv. 276, 277, 518 ; 2 S. i. 291.
Knott, Mr. John, vi. 198.
Knowlton, Mr. Thomaf, i. 103, 277.
Kohlrabi, 2S. iii. 60.
Kohl reps, v. 33.
Kokhumelea, iii. App. 26.
Kölreuter, v. 339.
Kölreuteria paniculata, vi. 48, 495 ; 2 S. ii. 253.

Kgenig, i. 271 ; vi. 68.
Kovú\}a, vi. 49.
Koo-e-oор, vii. 279.
Koo-shoo, iv. 226.
Kowaingutukaka, 2 S. i. 520.
$\mathrm{K}_{\rho} \alpha \mu{ }_{6}{ }^{n}$ nиєєая, Diosc., v. 4.
K ${ }^{\text {gíavy }}$ vi. 45.
Kunth, vi. 283, 290 ; vii. 51,279 ; 2 S. ii. 223.

Kขтєцрог, Diosc., vi. 51.
Kyanized wood, experiments upon the effects of, 2 S . ii. 515.
Kychonophane, a Japanese name for the chrysanthemum, according to Breynius, iv. 329.
Ky-lan-tsay, 2 S. iii. 245.

L.

Labels for plants, notice of the advantage of using Indian ink in writing them, iii. 363.

Labillardiète, iv. 58.
Labouchere, Peter Cesar, Esq., vii. 400 ; 2 S. i. 534, 540.
Lactuca quercina, vi. 581.
La Gasca, Mr. vii. 248.
Lælia, 2 S. ii. 239.
-acuminata, 2 S. iii. 136.
majalis, 2 S. iii. 118.
superbiens, 2 S . iii. 135.
Lagerstremia indica, 2 S. ii. 244, 265.
Lagos, plants found at, 2 S. iii. 118.
Laitue chicorée, vi. 582.

- à couper, vi. 582.
épinarde, vi. 581.
- gotte à graine noire, vi. 574 .

Impériale, vi. 574.
petit, vi. 582.
Turque, vi. 574.

Lamarck, v. 8, 22, 26, 32, 40 ; vi. 96, 268, 277 ; vii. 425, 446.
Lambert, Aylmer Bourke, Esq., i. 11, 12, 281 ; iii. 113 ; v. $250,251,252,253$; vi. 67, 77, 78, 191; 2 S. i. 509.

Trapa natans, exhibited by, iv. 563.
account
of a method of preserving nuts, vi. 546 .
Lamb's Quarters (Chenopodium album), iv. 489.

Lamourouxia longiflora, 2 S. iii. 120.
multifida, 2 S. iii. 120.
virgata, 2 S . iii. 154.
Lance, John Henry, Esq., 2 S. ii. 100, 103.
discovery and subsequent management of the Oncidium Lanceanum in its native country, 2 S. ii. 102.
plants received
from, 2 S. ii. 419.
Lance's carbon, 2 S. iii. 96, 99.
Langelier, Mr. Peter, vii. 175, 177, 178.

- Mr. Rene, fruit trees received from, 2 S . ii. 415.
Langley, iii. 94 ; 2 S. i. 70.
Lanseh, v. 110.
Lansium domesticum, v. 110.
Lantana fucata, vi. 73.
Lapeyrousia juncea, i. 323.
Lapis specularis, or Talc, used by the Romans for glazing their windows, i. 148.
Larbaleste, Abbé, iii. 180.
Lardizabalia biternata, v. 105.
Larch, i. App. 17 ; 2 S. ii. 263.
notes on five kinds of, iv. 416.
Red, iv. 416.
Russian, iv. 416.
Weeping, from the Tyrol, iv. 416.
Larix sibirica, iv. 417.
Larkins, Capt., vi. 325.
Lathyrus tuberosus, observations on its tubers, with instructions for the cultivation of the plant, ii. 359.
Latreille, iii. 60.
Latti Am, v. 118.
Lauderdale, Earl of, v. 164.
Launzan, v. 120.
Laurea, a small cherry of the Romans so called, i. 152.

Laurel, 2 S. i. 465 ; 2 S. ii. 238, 242, 276, 277.

- its introduction, i. 23.
when introduced, i. 23.
Alexandrian, vi. 48.
Portugal, 2 S. ii. 238, 242, 275, 277.

INDEX.

Laurent, Rev. Mr., i. 17.
Laurus aggregata, vi. 65.
——Camphora, 2 S. ii. 259.
glauca, vi. 65.
Myrrha, vi. 66.
nobilis, 2 S. ii. 226, 244, 277.
Persea, iii. 463 ; v. 96.
Laurustinus, 2 S. ii. 226, 237, 245, 276.
Lavandula dentata, vii. 42. spica, 2 S. ii. 276. Stœechas, vi. 47.
Lavater, Mr., 2 S. ii. 379, 380, 385.
419.
plant received from, 2 S. ii.
Lavender, 2 S. iii. 62.
Law, Mr. Benjamin, on a method of forcing cherries, 2 S. i. 101.
Lawns, experiments on, with fertilizing agents, 2 S. iii. 43.
Lawrence, Miss, iii. 100, 101 ; iv. 303.
\longrightarrow Mrs., 2 S. i. 540, 541, 543.
Rev. Mr., iv. 432.
Lawson, Sir Wilfred, i. 278, 284.
Lax, G. Tradescant, Esq., calendar of the weather, natural history, and country operations at Foo-chow-foo, 2 S. iii. 237.
Lafard, Dr., ii. 162.
Laycock, Mr. Jonathan, ii. 94.
Layering, emission of roots facilitated by ringing, iv. 558.
Layers, method of facilitating the emission of roots by them, i. $256,257$.
Leach, Dr. W. E., on the Eriosoma, iii. 60.
Leader, Wilitim, Esq., v. 220.
Leaf-buds, how removed by the French, i. App. 5, 7.
Leaves, privation of, prevents the formation of bulbs, i. 325.

- of plants, their vegetable process and office, i. 220.
i 221 the melon, their mode of growth, i. 221.
- and fruit, connexion between, ii. 184.
their functions, v. 241.
- the first organs which fail to perform their functions in the case of aged trees, v. 385.
functions of mature and immature, different, 2 S . ii. 216.
$L_{\text {e }}$ Blane, Capt. Thomar, vii. 533, 554.
Leblevi, vi. 54.
Leblevigé, vi. 54.
$L_{\text {e }}$ Clekc, $^{\prime}$ M., fruit trees received from, 2 S . ii. 415.

L'Ecluse, i. 46, 47.
Le Compte, vii. 562.
Le Couteur, vi. 304 ; vii. 175, 178.

Le Couteur, apple sent by, iv. 525.
Ledebour, Dr., plants received from, 2 S. ii. 410, 412.
Lee, Miss, i. 300.
-Mr., ii. 162, 285 ; iii. 231, 285, 444 ; iv. $11,286,289,292,298,340,461$, $464,472,502$; vii. $527,536,561$; 2 S . ii. 31 .

- 5 notice of strawberries exhibited by, iv. 55.
-_Mr. James, vi. 156, 165, 199, 204, 214, 551 ; vii. 157.
- Mr. John, vii. 154 ; 2 S. i. 531, 534, 535.
- and Kennedy, Messrs., i. 104, 262, 265, $268,270,288,306,311,315,321,343$, 344 ; ii. 41,242 ; iv. $286,337$.
notice of the Alexander Apple, fruit imported from Riga, exhibited by them, ii. 405.
Lees, John Campbell, Esq., vi. 91.
plant received
from, 2 S. ii. 419.
Leek, 2 S. iii. 239, 243.
- Hollow, iii. 416.
—— London Flag, 2 S. iii. 60.
——Perenmal Sweet, iii. 418.
——Proliferous, vi. 575.
- Scotch, iii. 418.

Tree, vi. 576.
Lejeune, M., 2 S. iii. 29.
Lelieur, iii. 218, 226, 227, 232, 384 ; iv. 271 ; v. 527,537 ; vii. $372,387$.

- on the hereditary diseases of fruit trees, i. App. 27.
tarines, syii. 386.
Lemery, vi. 37.
Lemon, iii. App. 9 ; iv. 20 ; 2 S. ii. 253. effects of high temperature on, iii. 462.
\longrightarrow on raising from cuttings, ii. 12. management of, iv. 306.
Adam's Apple of Reggio, iii. App. 13. of Amalfi, iii. App. 10.
Cedrate of Amalfi, iii. App. 12. of Florence, iii. App. 12.
iii. App. 12.
of Rome, iii. App. 12.
of Sienna, iii. App. 12.
——Cedrate, wild, iii. App. 12.
Cedrate, wild, ii. App.
Chalcedonian Wax, in. App. 11. or Lamy, common Roman Adam's Apple, iii. App. 13.

10.

INDEX.

Lemon, common Striped or Ribbed Amalfi, iii. App. 10.

Cylindrical, of Rossoli, iii. App. 10.
Furrowed Amalfi, iii.
App. 11.
Imperial, iii. App. 10.
Incomparable, iii. App. 8.
Gaeta, iii. 11.
Genoa Lumy, iii. App. 12.
Great Ligurian Rough-coated Wax, iii. App. 11.

Laura, iii. App. 11.
Long-necked, iii. App. 10.
Ligurian Wax, iii. App. 11.
Lumy of Jerusalem, iii. App. 12.
of St. Dominick, iii. App. 13. Paradise Apple, iii. App. 13.
Pear, iii. App. 10.
Pear-like, iii. App. 10.
Peretta, iii. App. 10.
Pot Lumy of Reggio, iii. App. 12.
Red Wax, iii. App. 11.
Reggio, iii. App. 10.
Roman Wax, iii. App. 11.
Rough-coated, or Warty, iii. App. 9.
Round Florence, iii. App. 9.
Genoese, iin. App. 9.
Pear-shaped Lamy, iii. App. 13. of St. Remi, iii. App. 9.
with a spine at the end of the fruit, iii. App. 8.
of St. Remi, iii. App. 10.
Shardonick, with a spine to the fruit, iii. App. 10.

Small Round Calabrian, iii. App. 9.
—— Striped, or Ribbed, iii. App. 10.
——Sweet Juicy Roman, iii. App. 10.
——— Valentine, iii. App. 13.
trees trained against walls in Devonshire, i. 177, 243.

$$
\text { on their management, ii. } 295 .
$$

hardier than orange, ii. 297.
iii. 43.
at Rome, observation respecting,
[el
method of grafting, so as to produce dwarf fruit-bearing trees, iii. 91.
account of some growing in the open air in Devonshire, iv. 142.
particulars of their treatment in Tuscany, vi. 543.
Lemonnier, i. App. 12.
Lemon, Sir Charles, 2 S. ii. 226, 233, 268 ; 2 S . iii. 35.
on the growth of a fir resembling the Pinaster, 2 S. i. 509.
Leonia glycycarpa, v. 104.
Leonotis intermedia, vi. 275.

Leonotis Leonurus, 2 S. ii. 271.
Leontodon Taraxacum, 2 S. i. 466.
Leonurus condensatus, vi. 298.
———crispus, vi. 298.
——— lacerus, vi. 298.
tataricus, vi. 298.
Leopoldia reticulata, iv. 181.
\longrightarrow striatifolia, iv. 181.
Leptosiphon androsaceus, figured, 2 S. i. 477.
——densiflorus, figured, 2 S. i. 477. grandiflorus, 2 S. i. 478.
Leptospermum ambiguum, 2 S. ii. 249. lanigerum, 2 S. ii. 249. obovatum, 2 S. ii. 249.
Le Quelt, Nicholas, a famous rhizotomist, i. 352 .

Lezlie, Mr. George, 2 S. ii. 227.
Lespedeza capitata, vii. 251.
Lettsom, Dr., iii. 280, 281 ; vii. 559, 562.
Lettuce, 2 S. iii. 52.
-_ experiment with, in steeping the seeds, 2 S. iii. 206.
——Black-seeded Gotte, vi. 574.
-_ Endive-leaved, vi. 582.
——Green Paris Cos, 2 S. iii. 60.
—— Ice, vi. 575.
Malta, 2 S. iii. 60.
Salad Cabbage, vi. 582.
Spinach, vi. 581.
Swedish, 2 S. iii. 60.
Union, vi. 574.
White Paris Cos, 2 S. iii. 60.
Le Veat, Francis, a rhizotomist, eulogized by Parkinson, i. 352.
Lewis, Capt., iv. 446.
——Mr., vi. 394.
——and Clarke, vii. 275, 510.
Leycesteria formosa, 2 S. ii. 265.
Lezermes, M., iii. 301.
Liabum acaule, 2 S. iii. 156.
erigeroides, 2 S . iii. 156.
Libraria, pears so named by the Romans, i. 153.

Lien-wha, vi. 535.
Ligature applied to a branch produces nearly the same effect as ringing, iv. 123.

- effects of, on a vine, $2 \mathrm{~S} . \mathrm{ii} .111$.

Light, quantity of which falls on the foliage regulates, to a great extent, the ability of trees to ripen crops of fruit, v. 272. as regards the culture of the pineapple, vii. 410.
Lightfoot, v. 278.
Ligustrum lucidum, 2 S. ii. 244, 259.
Lilio-asphodelus luteus minor, i. 334.
Lilium concolor, i. 333.
-_ indicum, i. 342.

Lilium japonicum, notice relative to its flowering, iv. 551.
——monadelphum, i. 333.
-_ speciosum, i. 333.

- tigrinum, i. 333.

Lily of Anacreon, vi. 49.

- Barbadoes, vi. 313.
- of the Scripture, vi. 49.

Lima a forma di Cuore, iii. App. 14.

- lunga monstrosa, iii. App. 14.
- piccola dolce tondo, iii. App. 14.
- Romana tonda il Bergamotto, iii. App. 14. Limes, iii. App. 13. their management, iv. 306.
Lime Bergamotte, iii. App. 14.
- Heart-shaped, iii. App. 14.
- Long, Monstrous, iii. App. 14.
- de Rome ronde, iii. App. 14.
- Round Roman, iii. App. 14.
- Small Round Sweet, iii. App. 14.

Lime, iv. 20 ; 2 S. iii. 36 .

- employed by the Chinese for the destruction of insects, v. 53 .
advantageously applied to prevent the clubbing in cabbages, vi. 31.
successfully employed for the destruction of caterpillars, vii. 403.
duster, for the destruction of insects on fruit trees, vi. 124 ; figured, vi. 126.
-water employed for the destruction of slugs, ii. 23.
Limnanthes Douglasii, 2 S. i. 409.
Limnocharis Humboldtii, 2 S. ii. 284.
Plumieri, vi. 80.
Limodorum altum, i. 299.
——boreale, i. 301.
—_ floridum, i. 299.
-_ Incarvillei, i. 299.
—— purpureum, i. 299.
-Tankervillie, i. 299.
———trifidum, i. 299.
tuberosum, i. 299, 300.
Limon rayé, iii. App. 10 .
Limone d'Amalfi, iii. App. 10.
-Cedrato d'Amalfi, iii. App. 12. bruto, iii. App. 12. di Firenza, iii.. App. 12.
lunghissimo, iii. App. 12.
Cedro di Roma, iii. App. 12.
Cedrato di Siena, iii. App. 12.
di cera Calcedonico, iii. App. 11.
di Liguria, iii. App. 11.
Romana, iii. App. 11.
rosso, iii. App. 11.
cilindrico d'Amalfi solcato, iii. App.

11.

cilindrico di Rossoli, iii. App. 10.

Limone comune listata d'Amalfi, iii. App. 10.
.ii. di forma cilindrica comune Romano, iii. App. 10.
———in forma di Pera, iii. App. 10.
—_di Gaeta, iii. App. 11.
___ di Genoa tondo, iii. App. 9.
-_ imperiale, iii. App. 10.
———incomparabile, iii. App. 8.
-_di Laura, iii. App. 11.
-_di Liguria grandissimo, iii. App. 11.

- listato, iii. App. 10.
al lungo collo, iii. App. 10.
di Mela di Paradiso, iii. App. 13.
Peretta, iii. App. 10.
piccolo tondo di Calabria, iii. App. 9 .
detto Pomo d'Adamo di Reggio, iii. App. 13.
ii. detto Pomo d'Adamo Romano volgare, iii. App. 13.
——_di Reggio, iii. App. 10.
__ di Roma dolce, iii. App. 10.
——rugoso, iii. App. 9.
-_di San Remi, iii. App. 10.
App. 9.
- di Shardoni, colla spina alla punta, iii. App. 10.
- tondo, colla spina alla punta, iii. App. 9.
di Firenza, iii. App. 9.
Limonia citrifolia, vi. 72, 73.
-_parviflora, vi. 72, 73.
Lindsay, Hon. Robert, vi. 522.
Mr. Wilinam, 2 S. i. $535,546$.
Link, Professor, 2 S. i. 43.
Lindegaard, Mr. Peter, on forcing grapes, as practised in Denmark, v. 471. on the cultivation of asparagus during the winter, v. 509.
Lindley, Mr. George, vi. 160, 411; 2 S. i. 282.
account of some of the best varieties of apples peculiar to, or cultivated in the county of Norfolk, iv. 65. notice of specimens
of nuts sent by him to the Society, v. 263.
- a classification of peaches and nectarines, $\mathbf{~} .525$.

John, iv. 261, 281, 458, 464; v. 492 ; vi. 397 ; vii. $24,180,279,436$, $448,520,527,531$; 2 S. i. 137, 457, 509; 2 S. ii. 437, 438; 2 S. iii. 35 . siffora cerruleo-racemosa, iv. 261. 416. notes on five kinds of larch, iv. 416. - sketch of the principal tropical

INDEX.

fruits which are likely to be worth cultivating in England for the dessert, v. 79.
Lindley, John, instructions for packing living plants in foreign countries, especially within the tropics; and directions for their treatment during the voyage to Europe, v. 192.

- notice of certain seedling varieties of Amaryllis, v. 337.
- report upon the new or rare plants which flowered in the Society's garden from its first formation to March, 1824, vi. 62.
from
March, 1824, to March, 1825, vi. 261.
observations upon the natural laws which govern the production of double flowers, arising out of a remarkable case of preternatural formation in the flowers of an Amaryllis, vi. 309.
report upon the effect produced on certain plants in the Society's garden by the frost which occurred during the night of April 29th, 1826, vi. 493.
-_ account of ten varieties of Persian melons, vi. 553.
report upon the new or rare plants which flowered in the Society's garden in 1825-6, vii. 46, 224.

175.

notice of five sorts of pears, vii.

- upon the cultivation of orchi-

 deous epiphytes, 2 S. i. 42.experiments on the growth of potatoes, 2 S. i. 153.
upon the Cannon Hall Muscat grape, 2 S. i. 169.
note upon the Brabant Bellefleur apple, 2 S. i. 295. the cultivation of potatoes, 2 S . it 445 , 524.
i. 519 .
upon the genus Clianthus, 2 S .

- note upon the Mimulus cardinalis, 2 S. ii. 70.

2 S. ii. 100.
upon the Oncidium Lanceanum,
ii. 177 .

- observations upon the effects produced on plants by the frost which occurred in Eugland in the winter of 1837-8, 2 S. ii. 225.
ii. 478.
on the Chorozema varium, 2 S . - on the rate of growth by plants at different periods of the day, 2 S . iii. 247.
upon the Cattleya guttata, 2 S . Con

Lindleya mespiloides, 2 S. ii. 398 ; 2 S. iii. 123.

Linneus, i. 105, 131, 263, 317, 347, 353, 357,361 ; ii. 150,292 ; iii. $19,107,109$, $110,342,351,354,370,418$; iv. 281, 282, 327, 328, 329, 331, 371 ; v. 18, 26, 160, $161,310,427,428$; vi. $37,48,70,266$, $291,345,348$; vii. $9,16,17,28,70,82$, $420,421,424,520,529$; 2 S. ii. 104, 106.
his encomium on Miller's Gardener's Dictionary, i. 89. his theory respecting the sexes of plants, i. 105.

- his account of an action for a fraud in the sale of seeds, i. 116.
his injudicious reduction of the species of Crocus, i. 131.
Linen, means by which the strength of its fibre may be increased, i. 74.
Linochilus floribundus, 2 S. iii. 158.
rosmarinifolius, 2 S . iii. 159.
Linschoten, Van, v. 109.
Linum arvense, i, 72.
- β sativum, i. 72.
- γ sativum humilius, flore majore, i. 72.
——bumile, i. 72.
flavum, 2 S. ii. 277.
δ sativum latifolium africanum fructu majore, i. 72. sylvestre, i. 72. tauricum, vii. $40 ; 2$ S. ii. 277. usitatissinum, i. 72.
Linwood, Mr. John, vi. 189.
Liparis foliosa, vii. 68.
reflexa, vii. 68.
Lippold, vii. 261.
Liquids, expansion of, vii. 573.
Liquidambar styraciflua, 2 S. iii. 130.
Lister, ii. 140.
Lisianthus densiflorus, 2 S. iii. 158.
Li-tchi, ii. 401 ; v. 124.
Lithrea caustica, 2 S. ii. 284.
Livingstone, Edward, Esq., vi. 416, 417 ; vii. 227. account of a method of ripening seeds in a wet season; with some notices of the cultivation of certain vegetables and plants in China, iii. 183.
- observations on the
difficulties which have existed in the trans-
portation of plants from China to England, and suggestions for obviating them, iii. 421.

Livingstone, John, Esq., account of the method of dwarfing trees and shrubs as practised by the Chinese, including their plan of propagation from branches, iv. 224.
on the state of
Chinese horticulture and agriculture, with an account of several esculent vegetables used in China, v. 49.
Llewelyn, Dillwyn, Esq., 2 S. ii. 234.
Llhwyd, Edward, Esq., i. 328.
Lloydia alpina, i. 328.
Loango, v. 92.
Loasa acanthifolia, vi. 95, 96 .
-- nitida, vi. $95,96,97$.
Placei, vi. 95, 97.
tricolor, vi. 95, 96.
L'Obel, i. 16, 357 ; ii. 274 ; iii. 343 ; v. 18 ; vii. 423.

Lobelia andina, 2 S. iii. 158.
-_campanuloides, vi. 77.
—_cardinalis, ii. 154.
Cliffortiana, ii. 41.
erinoides, ii. 37, 40.
fulgens, on its cultivation, ii. 153.
——fulgens, on its cultivati

- Speculum, ii. 37.

Tupa, 2 S. ii. 284.
Lockner, Captain John Christopher, iv. 339.

Locust tree, or Néty of the negroes, v. 444 ; vi. 498.

Loddiges, Mr. Conrad, i. 284, 326.
George, ii. 96 ; iv. 129; vi. 83 ; vii. $525.531,536,538,542,547,553$. method of conveying water to plants in houses invented by him, iii. 14.
description of a steam
apparatus, iv. 56.
Messrs. i. 332 ; ii. 274 ; iv. 293 ,
417, 424, 503,553 ; vi. $60,66,289,461$, $464,471,477,478$; vii. $67,229,230,231$, $232,236,243,526,533,536,541,548$, $550,551,559$; 2 S. i. 44,530 ; 2 S. ii. 100 , 178, 424 ; 2 S. iii. 29.
Lomandra longifolia, i. 265.
Lomatia longifolia, 2 S. ii. 249.
Lomies, iii. App. 12.
Long, Right Hon. Sir Charles, iv. 419.

- Lady, vii. 545.

Longan, v. 80, 124; 2 S. iii. 241, 243.
Long-yen, ii. 401 ; v. 124.
Lonicera flava, vii. 40.

- implexa, vii. 40.

Lophospermum scandens, 2 S. iii. 124.
Lopez, v. 91.
Loperia lineata, 2 S. iii. 124.

Lopezia racemosa, vii. 41.
Lo-quat, cultivation of, iii. 299; figured, iii. 299; v. 80, 124.
Lote tree, v. 88.
Loranthus catacarpus, 2 S. iii. 158.
Lotus, Indian, iii. 28.
——of Theoph. and Pliny, vi. 37.
Loudon, John Claudius, Esq., ii. 353; iv. $77,90,92,547$; 2 S. i. 37,546 ; 2 S. ii. 351, 438.
his opinion
respecting the requisite strength of iron bars for a curvilinear house, ii. 353. John, Earl of, iv. 457, 465.
Loughborovat, Lord, i. 275.
Loureiro, ii. 157 ; iii. 350 ; iv. 322 ; v. 197 ; vi. $66,70,270,271,348,349,487$; vii. 17 , 20, 21, 522, 523, 531, 566, 561.
Lovage, 2 S. iii. 62.
Love-apple, description of its varieties, and account of its cultivation, iii. 342.
Lowd, Mr. Thomas, iv. 506.
Lowder, Mrs., vi. 215.
Lowe, Mr. George, account of the vines at Valentines House; with some practical suggestions for the treatment of vines, iii. 334.

- Hugh, 2S. ii. 461.
—— Robert, v. 540.
——Messrs., 2 S. ii. 224.
Luffa acutangula, 2 S. iii. 239.
Lucerne, 2 S. iii. 153.
Lucullus, ii. 139.
Lumias, iii. App. 12.
Lumia di Genoa, iii. App. 13.
Giaretta di Reggio, iii. App. 12.
di Gierusalemme, iii. App. 12.
di S. Dominico, iii. App. 13.
tonda peretta, iii. App. 13.
Lumiè d'Espagne, iii. App. 15. Orangée, iii. App. 15.
Lumley, Frederick, Esq., iii. 140.
Lumsden, Mr., 2 S. ii. 455.
Lupinus albifrons, 2 S. i. 410.
-alopecuroides, 2 S. iii. 153.
——arboreus, 2 S. ii. 261.
arvensis, 2 S. iii. 150.
- bogotensis, 2 S. iii. 160 .
——_densiflorus, 2 S. i. 410.
——Hartwegii, 2 S. iii. 118.
seeds, 2 S. iii. 203.
seeds, hirsutissimus, 2 S. i. 411.
——interruptus, 2 S. iii. 160 .
- leptocarpus, 2 S. iii. 120.
leptophyllus, 2 S. i. 411.
nannes, figured, 2 S. i. 409.
pubescens, 2 S. iii. 154.

INDEX.

Lupinus semperflorens, 2 S. iii. 150.
Luscombe, Joun Luscombe, Esq., ii. 12, 119, 120.

Luttrell, Mr., ii. 42; 2 S. i. 329.
Luzula albida, i. 264.

- lutea, i. 264.

Lycaste lanipes, 2 S. iii. 149.
Lychnis coronata, vii. 33.
Lycium afrum, vii. 36 ; 2 S. ii. 269.
Lycoperdon cancellatum, a species of fungus which destroys the leaves and branches of the pear-tree, on its mode of propagation, ii. 178.
Lycopersicum, observations on species of the genus, iii. 342.
cerasiforme, iii. 352.
dentatum, iii. 352.
esculentum, iii. 344, 351.
Galeni, iii. 343.
hirsutum, iii. 352.
Humboldtii, iii. 351, 352.
pimpinellifolium, iii. 352.
peruvianum, iii. 352.
procumbens, iii. 352.
pyriforme, iii. 352. regulare, iii. 352.
Lycoris, iv. 176.
Lyonia ferruginea, 2 S. iii. 128.
Lyons, Mr., vii. 232.
Lysias bifolia, i. 288.
Lysiponia montioides, 2 S . iii. 156.
Lysons, Mr., his discovery of flues used by the Romans, i. 148.
M.

Mabocche tree, v. 91.
Macartney, Lord, vii. 522.
Macdonald, Mr., iii. 67.
's Gardener's Dictionary, iii. 218.
Macer, Emilius, v. 8.
Macfarlane, Mr. John, cherry exhibited by him, iv. 511.
Mackay, Mr. James Townehend, 2 S. ii. 227, 235.
Mackenzie, Sir George Stuart, ii. 350 ; iii. $320 ; 2$ S. i. $454 ; 2$ S. ii. 158.
on the form which the glass of a forcing-house ought to have in order to receive the greatest possible quantity of rays from the sun, ii. 171.
apples sent by, iii. 315, 316, 317.
on the construction of flues of hot houses, v. 214.

Mackenzie, Sir George Stuart, remarks upon the period of gathering early pears, vii. 94 . account of some varieties of the apple found to succeed in Ross-shire, vii. 332.
method of marking numbers on tallies, vii. 288. on the cultivation of the strawberry, vii. 342. account of some experiments in the cultivation of potatoes, 2 S. ii. 158.

- Sir J. A. S., plant received from, 2 S. ii. 418.

$$
\text { Mr., } 2 \text { S. ii. } 461 .
$$

Mackie, Mr., 2 S. ii. 227, 459.
——Mrs., vii. 234, 462, 463, 468 ; 2 S. i. $229,231,232,234,235$.

Maclean, Dr. Allan, seedling apples raised by, 2 S. ii. 108.
Macleania pubiflora, 2 S. iii. 158.
Macleay, iv. 135.
M_ Alexander, Esq., vi. 463.
Macphails $^{\text {iv. } 455 ; ~ v . ~} 494,499$; vi. 111, $383,385$.
Macleod, Mr. Daniel, account of his mode of growing Cape broccoli, iv. 559.
Machai, country plum, v. 90, 451.
Machanter, v. 464.
Mache, vi. 584.

- d'Italie, vi. 584.

Mackanter, v. 451, 464.
Maclura, v. 118.
——aurantiaca, 2 S. ii. 244.
Macray, Mr., vii. 303.
Macre, iv. 564.
Maddock, i. 353.
Madroña, 2 S. iii. 117.
Magic Ring of Pomona, notice of the second edition of, iv. 557.
Magint, v. 451.
Maglia, v. 250.
Magnat, v. 8.
Magnesia, 2 S. iii. 36.
Magnolia acuminata, vi. 495 ; 2 S. ii. 262.
Mauriculata, 2 S. ii. 237.
Burchell's Donble Swamp, iii. 205.
conspicua, iv. 58 ; 2 S. ii. $237,253$.
cordata, vi. 495.
———Deciduous Swamp, iii. 202.
Evergreen Swamp, iii. 203.
fuscata, 2 S. ii. 253.
glauca, 2 S. ii. 237,262 ; 2 S. iii.
128. notes on, and description of its varieties, iii. 201.
longifolia, iii. 203.

INDEX.

Magnolia glauca latifolia, iii. 202. Gordon's Double Swamp, iii. 203. grandiflora, 2 S. ii. 261, 274.
pumila, 2 S. ii. 253.
small, iii. 201.
Thomsoniana, vi. 495 ; 2 S. ii. 237. Thompson's Swamp, iii. 206. tripetala, vi. 495 ; 2 S. ii. 237.
Maher, Mr. John, iii. 378, 403 ; vii. $22 . ~_{\text {. }}$ his remarks on the cultivation of sea-kale, i. 13. hints relative to the cultivation of the early Purple Broccoli, i. 116 . on the pruning and training of standard apple and pear trees, i. 236 .
ii. 76 .

description of a fruit-room,

 berry bushes, ii. 146 . on a remarkable property of the Hoya carnosa, ii. 197.account of a compost for pine apples, ii. 407.
on the cultivation of the under-ground onion, iii. 305 .

- notice of a method of protecting young vegetables from the effects of excessive heat, iv. 51 .
on the treatment of standard fig trees in the gardens at Arundel Castle, iv. 185.

Maher, Mr., 2 S. i. 546.
Mahomet II., vi. 44.
Mahonia fascicularis, vi. 66.
Maïs à Poulet, iv. 53, 54.
Maize, 2 S. iii. 129, 140.
i. how grown, and method of dressing it, i. App. 9.

Mala aurea, iii. 343.

- insana, vii. 83.

Malaxis Correana, vi. 405.

- liliifolia, i. 292 ; vi. 405.
- ophioglossoides, vi. 405.

Malcola, Neill, Esq., iii. 269.
Mr. William, ii. 378 ; iv. 286,

$$
291,301 \text {; vi. } 288,289 \text {; vii. } 229 \text {. }
$$

Messrs. i. 324 ; ii. 96.
Mrs., iii. 269.
Malinta, v. 451.
Mallow, i. App. 21.
Malone, Mr. Edmund, description of a mode of grafting on the large branches of old trees, vi. 541 .

Malpighi, v. 242.
Malpighia glabra, v. 98.
\longrightarrow punicifolia, v. 98.

Malum citreum maximum multiforme, iii. App. 8.
Malus Assyria, seu Medica, iii. App. 4.
Mammea Africana, v. 457.
-_Americana, iii. 463 ; v. 97.
Mammee, v. 97.
—— Apple, v. 457.
———Sapota, v. 97.
———Trees, 2 S. iii. 129.
i. effects of high temperature on, iii. 463.
Mammillaria senilis, 2 S. iii. 120.
\longrightarrow Schiedeana, 2 S. iii. 123.
Manga Dading, v. 113.
Manga-utan, v. 114.
Mangel-wurzel, iii. 280,281 ; 2 S. iii. 52.
\longrightarrow experiments with, 2 S. iii. 86 , 189.

Mangifera indica, v. 112.
Mangkuda, v. 117.
Mangles, Robert, Esq., 2 S. i. 534, 543.
2 S. ii. 418, 419.
Mango, v. 112.
\longrightarrow ripened in Kew Gardens, i. 151.
effects of temperature on, iii. 462.
fruit, account of two varieties ripened
in the garden of Earl Powis, vi. 550.
25 suggestions respecting its culture, vii.
254.

Alphonso, v. 113 ; vi. 551, 552.
——Barera, v. 113.
-Budjo, v. 114.

- Buzjo, v. 114.
- Calappa, v. 113.
-Daki, v. 113.
Dodol, v. 113.
of Mazagong, v. 113.
Red Powis, figured, vi. 550.
Tappa Rawa Rawa, v. 114.
Tsjeribon, v. 113.
Yellow Powis, v. 113 ; vi. 550.
Mangold-kraut, iii. 285.
Mangold-wurzel, iii. 281.
Mangustin, v. 105, 106.
Mavza, vi. 50.
Manning, William, Esq., i. 283.
$\xrightarrow{\text { and Marshali, Messts., } 2 \text { S. ii. }}$ 380.

Mansfield, Earl of, v. 495; vi. 170; 2 S. iii. 33.

Manure, injudicions application of, detrimental to fruit trees, i. $6,215$.

- advantages of employing vegetable matter for, in a fresh state, i. 248.
—— state in which it ought to be used in the soil, i. 248.

Manure, remarks on the decomposition of substances designed for, i. 248.
__ fresh vegetable, on enriching the soil of gardens by, ii. 189.
fresh, advantages of, in the culture of vegetables, iv. 55.
——alum, 2 S. iii. 37, 38.
-_ ammoniacal water, 2 S. iii. 46.
_- artificial, experiments with, 2 S. iii. 37. 98, 99
bone-ash, 2 S. iii. 96, 100.
bone-dust, 2 S. iii. 45, 48, 50, 51.
Chatwin's artificial, 2 S. iii. 96, 99.
Chinese, v. 51.
chloride of lime, 2 S . iii. $45,46$.
carbonate of soda, 2 S . iii. $39,40,49$, 89, 191, 192.

- Daniell's Bristol, 2 S. iii. 44, 48, 50,51 .
——Dutch, 2 S. iii. 97, 99.
Epsom salts, 2 S. iii. 42, 48, 50, 51.
gas-lime, 2 S. iii. 94.
gas water or liquor, 2 S. iii. 47, 48, 50, 51, 94, 95, 96, 97, 100, 101.
green vitriol, 2 S. iii. 43.
guano, 2 S. iii. 45, 48, 50, 51, 91, 99 .
gypsum, 2 S. iii. 41, 48, 50, 51, 95, 98 .
— humus, Woolwich, 2 S. iii. 99.
Lance's carbon, 2 S. iii. 96, 99.
liquid, iv. 412.
lime, 2 S. iii. 36.
magnesia, 2 S . iii. 36.
muriate of ammonia, 2 S. iii. 37, 38, $43,69,78,79,80,85,86,87,89,191,192$, 193, 194, 195, 203, 204, 205, 206.

193.

muriate of potash, 2 S. iii. 191, 192, 193, 194, 195.
26 muriatic acid, 2 S. iii. 47, 48, 50, 51, 96, 98.
——nightsoil, 2 S. iii. 45, 48, 50, 51.
nitrate of potash, $2 \mathrm{~S} . \mathrm{iii} .37,38,58$, 87, 89, 94, 98, 99, 191, 192.

- nitrate of soda, 2 S . iii. $37,38,39,40$, $41,42,43,48,50,51,58,76,77,79,80$, $81,82,84,85,86,88,89,94,97,98,99$, $191,192,193,194,195,203,204,205$, 206.
nitric acid, 2 S. iii. $47,48,50,51,52$, 96, 98, 191 .
\longrightarrow nitro-muriatic acid, 2 S. iii. 96.
oxide of iron, 2 S . iii. 36, 56.
pearlash, 2 S. iii. 96.
lxxvi

Manure, phosphate of ammonia, 2 S. iii. 58, $64,66,79,80,81,83,85,86,87,89,97$, 192, 193, 194, 195, 203, 204, 205, 206.

- phosphate of lime, $2 \mathrm{~S} . \mathrm{iii} .70,79,80$, $81,82,83,85,86,194,195$.
phosphate of soda, 2 S. iii. $37,38,39$, 89, 191, 192.
——phosphoric acid, 2 S. iii. 36, 47, 50, 51.
—— Poittevin's, 2 S. iii. 97, 99.
potash, 2 S. iii. 36.
rotten dung, 2 S . iii. $41,48,50,51$, 191, 192.
——sal ammoniac, 2 S. iii. 43, 48, 50, 51.
_- salts of ammonia, 2 S. iii. 57.
salt, common, 2 S. iii. $67,68,79,80$,
$81,83,85,86,87,89,191,192,193,194$, 195, 203, 204, $205,206$.
—— salt cake, 2 S. iii. 41, 42, 43, 48, 50, 51, 52.
- silicate of potash, 2 S . iii. $66,67,68$, $69,70,71,72,73,74,75,76,77,79,80$, 81.
—— soda, 2 S. iii. 36.
—— soot, 2 S. iii. $94,99$.
sulphate of ammonia, 2 S . iii. 58, 69, $74,79,80,81,84,85,86,89,97,191,192$, 193, 194, 195.
copper, 2 S. iii. 95.
iron, 2 S. iii. 37, 38, 43, $44,46,48,50,51,94,95,99$.
lime, 2 S. iii. 73, 78, 79, $80,81,82,84,85,86,193,194,195$.
magnesia, 2 S. iii. 37, 38, $42,75,79,80,81,84,85,86,88,89,191$, $192,193,194,195,203,204,205,206$.
potash. 2 S. iii. 75, 76, 78, $79,80,81,82,84,85,86,87,89,191,192$, 193, 194, 195.
soda, 2 S. iii. 41, 42, 66, $67,79,82,83,85,86,88,89,94,97,99$, 191, 192, 193, 194, 195.
sulphur, 2 S. iii. $37,38,46,48,50$, 51.
$\xrightarrow{51 .}$ sulphuret of potash, 2 S. iii. 96.
- sulphuric acid, 2 S . iii. $36,45,46,47$, $48,50,51,95,99,100$.
— superphosphate of lime, 2 S . iii. 88,89 , 91, 191, 192. urine, putrid, 2 S. iii. 44, 48, 50, 51.
—— urine, putrid, 2 S. in. $44,48,50,51$.
—— water, applied to a plant of heath, vii.

183.

Manvers, Earl, 2 S. ii. 520.
Maracoc, iii. 108, 109.
Maracot, iii. 108, 111.
Maracujas, iii. 112.
Maranta arundinacea, i. 275.

Maranta Galanga, i. 281. obliqua, i. 276.
Marcgraff, iii. 112, 113.
Maredoo of the Telingas, v. 117.
Margona paludosa, i. 283.
Marica californica, i. 310 ; vii. 41.
— Northiana, i. 308.
——paludosa, i. 309.

- pantherina, i. 308.
—_ plicata, i. 310.
- Sabini, vi. 75 ; figured, vi. 76.
- striata, i. 309.

Marin, white trompet, i. 351.
Marjoram, 2 S. iii. 52. knotted, 2 S. iii. 62.
Marmalade box, v. 101. guava, v. 86. natural, v. 97.
Maronnier, i. 140.
Marrubium pseudo-dictamnus, vii. 35.
Marryat, Joseph, Esq., v. 417.
—— Mrs., v. 417; 2 S. i. 534, 536, 540, 542, 543, 544, 545.
Marschall a Bieberstein, vii. 438.
Marsden, W., v. 86, 106, 110, 115, 117.
Marsh mallow, 2 S. iii. 62.
Marshall, vi. 220 ; ii. 263.
Marsland, Peter, Esq., notice of vines in pots sent by him, iii. 363.
notice of a Queen pine-apple exhibited by him, iv. 52.
account of a mode of treating pine plants so as to make them produce fruit within the year, iv. 392.
M'Arthur, Capt., vii. 68 .
Martin, 2 S. i. 7.
Martineav, Miss, 2 S. i. 534.
Martial, citations from his Epigrams, i. 147, 148.
set little value on the apricot, i. 152. esteemed the hard fleshed grape, i. 153.
 i. 336 .
his instructions noticed respecting the cultivation of sea-kale, i. 17.
Marvel of Peru, i. 88.
Massino, v. 464.
Masson, Mr. Francis, i. 235, 262, 321 ; ii. 38.
to the remarls relative
to the plants of mountainous districts at the
Cape of Good Hope, i. 235.
Masters, Mr. John Henry, vii. 63.
William, instructions for
raising varieties of Iris xiphioides, iii. 412.
Maбtixn, vi. 40.
Mathew, Patrick, Esq., vii. 300, 303.

Mathews, Mr. Andrew, description of the different varieties of endives cultivated in the garden of the Society, vi. 133.

- description of the different varieties of parsnips cultivated in the Society's garden, vi. 302. on the varieties of
cardoon, vii. 9 .
on the esculent egg
plant, vii. 82.
Henry Seymour, Esq., on making wine from the leaves of the claret grape, ii. 123.

Matico, 2 S. iii. 154.
Matricaria indica, iv. 331.
\longrightarrow sinensis, iv. 336.
Matthes, vi. 503.
Matthiolus, v. 29.
Matting, bass, to render waterproof, vi. 317.
Maurandya antirrhiniflora, 2 S. iii. 126.
Mauri, Professor, Orchis romana received from, 2 S. ii. 414.
Mawe, vi. 218.
Maxillaria aromatica, 2 S. iii. 116, 142.

- cruenta, 2 S. iii. 142.
——densa, 2 S. iii. 116.
—— tenuifolia, 2 S . iii. 116.
May-apple, iii. 108.
May, Mr. William, upon the cultivation of the carnation, 2 S. i. 162.
Maycock, iii. 108.
Mayeune, vii. 83.
Mayer, 2 S. i. 250.
Mayne, Captain Charles Otway, iv. 334 ; v. 151, 414 ; vi. 324.

Maytenus chilensis, 2 S. ii. 285.
Mayua, 2 S. iii. 153.
M•Calmont, Lyall, and Co., 2 S. ii. 389.
M‘Culloch, Dr. John, vi. 302, 303, 304, 305. 418.

M•Gillivray, S. Esq., 2 S. ii. 377.
McIntosh, Mr. Charles, 2 S. ii. 227, 232, 270, 276.
M'Murtrie, Mr. William, 2 S. i. 10. description of a pit and stoves heated by fire and steam jointly, vi. 440.

- Mrs., iii. 258.

M•Rae, vi. Preface; vi. 75, 85 ; vii. 52, 65, 73, 74, 75, 248.
Meade, Messrs., 2 S. ii. 381, 383.
Mealy insect (Coccus adonidum), hint for the destruction of, i. 297.
Mean, Mr. James, iv. 337, 345. orange, lemon, and citron trees, ii. 295.

Mean, Mr. James, on the preservation of fig trees in the winter, ii. 228.
account of his method of ripening grapes by means of dung-heat under a hotbed frame, ii. 330.
Mearns, Mr. John, account of a method of managing vines in a common grapery, iv. 246. his practice for obtaining cucumber plants for the winter crop, iv. 411. observations on horizontal espalier training, v. 44.
—. his description of a pit for growing early cucumbers, v. 493. late crop of raspberries, vii. 93.
upon the cultivation of the Bouvardia triphylla, vii. 501.
on forcing peaches and nectarines, 2 S. ii. 37.
Meconopsis crassifolia, 2S. i. 408.
heterophylla, 2 S. i. 408.
Medals, list of, presented by the Society, ii. App.
Medicago arborea, vii. 39, 42; 2 S. ii. 277.
Medlar, successfully used as a stock for pears, vi. 117. employed as a stock for pears, vi. 546 . two kinds of known to the Romans, i. 152.
——of Surinam, v. 102.
Medley, Mrs., 2 S. i. 527.
Melaleuca decussata, 2 S. ii. 249.
—— depressa, 2 S. ii. 249. ericifolia, 2 S. ii. 249. hypericifolia, 2 S. ii. 248. incana, 2 S. ii. 249. pubescehs, 2 S. ii. 249.
Melampodium montanum, 2 S. iii. 127.
Melangolo, iii. App. 16.
Melanthium eucomoides, i. 329.

- junceum, i. 330. spicatum, i. 330. unifforum, i. 330. viride, i. 330.
Melanzana, vii. 83.
Melastoma, v. 117.
Meोs arporv, vi. 35.
Melia Azedarach, vi. 38 ; vii. 41 ; 2 S. ii. 277.
Melianthus major, 2 S. ii. 271.
Melicoton, or yellow-fleshed peach, i. 155.
Melidora pellucida, account of, ï. 156.
Mellish, Mr., v. 539.
Melimala, or Sweet Apples, species of fruit
known amongst the Romans, i. 152.
Melocactus viviparus, 2 S. ii. 239.
Melon, v. 465.
\longrightarrow remarks on its culture, i. 217. lxxviii

Melon, rarely brought to that state of perfection which it might attain in this country, i. 221 .
_- manner of disposing the foliage, i. 223.
_its flavour improved by the application of oxygen air to its roots, i. 235.

- effects of high temperature on, iii. 460.
- early, culture of, iv. 187.
- instance of a change of character induced by the fertilization of a different sort, not as regards the progeny, but immediately on the growing fruit, v. 65, 69.
——cultivation of, v. 238.
——weight of fruit and relative surface of glass, v. 242.
-2 on their cultivation in the open air, v. 349.
mode of preparing cuttings for a second crop, figured, vi. 406.
- plan for obtaining a second crop, vi. 406.
and cucumbers, plan of growing in pits floored with slate, vi. 456.
- account of ten varieties of Persian, vi. 553.
- management of, on open borders, vii. 172.
varieties of, grown on open borders, vii. 174.
__ transplantation of, vii. 414.
on the degeneracy of the larger and finer varieties of Persian, vii. 584.
- to prevent the fruit from bursting, 2 S . i. 90 .
- remarks on their cultivation, $2 \mathrm{~S} . \mathrm{i}$. 323, 466.

161.

——frame, open, figured, 2 S. ii. 163.
——bed for, in the open air, figured, v. 350.
frames, method of heating them by
steam referred to, i. 151.

- frames, means of destroying the red spider in them, 2 S. ii. 126.
- frames, upon their economical use,

2 S. ii. 185.
pit for, iv. 533 ; figured, iv. 555.
and pine pit, v. 223.
pits in the Society's Garden, vi. 383.

- mode of heating by steam, 2 S .
i. 199 ; figured, 197.
- steam-pit for, v. 353.
- description of stoves for, vi. 505.

Melon, varieties of : Casween, vi. 559.
——Dampsha, iv. 211 ; 2 S. i. 326.
—— Daree, vi. 557.

- Geree, vi. 556.

INDEX.

Melon, Germek, large, vi. 558. small, vi. 559.
of Goorgab, vi. 561.
Green-fleshed, 2 S. iii. 63.
Egyptian, iv. 514.
Hoosainee, 2 S. i. 324.
Housainee, Green, vi. 560.
Striped, vi. $560 ; 2$ S. i.
137, 325, 468.
Ispahan, 2 S. i. 325 ; 2 S. ii. 164.
Italian, Green-fleshed, iv. 319.
of Keiseng, vi. 555.
Kiskaduo, vi. 58.
Kurchaing, vi. 561.
Levant, iv. 514.
Montagu Cantaloup, iv. 318.
Netted Succado, v. 65, 69.
Ostrich-egg, vi. 557.
Persian, upon their cultivation, 2 S .
i. 85 .

- of Seen, vi. 558.

Sweet, of Ispahan, iii. 116 ; vii. 586.
-_ Smooth Scarlet-fleshed, iv. 320.
Talibee Germek, vi. 560.
Valentia, iii. 116.
Water, vi. 57.
iii. 460 .
——Winter, figured, iii. 116.
Melongena, vii. 83.
——— incurva, vii. 85 .
ovata, vii. 85 .

- tereta, vii. 85.

Mélongène, vii. 83.
——rouge à fruit longue, vii. 85 . rond, vii. 85.
Melville, Hon. J. T. Leslie, seeds received from, 2 S. ii. 416.
Mends, Sir Robert, iv. Pref.
Menonville, M. Thery, i. 85.
Mentha blanda, vi. 275, 276.
Menyanthes exaltata, iii. 25. indica, iii. 26,34 .
nymphoides, iii. 25 ; iv. 399.
ovata, iii. 25.
sarmentosa, iii. 25.
trachysperma, iii. 26.
trifoliata, iii. 25 ; iv. 396, 399.
Menzies, Arcimbald, Esq., vii. 509, 510.
Menziesia polifolia, vi. 288 ; 2 S. ii. 226. nana, vi. 289. latifolia, vi. 289. stricta, vi. 289. vera, vi. 288.
Mérangène, vii. 83.
Mencer, Col., vii. 310.
Mereury, English, 2 S. iii. 52, 61.

Meredew, Mr. George, vi. 539.
___ account of his mode of forcing strawberries, vi. 539.
Merendera, i. App. 20.
Mergimêts, vi. 55.
Meringeane, vii. 83.
Meriania majalis, 2 S, iii. 157.
Merisiers, 2 S. i. 249.
Merles, i. 155.
Merlet, i. 226 ; ii. 161.
——— his description of two varieties of pears noticed, i. 226.
Mesembryanthemum, 2 S. ii. 270. on its cultivation, v. 274. pinnatifidum, vii. 42. glabrum, vii. 42. uncinatum, vii. 33.
Mespilus floribunda, vii. 230. of, as a fruit-bearing tree, iii. 299. when imported into Eng.
land, iii. 301. figured, iii. 299.
montana, vii. 231.
pyrifolia, vii. 229.
xanthocarpa, vii. 232.
Mesua bracteata, vii. 531.
Metcalf, Rev. Mr., iii. 328.
apples exhibited by, iii. 314.

Meteorological diagram, Mr. Gorrie's, for the vegetating periods of 1823,1824 , and 1825 , vi. 434 ; from observations in the Garden of the Society, for 1826 , vii. 128 ; 1827 , vii. 347 ; 1828, 2 S. i. 111 ; 1829 , 2 S. i. 171 ; 1830, 2 S. i. 322 ; 1831, 2 S. i. 343 ; 1832, 2 S. i. 419 ; 1833, 2 S. i. 508 ; 1834, 2 S. ii. 1 ; 1835,2 S. ii. $73 ; 1836,2$ S. ii. $129 ; 1837$, 2 S. ii. 189 ; 1838, 2 S. ii. 317 ; 1839 , 2 S. ii. $481 ; 1840,2$ S. ii. $529 ; 1841,2$ S. iii. 1; 1842, 2 S. iii. 163 ; 1843,2 S. iii. 211.

Meteorological instruments used in the Society's Garden, vii. 97.
Meteorological Journal, kept at the Garden of the Society during the year 1825, vi. 398 ; 1826 , vii. 102 ; 1827 , vii. 346 ; 1828, 2 S. i. $111 ; 1829$, 2 S. i. $171 ; 1830$, 2 S. i. 297; 1831,2 S. i. $343 ; 1832,2$ S. i. 419 ; 1833, 2 S. i. 483 ; 1834, 2 S ii. 1; 1835, 2 S. ii. $73 ; 1836,2$ S. ii. $129 ; 1837,2$ S. ii. $189 ; 1838,2$ S. ii. $317 ; 1839,2$ S. ii. 481; 1840, 2S. ii. $529 ; 1841,2$ S. iii. 1 ; 1842, 2 S. iii. 163 ; 1843, 2 S. iii. 211.
Meteorological observations, Journal of, kept in the Garden of the Horticultural Society at Chiswick, plan detailed, vii. 97 .

Meteorological observations at Mussooree, 2 S . i. 464.

Methonica gloriosa, i. 331.
-_ simplex, i. 331.
M. - superba, iii. 21.

Mice attracted and rendered stupid by the bulbs of Gladioleæ, i. 317.

- to prevent their depredations on seed, ii. 121 .

Dutch, tubers of Lathyrus tuberosus, ii. 359.

Michatex, ii. 95 ; iii. 201 ; vi. 37.
Michelia Champacca, how propagated for dwarfing by the Chinese, iv. 229.
Michelson, Mr., ii. 162, 163.
Miconia pichinchensis, 2 S. iii. 155.
Micoud, Baroness De, vi. 243, 246.
Microstylis macrostachya. 2 S. iii. 123.
Middlemist, Mr., vii. 551.
Messrs., i. 313.
Middleton, Mr. Charles, vii. 155.
$-L o r d$, vi. 505 ; vii. 470 ; 2 S. i. 18.
Miers, vi. 283, 296.
Mignonette, account of a method of raising in pots in succession through the year, ii. 372 . d'Egypte, iii. 178.
tree, observations on, and account of its cultivation, iii. 178.
Mikania caudata, 2 S. iii. 161.

- corymbulosa, 2 S. iii. 155.
- leiostachva, 2 S. iii. 161.
—— rufa, 2S. iii. 158.
- scandens, vii. 250.

Mildew, v. 175.
on the prevention of, in particular cases, ii. 82.
on cucumbers, ii. 284.
-_ on the peach, ii. 88.
on peas, ii. 87.
prevented by irrigation, 2 S. i. 340. on wheat, ii. 86, 180. 183.
Milla biffora, 2 S. ii. 384, 385 ; 2 S. iii. 118.
Miller, Mr., iv. 509.
Mr. Jons. vi. 573 ; vii. 24, 153, 154, $155,158,232,238,244 ; 2$ S. i. $7,14,25$, 30, 200, 203, 204.

Mr. Joseph, vi. 173.
Philip, i. 16, 49, 89, 110, 123,
$124,139,261,272,278.302,304,331$, $335,340,350,357$; ii. $60,238,276$; ;iii. 94. 108, 117. 161. 178. 257, 344, 354, 377, $379,416,417.418,441,443$; iv. 11, 282, $285,330,331,383$; v. 36, 38, 39, 285, 287, 525, 526, 535, 536, 539, 541, 546, 548 ; vi. 214 ; vii. $131,272.423,424,437$, 441, 442, 444, 451, 453, 454, 458, 529 ; 2 S. i. 29, 43, 59, $70 ; 2$ S. ii. 459.

Miller, Mr. Philip, his writings noticed respecting the sea-kale, i. 16; the Tuberose, i. 49 ; illiberality of M. de la Cour, i. 49; the planting of apple trees, i. 64; vineyards of Italy, i. 110 ; crocus, i. 131 ; cypripediums, i. 302; directions for the culture of the Hermodactylus tuberosus incorrect, i. 304 ; introduced the Methonica gloriosa, i. 331 ; his account of a disease in the roots of certain plants, i. 357, 358.
Mills, Mr. George, 2 S. i. 534, 535, 540, 543, 546.
account of a method of growing cucumbers, iii. 146.

James, plan of a hot-wall exhibited by him, iv. 139 .
Milne, Mr. John, vi. 190.
Тномая, iv. 260,261 ; v. 70.
—— Tномаs, description of the hollow leek, with notices respecting the genus Allium, grown in South Wales; with observations on cottage gardens, iii. 416.
by him, iv. 258.
on the cultivation of the
English cranberry (Oxycoccus palustris) in dry beds, v. 276.
Milner, Dr., i. 272, 277, 278, 340, 353. notice of some rare plants cultivated by him, i. 278.
—— Lady, iii. 140.

- Sir William, i. 277.

Milton, Lord, iv. 31; vi. 449.
Mimosa latispinosa, vii. 46.

- polydactyla, vi. 272.
pudica. 2 S. iii. 115.
verticillata, i. 25.
Mimulus cardinalis, note on, 2 S . ii. 70; figured, $i b$.
glutinosa, vii. 35.
- parviflorus, vi. 294.

Mint, experiment with, v. 242.

- spear, 2 S. iii. 52, 62.

Mineti, Father, asserted to have first brought the tuberose from the East Indies, i. 46.
Missouri gooseberry, vii. 243.
Mistletoe, analysis of, 2 S. iii. 53.
Mitchel, Capt., vii. 499.
Mitcheli, Major Sir Thomas, plant received from, 2 S. ii. 418, 419.
Mitchella repens, vi. 405.
Mitcheson, Mr. William, on the cultivation of the Passiffora quadrangularis, vi. 388.
Mitigui, vii. 247.
Models, wax, notice of those presented by His Royal Highness the Grand Duke of Suxe Weimar, iv. 51.
lxxx

INDEX.

Moffat, Mr. Thomas, vi. 198. obtaining young potatoes, iii. 123 . iii. 313.

Moisture, atmospheric, extremes of, vi. 3. in the tropics, vi. 17. and heat, their effects on vegetation at different periods of the year, vi. 432.
of soils, influence of saline manures on the retention of, 2 S . iii. 90 .
Molina, iv. 54 ; v. 250,254 ; vi. 92.
Molle, 2 S. iii. 149.
Molle wah, 2 S. iii. 239.
Momordica charantia, 2 S. iii. 241.
_Elaterium, vi. 51 ; vii. 42.
Monardus, iii. 111.
Monce, Sir Charles Miles Lambert, iv. 403, 404; 2 S. ii. 227, 279, 280, 295.
obser-
vations on the fruit of fig trees, v. 163.
on the
effects produced by ringing upon fig trees, with observations on their cultivation and propagation, v. 170.
tions for removing worms from the roots of plants grown in pots or tubs, vi. 113.
for transplanting large forest trees vii. 294.
the cultivation of the fig tree, 2 S. i. 395 .
Monkey apple, v. 446, 463.

- bread, v. 444.

Monnina nemorosa, 2 S. iii. 154.
Monocotyledons, one of the two great natural divisions of plants, i. 263.
Monopsis conspicua, figured, ii. 37. on its cultivation, ii. 37.
inconspicua, ii. 40.
Monpe, v. 101.
Montagu, Lord, iv. 207, 210, 318; v. 69.
... apples exhibited from his garden,
iii. 312.
from her Letters respecting the pine-apple, i. 150 .

Montague, George, Esq., vi. 188.
Montoomery, Mr. Duncan, on the caltivation of an early and a late variety of the pear on the same tree, vi. 367.
Mont Perdu, its temperature and vegetation, i. App. 10.
Montreuil, management of peach trees at, i. 6, App. 10.

Montrose, Duke of, vi. 367.
Moorcraft, Mr., 2 S. i. 473.
Moore, Edward, Esq., vi. 290.
Morea barbigera, i. 306.

- carulea, i. 312.
- chinensis, i. 313.
- ciliata γ, i. 306.
- collina, i. 307, 308.
- flexuosa, i. 314.
—_ iridioides, i. 307.
- longiflora, i. 305.
- lugens, i. 312.
- melaleuca, i. 312.
- Northiana, i. 308.
- odora, i. 306.
- palmifolia, i. 310.
- pavonia, i. 309.
- Sisyrinchium, i. 304.
- sordescens, i. 306.
- spatha, i. 306, 307.
- spathacea, i. 313.
- sulcata, i. 309.
- vaginata, i. 308.
- tricolor, i. 306. tristis, i. 306.
More, Robert, Esq., i. 306.
- Sir Thomas, 2 S. i. 67.

Moreat, General, iii. 257.
Moredun, near Edinburgh, account of holly hedges at, vii. 199.
Morelia, vegetation of, 2 S. iii. 122.
Morgan, Mr. Willian, iii. 174, 312; v. 9, 10, 14, 24.
ferent sorts of winter greens, and of their cultivation, ii. 307.
on the cultivation of strawberries in forcing-houses during the winter and spring months, ii. 374.
account of the species and varieties of beets cultivated for use, iii. 272.
apples exhibited by, iii. $312,316$.
notices of fruits exhibited by him, iv. 206, 208.
Morinda citrifolia, v. 117.
Morison, i. 337; ii. 274, 276.
Mormodes lineatum, 2 S. iii. 141.
Morphology, as regards fruit trees, ii. 364.
Morren, Professor, 2 S. ii. 299, 302, 30ā, 306; 2 S. iii. 29.
Morris, Mr., vi. 410.
Morrison, Dr., information from, respecting the distorting propensities of the Chinese, iv. 227, 228, note.

Morrison, Major, 2 S. i. 32.

INDEX.

Mortar dissolved by contact with the roots of plants, iv. 398.
Morus alba, vi. 496 ; 2 S. ii. 244, 277.
——canadensis, vi. 496.
-multicaulis, 2 S. iii. 140.
Mosley, Sir Oswald, Bart., 2 S. ii. 227, 263 ; 2 S. iii. 35.
on the Aphis lanigera, or American Blight, with an account of various experiments for its destruction on apple trees, iii. 54.
description of and observations on the Coccus laricis, or Mealy Insect, which infests the larch, iii. 170.

Moss, cultivation of plants in, vi. 437.

- employed as a mulching in pine-apple pits, 2 S. i. 389.
Motteux, John, Esq., vii. 176.
Mou-chao-yao, vi. 485.
Mountains, high, observations on the vegetation of, i. App. 15.
Mountjoy, Mr., 2 S. i. 546.
Mountnorris, Earl of, iii. 325 ; vi. 480 ; vii. 95.

316.

apples sent by, iii.
Moutan, vi. 468.
——Pae, vi. 483.
Tsù, vi. 483.
-Wong, vi. 483.

$$
\text { Fa, vi. } 484 .
$$

Moutarde blanche, v. 35.
Mowbray, Mr. William, on the cultivation of Mesembryanthemums, v. 274.
floras, vii. 95.
Moxon, John, Esq., large gourd presented by him, iii. 364.
Muclantes, Lucinies, vi. 45.
Mugliston, Mr. George, vi. 144.
pparatus description of an 502.

Muhlenberg, iv. 444.
Muizen met Staarten, ii. 359.
Mulberry, capable of being induced to early fruitfulness, i. 5.
i. 152.
——on the culture of the, ii. $68,91$.
ii. 128 experiments on, with liquid manure,
ii. 128.
ii. 217 propagation of, from cuttings, 2 S .

i. 217

 to, i. 5.Mulberry trees, observations on the advantages of grafting them, i. 60 .
ii. 114.
——mode of pruning and training, when trained to a wall in a cold climate, iii. 63.

Hall, iii. 394.
Mule birds, iv. 371.
Mules, iv. 18.
Mule plants, v. 292.
natural, i. 364.
Mundy, Capt. George, iv. 307, 313.
Munoz, Matfield, and Co., 2 S. ii. 379, 394.
Munro, Mr. Donald, 2 S. i. 530, 531 ; 2 S. ii. 437. account of the cultivation of Chinese Chrysanthemums in the Garden of the Horticultural Society, vi. 360. upon the varieties of the pine apple cultivated in the Garden of the Society, 2 S. i. 1.
upon Chinese Chrys-
anthemums, 2 S. i. 392.
Munter, 2 S. iii. 108, 109, 111.
Muraltia mixta, 2 S. ii. 271.
Murcian cabbage, vi. 567.
Muriate of ammonia, 2 S. iii. 37, 38, 43, 68, $69,78,79,80,81,83,85,86,87,89,191$, 192, 193, 194, 195 ; 2 S. iii. 204, 205, 206.

- of lime, 2 S . iii. $69,87,89,90,94,99$, 191, 192, 193.
——of potash, 2 S. iii. $70,71,79,80,81$, $82,83,85,86,88,89,191,192,193,194$, 195.

Muriatic acid, 2 S. iii. 47, 48, 50, 51, 96, 98.
Murray, Eatl of, 2 S. i. 274.
——General, vi. 204.
———Mr., ii. 168.
——Mr. Stewart, 2 S. ii. 227, 232. method of cultivating
the North American and other hardy Orchids, vi. 403.

Willam, Esq., 2 S. iii. 35.
Professor, iv. 489.
Murraya panieulata, vi. 269.
Murucua, v. 103.
Musa coccinea, i. 272.

- paradisiaca, v. 465.
_ sapientum, iv. 137 ; v. 465.
Mushroom, ii. 403.
cannot be generated by decaying substances, ii. 83.
$\xrightarrow{-}$ reproductive powers of, ii. 84.
on a method of cultivating it, iv.

305.

INDEX.

Mushrooms, account of a method of growing under glass, ii. 212. them in houses, ii. 336 .
___ management of, in a cellar, ii. 344. on the cultivation of, in exhausted cucumber or melon beds, iii. 6 . cultivation of, iv. 472.
Mushroom-house, plan of Mr. Oldaker's, ii. 336.

Mustard, 2 S. iii. 52, 62.
experiments with, in steeping the seeds, 2 S. iii. 206. white, v. 35.
Mutisia Clematis, 2 S. iii. 155. grandiflora, 2 S. iii. 158.
Myagrum sativum, v. 35.
Myodium araniferum, i. 289.
Myrica macrocarpa, 2 S. iii. 149.

- mollis, 2 S. iii. 157.

Myrobalanus, 2 S. iii. 139.
Myrobroma fragrans, i. 295.
its treatment, i. 296, 297.
Myrsine africana, 2 S. ii. 269.
Myrtle, inured to the climate of Devonshire, i. 176.
___ broad-leaved, vii. 36.
Myrtus communis, 2 S. ii. 237, 244, 277, 285.
— montana, 2 S. iii. 131.
oxycoccoides, 2 S. iii. 158.

N.

Nails for fruit trees, figured, iv. 418.
Nairn, Mr. John, vi. 169.
graf. account of a method of grafting orange and lemon trees so as to produce dwarf fruit-bearing trees, iii. 91.
account of a frame with rising lights for growing cucumbers and melons, iii. 130.

Azalea indica, iv. 132.
bited by, v. 398.
Scarlet Strawberry exhi-
. notice of grafted Cacti exhibited by, v. 485.
Nairne, Capt., iv. Preface; vi. 323, 327, 333, 337.
Naming of Hybrids, iii. 195 ; iv. 260.
Nandina domestica, 2 S. ii. 259.
Nangka (Jack Fruit), v. 108, 109.
Napier and Chandler, Messrs., i. 291.
Narcissus, vi. 439.
—_albus, i. 348.
Amancaes, i. 342.

Narcissus amboinensis, i. 337.
-_ americanus, i. 339.
—— amplus, i. 351.
—— angustifolius, i. 365.
—— bicolor, i. 346.
biflorus, i. 364 .
bifrons a, i. 359.
—— β, i. 359.
———bulbocodium, i. 350, 351, App. 20.
Butter and Eggs, i. 351.
calathinus, i. $353,356$. α, i. 355,356 .
——candidissimus, i. 348.
cernuus, i. 349, 353.
compressus, i. 359.
conspicuus, i. 355.
cothurnalis, i. 364.
crenulatus, i. 363.
elatior, i. 355.
exiguus, i. 343.
β Goveni, i. 351.
grandiflorus, i. 344.
hispanicus, i. 344.
incomparabilis, i. 351.
inflatus, i. 350 .
infundibulum, i. 356.
italicus, i. 360.
Jonquilla, i. 357.
lætus, i. 356.
latifolius, i. 351.
lobatus, i. 355.
lobulatus, i. 350.
major, i. 344. β, i. 344. r, i. 345.
———minor, i. 343.
——moschatus a, i. 349 . δ, i. 348.
nutans, i. 354.
odorus, i. 351, 355, 356.
orientalis, i. 361.
a, i. 359.
paper-white, i. 360
papyraceus, i. 360.
patellaris, i. 366.
poculiformis, i. 352.
poeticus, i. 365.
Primrose Peerless, i. 364.
propinquus, i. 344.
pseudo-narcissus α, i. 347. pumilus, i. 343.
radiiflorus, i. $365,366$.
(Corbularia) serotinus, 2 S. ii. 278.
serratus β, i. 347.
Sibthorpii, i. 345.
sylvestris, i. 347.

INDEX.

Narcissus Tazetta, i. 359, 362.
—— tenuifolius, i. 349.
—— tenuior, i. 363.
—— tereticaulis, i. 359.
——— tortuosus, i. 349.
———Trewianus, i. 363.
——— triandrus, i. 353.
\longrightarrow v. luteus, i. 354.
trilobus, i. 354, 356. tubæflorus, i. 346. uniflorus, i. 365. zeylanicus, i. 342.
N α ค $\mathrm{J}_{\mathrm{n}} \mathrm{K}$ of Diosc., vi. 50.
Nasturtium minus, vi. 586. officinale, iv. 538. small, vi. 586.
Natural Marmalade, v. 97.
Nauclea Adina, vi. 264.
Navarro, Mr. Lewie, iii. 320.
iii. 317.

Navet, v. 26, 32.

- black, v. 33.
- jaune, v. 25.
- rond, v. 27.
- de Suède, v. 25.
- white, v. 32.
- yellow, v . 32.

Navette, v. 22, 29, 30, 31, 32, 42.
—— Alsace, v. 30.
-_ annuelle, v. 33.

- of Dauphiny, v. 30, 31.
—— d'Eté, v. 33, 35.
—— d'Hiver, v. 31.
-_ de Mai, v. 33.
- Summer, v. 32.

Winter, v. 32.
Navew, v. 7, 24, 31.
Neame, John Rigden, Esq., plan for preventing the drip in glass-houses, figured, vi. 121.

Neave, Sir Thomas, vi. 118.
Nectarines, on forcing, 2 S. ii. 37.
ii. 245 .
account of a method of forcing,
——on the house management of, v. 57 . by dung-heat, v. 218.
Nectarine, the raising an early one, an object for which the Horticultural Society proposed to give a premium, i. App. 2.
461.
effects of high temperature on, iii. i. 394 raised from the stone of a peach, vi. 394.
and peach on the same branch, ii. 59 ; figured, i. 103. lxxxiv

Nectarine, Aiton's Seedling, iv. 211; v. 554.
Anderdon's, v. 554.
Aromatic, v. 551.
Boston, vi. 394.
Brugnon, v. 547, 554. Musqué, v. 547, 548.
Red at the Stone, v. 551.
Violet Musqué, v. 547.
Cherry, v. 552.
Claremont, v. 551.
Cowdray White, v. 554.
Desprez, v. 548.
Downton, v. 389, 554.
Duc de Tello, v. 551.
Early Pavie, v. 554.
Violet, v. 552.
Elruge, ii. 140.

- Elruge, i. common, v. 551.
—— of Miller, v. 541.
—— Emerton's New White, v. 548.
Fairchild's, v. 548.
Flarly, v. 548.
Flanders, v. 548.
Genoa, v. 551.
G.late, v. 551.

Golden, v. 551.
Grosse Violette, v. 552.
Hunt's Hâtive, v. 552.
Hunt's Early Tawny, v. 542.
Imperatrice, 2 S. ii. $47 ; 2$ S. iii. 63.
Italian, v. 554.
Jaune Lisse, v. 548.
Late Green, v. 552.
Lisse Jaune, v. 548.
Lucomb's Black, v. 541.
Seedling, v. 541.
Murry, v. 552.
Newfoundland, v. 552.
Newington, ii. 141 ; v. 541.
Black, v. 541.
Early, v. 541.
Late, v. 541.
Scarlet, v. 541.
Ord's, v. 554.
Pêche Cérise, v. 552.
Noix, v. 552.
Peterborough, v. 552.
Pitmaston Orange, v. 544 ; figured,
iv. 232.

Princess Royal, v. 541.
Rogers's Seedling, v. 541.
Roman, v. 548.
Red, ii. 141 ; v. 548.
v. 554.

- Roussanne, v. 548.

Royal Chair d'Or, v. 552.

INDEX.

Nectarine, St. Omer's, v. 541.
Scarlet, v. 552.
Temple's, v. 554.
Tawny, v. 551.
Hunt's Early, v. 542.
Tu Tellier's, v. 551.
Vermash, v. 548, 552.
True, v. 548.
Violet, v. 552.
Early, v. 552.
Violette de Courson, v. 552.
Grosse, v. 552.
Hâtive, v. 552. Grosse, v. 552. Petite, v. 552.
Marbrée, v. 552.
Panachée, v. 552.
très Tardive, v. 552.
Tardive, v. 552.
White, v. 548.
iv. 210.
grown at Cowdray Lodge,

$$
\begin{aligned}
& \text { New, v. } 548 . \\
& \text { Old, v. } 548 .
\end{aligned}
$$

Nectarine tree, luxuriant shoots of, i. 194.
preservation of its early foliage,
2 S. ii. 180.
description of a large, v. 523.
period in which it was grown
in the same pot, iv. 441.
Nee, vi. 273; 2 S. ii. 223.
Nees von Esenbeck, Professor, 2 S. ii. 409.
Neill, Dr., iii. 444 ; iv. 456, 457, 458, 462 ; vi. $302,303,512,513$; vii. 10 ; 2 S. ii. 61 .

Nelis, M., iv. 276 ; v. 408.
Nelumbiums, their cultivation, vi. 535.
Nelumbium caspicum, vi. 538.
— luteum, iii. 33,36 ; vi. 537.
286.
speciosum, iii. 32 ; vi. 535 ; vii.
on its cultivation, vi.
422.

Nella Woolymera (Telinga), v. 120.
Nemophila insignis, 2 S. i. 479.
Neottia australis β, vi. 85 .
-_ cernua, vi. 405.
——minor, i. 291.
__ orchioides, i. 292.
—— pubescens, vi. 405.
_- repens, i. 301 ; vi. 405.

- speciosa, i. 291.
- spiralis, i. 291 ; vi. 405.

Nepean, Sir Evan, iv. 516, 517.
Nepenthes distillatoria, vi. 21.
Nephelium lappaceum, v. 115.
Nerine, on the culture of the bulbs of that genus, iv. 176.

Nerine curvifolia, iv. 179.
—— lucida, iv. 184.
—— rosea, iv. 179.

- undulata, iv. 179.
venusta, iv. 179.
Nerium oleander, 2 S. ii. 244, 278.
Nesbitt, Capt., vii. 524.
- Mrs. Hamilton, vi. 437 ; 2 S. ii. 287.

Nestler, M., v. 2, 33, 34.
Nettle, i. App. 21.
Nettle tree, vi. 35.
Néty of the negroes, v. 444.
Neuffer, Dr., 2 S. ii. 309.
Newcastle Horticultural Society, 2 S. ii. 445.
Newman, Mr., vi. 4.
——Mr. John, vii. 97.
—— on the cultivation of the
Arachis hypogea, v. 372.
New Zealand spinach (Tetragonia expansa), on its cultivation, v. 282.
Nicol, Mr., ii. 264 ; vi. 220.
Nicotiana glauca, 2 S. ii. 285.
——_ nana, vi. 92.
——_repanda, vi. 91.
Nieuville, number of perennial plants cultivated there, i. 19.
Night-soil, how formed into a manure by the Chinese, v. 52.
Nimmo, J., Esq., plant received from, 2 S. ii. 419.

Niobe cordifolia, i. 335.
Nitrate of potash, 2 S. iii. 37, 38, 58, 87, 89, 94, 98, 99, 191, 192.
—— soda, 2 S. iii. $37,38,39,40,41,42$, $43,48,50,51,58,76,77,79,80,81,82$, $84,85,86,88,89,94,97,98,99,192,193$, 194, 195, 203, 204, 205, 206.
Nitric acid, 2 S. iii. 47, 48, 50, 51, 52, 96, 98, 191.

Nitro-muriatic acid, 2 S. iii. 96, 99.
Nitta, v. 445.
Niven, Mr. James, i. 262, 331.
Mr. Ninian, 2 S. ii. 227, 235, 282.
Nivenia filamentosa, i. 311.
stylosa, i. 311.
Noehden, Dr., iii. 150 ; iv. 82, 121, 557.
——_ on the watering of frozen branches of peach and nectarine trees, ii. 13. - on a method of improving the productiveness of fruit-trees, ii. 262.
farther observations on the method of ringing fruit trees, ii. 382.
observations on the expedi-
ency of giving to horticulture a scientific form, by arranging its objects under a system, ii. 290.

Noehden, Dr., on ringing fruit trees, translated from the German, ii. App. 1.
\square on a mode of training fruit trees, described by M. Noîsette, ii. App. 8.
on a successful mode of treating fruit trees, practised by Mr. Charles Harrison, iii. 37.
on some modes of continuing a supply of young potatoes through the year, iii. 48.
the pibst piccont of the original tree the Ribston Pippin, laid before the Society by him, iii. 140 .
account of the different varieties of the genus Citrus cultivated in Italy, according to Dr. Sickler's statement, iui. App. 1. tion of Hempel's 'Ma or iv. 557.

Norfolk, Duke of, vii. 265 ; 2 S. i. 541 ; 2 S. ii. 227, 233.

Nohud, vi. 54.
Noisette, M., ii. 385, App. 8, 9 ; v. 131, 407, 537,544 ; vi. 357 ; vii. 165 ; 2 S. i. 63,71 , 73, 230, 279, 292, 331.
mode of training fruit trees described by him, ii. App. 8.

- apples sent by him, iii. 317. notice respecting stocks for apple trees, iv. 411.
Nolana paradoxa, vi. 296.
—— tenella, vii. 252.
Noronha, a Spanish botanist, ii. 156.
North, Mr., vii. 265.
Hon. Mrs., i. 308.
North Devon Horticultural Society, 2S. ii. 445.
Northumberland, Duke of, vii. 17; 2 S. i. 67, 540.
Nugent, Mr., 2 S. ii. 220.
Nuphar advena, iii. 31.
—— Kalmiana, iii. 31.
—— lutea, iii. 30, 31.
—— minima, iii. 30, 31.
Nuts, method of keeping, ii. 399.
- description of a mode of preserving them, vi. 546 .
_- Common or Hazel, well known to the Romans, i. 153.
- Cosford, ii. 402.

Frizzled Filbert, v. 263.
Hazel, ii. 185.
Nuttall, iv. 445 ; vi. $290,294,460$; 2 S. ii. 125, 239.
Nuttallia digitata, vi. 405.
\longrightarrow pedata, vi. 405.
Nymphea alba, iii. 27 ; vi. 537. kxxyi

Nymphæa cærulea, iii. 29, 34, 35 ; vii. 286.
——Kalmiana, iii. 31.
——— Lotus, iii. 28, 34.
-_ lutea, vi. 537.
—— nitida, iii. 27, 33.
odorata, iii. 27 ; vi. 537 ; vii. 286. var. minor, iii. 27.
pubescens, iii. 28, 34.
pygmæa, iii. 28, 30.
rubra, iii. 29, 34.
—upon its treatment, vii. 285. var. rosea, iii. 29, 34. versicolor, iii. 29, 34 . stellata, iii. 30, 34, 35.

$$
0 .
$$

Oak, i. App. 17 ; 2 S. ii. 226, 239, 244, 262, 279.

- on the quality of its timber produced in Great Britain, 2 S. i. 336.
-_ timber from old buildings, 2 S. i. 337.
——wood, analysis of, 2 S. iii. 55.
_- Durmast, 2 S. i. 336.
- Turkey, 2 S. i. 337.

Oats, experiments with, in steeping the seeds, 2 S. iil. 205.
Oaxaca, plants collected by Mr. Hartweg in the state of, $2 \mathrm{~S} . \mathrm{iii} .133$.

- vegetation of, 2 S. iii. 126.

Ocote chino, 2 S. iii. 122.
Ocymum febrifugum, vi. 83.
Odontoglossum crispum, 2 S. iii. 160. grande, 2 S. iii. 136, 145. nebulosum, 2 S. iii. 127. pardinum, 2 S. iii. 151. pygmæum, 2S. iii. 135. Rossii, 2 S. iii. 136.
Edera prolifera, 2 S. ii. 271.
Enothera acaulis, vi. 98.
———biennis, vi. 579.
—— hybrid, iv. 45.
—— purpurea, vi. 94.
——Romanzovii, vi. 94. simuata, 2 S. iii. 154.
speciosa, vi. 293.
tenella, vi. 94.
triloba, vi. 293.
yellow-rooted, vi. 580.
Ogheghe, v. 91.
Ognon Blane de Florence, iii. 376.
Gros, iii. 371.
Hâtif, iii. 371.
—— d'Egypte, iii. 378, 379.

- d'Espagne, iii. 372.
- Jaune, iii. 374.

INDEX.

Ognon Pyriforme, iii. 376.

- Rouge Foncé, iii. 374. Pale, iii. 374.
O'Gorman, Mr., 2 S. ii. 380, 384; 2 S. iii. 117.

Ogllby, William, Esq., 2 S. iii. 35.
Ogle, Rev. John Saville, vii. 297.
Oily grain, Chinese, 2 S. iii. 239, 241.
Oil plants, Cruciferous, relative produce of, v. 41.

Oka, 2 S. iii. 153.
Olea europæa, 2 S. ii. 244, 278.
_- var. buxifolia, 2 S. ii. 278.

- fragrans, 2 S. ii. 270, 278.

Oldaker, Mr. Isaac, ii. 212; iii. 165; iv. 170 ; vì. 150 ; 2 S. i. 11, 26, 29, 30, 246.
account of the method of growing mushrooms in houses, ii. 336 . apples exhibited by, iii. 313. a new variety of radish imported by him from Russia, iii. 115. on the cultivation of succory, iii. 138.
on the treatment of the Neapolitan violets, so as to make them produce a succession of flowers through the winter, iv. 109.
of treating the Rosa Banksiæ, iv. 173.
notice of fruits exhibited by him, iv. 205, 211, 212, 213. on the management of the Roseberry Strawberry, in order to make it produce fruit through the late summer, autumn, and winter months, iv. 234.
him, iv 515,516 grapes exhibited by notice of a pine apple exhibited by, v. 265.
399.

Oleander, vii. 35.
Olive, iii. App. 5; 2 S. ii. 244, 270, 278.
——Wild, vi. 36.
Oncidium ampliatum, 2 S. iii. 142.
——ascendens, 2 S. iii. 142.
——bicallosum, 2 S. iii. 145.
carthaginense, i. 295.
Cavendishianum, 2 S. iii. 140, 142.
Lanceanum, figured, 2 S. ii. 100.
leucochilum, 2 S. iii. 136, 140.
macrantherum, 2 S. iii. 142.
nubigenum, 2 S. ii. 239.
ornithorhynchum, 2 S. iii. 128, 142.
pergameneum, 2 S. iii. 145.
pubes, vii. 71.

Oncidium undulatum, i. 295.
—— Wentworthianum, 2 S. iii. 142.
Onions, 2 S . iii. 60, 245.
——o on the management of, i. 157.
——account and description of the different varieties of, iii. 369 .
——cultivation of, iii. 403; iv. 138.

- modes of growing them of a large size, iv. $130,138$.
- on the use of charcoal dust as a topdressing for, vi. 29.
- directions for growing, so as to pro-
duce bulbs in clusters at an early season, vi. 115.
—— the grub in, prevented, vii. 93.
-_Amiens, iii. 374.
——Blanc de Florence, iv. 410.
——Blood-red, iii. 374.
———Bulb-bearing, iii. 370, 378, 419.
__Ciboule, iii. 377.
——Cambridge, iii. 372.
——Deptford, iii. 373.
—— Dutch, iii. 373. Blood-red, iii. 375.
——Early Lisbon, iii. 376.
-_Early Silver-skinned, iii. 371.
——Egyptian, iii. 306.
___ Essex, iii. 373.
— Evesham, iii. 372.
___ Flanders, iii. 373.
—— French Blood-red, iii. 374.
Globe, iii. 373.
James's Keeping, iii. 374.
Lisbon, iii. 376.
Pale Red, iii. 374.
Portugal, iii. 372.
-__ on the cultivation and the varieties of, iii. 67.
- Potato, iii. 306, 370, 377.
——Pyriform, iv. 410.
Reading, iii. 372.
Sandy, iii. 372.
Scallion, iii. 379, 417.
Silver, iii. 68.
Silver-skinned, iii. 371; iv. 410.
- Strasburg, iii. 373.
—— St. Thomas's, iii. 375.
———Spanish, iii. 372 ; iv. 138.
—— tree, iii. $370,378,419$.
Tripeli, iii. 366, 375; ;iv. 410.
True Portugal, iii. 371.
——— True Portugal, iii. 3 .
- Under-ground, iii. 370, 377; cultiva-
tion of, iii. 305, 403.
Welsh, iii. 370, 377, 416.
White Lisbon, iii. 376.
White Portugal, iii. 372.

Onion, White Reading, iii. 372.
White Spanish, iii. 372.
Yellow, iii. 374.
Ono-kaki, v. 124.
Ononis natrix, vii. 33.
Onopordum elatum, vi. 54.
Onoseris eriocephala, 2S. iii. 156.
Onychium crumenatum, vii. 70.
Oosten, Henry Van, ii. 263, 264.
Openawk, a name formerly applied to the potato in Virginia, i. 9, 10.
Ophioglossum palmatum, 2 S. iii. 156.
Ophiopogon japonicus, 2 S. i. 466.

- spicatus, 2 S. i. 466.

Ophrys apifera, vi. 405.
——aranifera, i. 289 ; vi. 405. circumflexa, i. 288.
——_fuciflora, i. 289.

- lilifolia, i. 292.
- muscifera, vi. 405.
——o ovata, i. 292.
spiralis, i. 291.
volucris, i. 287.
Opuntia ferox, 2 S. ii. 239, 259, 260.
Orach, vii. 130.
Orache, on its varieties and cultivation, vii. 130.
——Dark Green, vii. 132.
Purple, vii. 133.
-Deep Green, vii. 132.
Green, vii. 132.
_ with purple borders, vii. 132.
—— Lurid, vii. 133.
-_ Pale Green, vii. 131.
—— Purple, vii. 133.
Red, vii. 133.
Red-stalked Green, vii. 132.
White, vii. 131.
Orancio a scorza dolce, iii. App. 17.
Orange, iii. App. 14; iv. 20; 2 S. iii. 63, 128, 148, 245.
effects of high temperature on, iii. 462. on raising from cuttings, ii. 12.
notice of several varieties brought to
the Society, iii. 123.
their management, iv. 306.
Orange, Bitter, with curled leaves, iii. App. 14. App with semi double blossom, iii.
App. 14.
——Blood-red, iii. 123.
Maltese, ii. 407.
de la Chine, iii. App. 16.
Common Bitter, iii. App. 14.
Sour, iii. App. 15.
Sweet, iii. App. 16.
Douce, iii. App. 16.
lxxxviii

Orange, Douce d'Hiver, iii. App. 18.
——Dwarf Bitter, of Goa, iii. App. 15.
Sweet, iii. App. 17.

- Etoilée, iii. App. 16.
à Feuilles Frisées, iii. App. 14.
-—Grenade, iii. App. 16.
-_ Large Sour, with a sweet and eatable rind, iii. App. 15.
——Malta, iii. App. 16.
-_ de Malte, iii. App. 16.
—— Mandarin, 2 S. ii. 254.
15 Myrtle-leaved Dwarf Bitter, iii. App. 15.

Panachée, iii. App. 18.
Participiant de YAigre et du Doux, iii. App. 15.
——Petit Chinois, iii. App. 15.
-- Portogallo dolce, 2 S. ii. 253.
-_ de Rose, iii. App. 18.

- Shaddock, iii. App. 17.
- Striped, iii. App. 18.
—— Sour Adam's Apple, iii. App. 15.
Cedrate, iii. App. 15. Star, iii. App. 16. Violet, iii. App. 15.
Sweet Olysipo China, iii. App. 16. with half-double blossom, iii.
App. 17.
Olive-shaped, iii. App. 17.
Philippine, with crimson juice,
iii. App. 16.
iii. App. 17.

Pompelmouse, iii. App. 17.
Rose, iii. App. 18.
White, iii. App. 18.
Variegated, iii. App. 18.
Willow-leaved Bitter, iii. App. 15.
Orange trees, 2 S. ii. 253.
trained against walls in Devonshire, i. 177.
experiments on, with liquid manure, ii. 129.

- on their management, ii. 295.

Sir Abraham Hume's box for, figured, ii. 295.
not so hardy as lemon and citron trees, ii. 297.
iii. at Rome, observation respecting,
iii. 43.
method of grafting, so as to produce dwarf fruit-bearing trees, iii. 91.

- account of some growing in the open air in Devonshire, iv. 142.
particulars of their treatment in
Tuscany, vi. 543.
Oranger à Fleur double, iii. App. 17.

INDEX.

Oranger à Fruit Blanc, iii. App. 18.
Doux, et à écorce douce, iii. App. 17.

Oliviforme, iii. App. 17.

- Nain à Fruit Doux, iii. App. 17.

Orchidaceous epiphytes, 2 S. ii. 239.
Orchids, mode of constantly irrigating, iv. 241.
method of cultivating the hardy kinds, vi. 403.

Orchidex, Parasitical, instructions for packing, v. 196.

Orchis bicornis, i. 287.
——bracteata, i. 291 ; vi. 405.
__ ciliaris, vi. 405. conopsea, i. 290. cornuta, i. 288. dilatata, vi. 405. fimbriata, vi. 405. flava, vi. 405. fusca, i. $290 ;$ vi. 405. hircina, vi. 405. hyperborea, vi. 405. macrophylla, vi. 405. militaris, i. 290 ; vi. 405. orbiculata, vi. 405. papilionacea, i. 289. purpurea, i. 290. pyramidalis, i. 289 ; vi. 405. spatulata, i. 288. spectabilis, vi. 405. tridentata, vi. 405. ustulata, vi. 405. viridiflora, vi. 405.
Ord, John, Esq., ii. 285.
Order, of plants, its definition, iv. 21.
Organic powers, generation of, not possessed by decomposing substances, ii. 83.
Origanum vulgare, 2 S. i. 466.
Ornithidium coccineum, i. 293.
Ornithocephalus inflexus, 2 S. iii. 145.
Ornithogalum arabicum, vi. 86. caudatum, 2 S. ii. 270.
corymbosum, vi. 86.
gramineum, vi. 97.
Ornithoglossum glaucum, i. 330.

- viride, i. 330.

Ortley, Mr., vi. 415.
Osbeck's Voyage to China, iv. 446.
Oseille à Feuilles Cloquées, vi. 584.

- vierge, vi. 585.
vert lisse, vi. 585.
Osmunda regalis, iii. 341.
Ossory, Lord, vii. 562.
Otaheite Apple, v. 125.
Otandra cernua, i. 298.
Otто, M., iii. 218, 226, 227 ; vi. 99, 291. lxxxix

Otto, M., Pinus Llaveana received from, 2 S . ii. $411,413,414$.

Ottoa œnanthoides, 2 S. iii. 128.
Oungtsy, 2 S. iii. 239.
Ourches, Count d', iv. 488.
Ouseley, Sir Gore, iii. 116.
Ovaria of plants easily destroyed by frost, vi. 499 .

Owen, Capt. William, iv. Preface.
Oxalis Bowiei, 2 S. ii. 269.
Deppei, account of, and its cultivation,
2 S. iii. 29 ; figured, 31. glandulitega, iv. 33.

- Jacquiniana, 2 S. iii. $33,60$.
- Plumieri, vi. 75.
- rubrocincta, 2 S. iii. 147.
—— tuberosa, 2 S. iii. 153.
- zonata, 2 S. iii. 29.

Oxford, Earl of, vi. 165.
Oxide of iron, 2 S. iii. 36, 56.
Oxlex, John, Esq., 2 S. i. 522.
Oxlips, iv. 19.
Oxycoccus hispidulus, ii. 94.
macrocarpus, v. 278.
—— palustris, v. 276.
Oxygen, its utility in promoting vegetation, i. 233.

- experiments with, for promoting vegetation, i. 234, 235.
applied with success to the roots of melons, i. 235.
_- its effects on an orange tree, iv. 134.
from leaves, 2 S. ii. 217.
Oxylepis lanata, 2 S. iii. 138.
Oyamel, 2 S. iii. 123.

P.

Pachyne spectabilis, i. 299.
Packing of cuttings for buds, vi. 319.
Paco Coatinga, vi. 274.
— clavâ rubente major, i. 279.
Padley, Mr., iii. 162; v. 549, 551 ; vi. 153, 154.
notice of a second crop of peaches in the same season, grown in pots, exhibited by him, iii. 367.
Pæonia albiflora, ii. 279. fragrans, ii. 278.
Humei, ii. 279.
Whitleji, ii. 277.
edulis sinensis, ii. 280.
foemina polyantha, ii. 274.
fimbriata, ii. 276.
flore pleno purpureo papaveraceo, ii.

Pæonia Moutan, 2 S. ii. 237, 244, 255. and its varieties, descriptions of, vi. 465 .
cultivation of, vi. 487.
grafting, vi. 491.
albida plena, vi. 482. Anneslei, figured, vi. 482.
Banksii, vi. 472.
carnea plena, vi. 481.
Humei, vi. 475.
papaveracea, vi. 469.
Rawesii, vi. 479.
rosea plena, vi. 477. semiplena, vi. 476.
officinalis, ii. 274.
var. alba, vi. 472.
albicans, ii. 275 .
carnescens, ii. 275.
rubra, ii. 274.
papaveracea, 2 S. ii. 255.
paradoxa fimbriata, ii. 276.
suffruticosa, vi. 477.
tatarica, ii. 276.
Pæonies, account of seven double herbaceous, ii. 273.

Pæony, Double Flesh coloured, ii. 275.
Fringed, ii. 276.
Purple, ii. 276.
Red, ii. 274.
Sweet-scented Chinese, ii. 278. White, ii. 275.
Sir Abraham Hume's Double Chinese, ii. 279.
-Whitley's Double White Chinese, ii. 277.
—— tree, vi. 465.
Paes, Don Joachim de, 2 S. i. 6.
Page, Mr., iv. 509.

- Mr. W. B., 2 S. ii. 224.

Paint, Anticorrosion, useful effect of, on an old garden wall, vii. 92.
Pak-tsae, or Chinese turnip, 2 S. iii. 243.
Pa-kup, iv. 554.
Palao, 2 S. iii. 133.
Paleologi, vi. 40.
Palicourea lineata, 2 S. iii. 155. popayanensis, 2 S. iii. 157.
vaginata, 2 S . iii. 159.
Palindjam, vi. 53 ; vii. 83.
Palisot de Beauvais, v. 459.
Paliurus, vi. 37.
——a aculeatus, 2 S. ii. 278.
Palladids, iii. App. 25.
Pallas, iii. 377 ; iv. 417, 490 ; vi. 60, 538 ; vii. 514.

Pallibea, Mrs., plants received from, 2 S. ii. 418.

Pallmer, Charles Nicholas, Esq., iv. 72; communication of a plan for bringing seeds from distant countries, iv. 57.
Palms, best mode of transporting their seeds, v. 197.

Palm, Fan, 2 S. ii. 236, 239.
—— tree, utility of preserving its pollen, i. 106.
-Wax, 2 S. ii. 239 ; 2 S. iii. 150.
Palmer, Archdale, Esq., 2 S. i. 536, 540, 543.

Mr., ii. 42, 43, 54.
C., Esq., vii. 533.
J. H., Esq., 2 S. i. 534, 536, 540, 541, 542, 544.

- Thomas, Esq., iv. 340 ; v. 37, 370 ; vi. $80,461,462,479$; vii. 527 , $528,529,533,534,554,555$; 2 S. i. 530 , 531.
———Double Yellow rose exhibited by him, v. 370.
Palo de asi, 2 S. iii. 160.
Palo requison, 2 S. iii. 157.
Paludanus, Bernard, i. 46, 48.
Panais Coquine, vi. 304.
__Lisbonaise, vi. 304.
——rond, vi. 305.
Mavxpatiov, vi. 49.
Pancratium, remarks on various species of, iv. 29.
amboinense, i. 337 ; iv. 31, 34.
__ bulbs from its capsule, figured, iv. 33.
——amœnum, i. 339.
__ Amancaes, i. 342.
340 . americanum foliis latissimis, i.
caribæum, vi. 87.
\longrightarrow carolinianum, i. 339.
———crinum disticho-capense, iii. 196.
——_ deelinatum, i. 339.
——_disciforme, i. 338.
fragrans, i. 340.
illyricum, i. 336, 341.
littorale, i. 338 ; iv. 25.
maritimum, i. 339, 341, 342 ;
vi. 49.
mexicanum, i. 338.
nervifolium, i. 337.
patens, vi. 87.
rotatum a, i. 338.
β, i. 338.
—— spathaceum, i. 336 .
- speciosum, i. 340.
-stellare, i. 336.
- tiareflorum, i. 342.

INDEX.

Pancratium verecundum, i. 342.
——ureylanicum, i. 342.
Pandanus humilis, i. 265.
Papas, a name of the potato in South Ameriea, i. 10 .

- a tuberous root used for food by the inhabitants of Quito, i. 265.
- amarillas, vi. 569.

Papaver somniferum, vi. 54.
Papaw, v. 465.
Papaya de la Laguna, v. 100.
Papelillo, 2 S. iii. 141.
Parchas (Grenadillas), v. 82, 102.
Pardanthus chinensis, i. 313; vii. 41.
Parinarium macrophyllum, v. 452.
$\mathrm{P}_{\text {ark, }}$ Mr., v. 445, App. 3.
Parker, Mr., 2 S. ii. 402.
-_Thomas Netherton, Esq., seedling apple sent by, iv. 525.

Capt. William, ii. 3.
Parkin, John P., Esq., 2 S. ii. 227.
Parkinson, i. 334, 343, 349, 350, 353, 354, $355,360,364$; iii. $108,112,342,348$, 354 ; vii. $9,130,423,424,436,437,438$, $442,453,454,458$; 2 S. i. 278 ; 2 S. ii. 224, 238.

$$
46,48
$$

his account of the Tuberose, i.
his observation on an old practice of nurserymen, i. 194.

Mr., 2 S. ii. 398.
Parks, Mr. John Damper, v. 427; vi. 106, 263, 266, 267, 269, 271, 286, 323, 326, 327, 328, 329, 330, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346,347 ; vii. $26,52,60,66,69,226,528$, 534, 536, 555, 557.
plants and seeds sent by him during his mission to China, vi. $263,267,269,286$.
introduced by him, vi. 323 .
chrysanthemums
\qquad upon the management of plants during their voyage from China, vii. 396.
Parkyns, Thomas Boothry, Esq., iii. 280.
Parmentier, Le Chevalier, v. 131, 266, 404, 406, 408 ; 2 S. i. 263.
fruit trees received
from, 2 S . ii. 415.
Parnell, William, Esq., vi. 579.
Parsnip, 2 S. iii. 60.
description of the different varieties of, vi. 302.
common, vi. 303.
Coquine, vi. 302.
Guernsey, vi. 304.
xci

Parsnip, Hollow-crowned, vi. 304.

- Hollow-headed, vi. 304.
——— large Swelling, vi. 303.
- Lisbonaise, vi. 302.
——Siam, vi. 303, 305.
- Swelling, vi. 303.
- Tourquée, vi. 302.

Parsley, Curled, 2 S. iii. 62.
Passiflora, on the mode of fruiting several species of, vii. 95.
v. 70

- adiantifolia, 2 S. ii. 285. alata, iv. 268 ; v. 104 ; vii. $96,392$.
iv. 128.
—— alnifolia, vii. 49.
cærulea, vii. 41; 2 S. ii. 244.285. cæruleo-racemosa, 2 S. ii. 285 ; figured, iv. 261 ; sections of, iv. 265.

$$
\text { v. } 70 .
$$

quinquelobata,
v. 70.
trilobata, v. 71.
edulis, vii. 392.
incarnata, iii. 107, 109, 110, 112,
114.
lanata, vii. 392.
laurifolia, iii. 100,101 ; iv. 62.
maliformis, iii. 100 .
membranacea, 2 S. iii. 139.
obscura, vii. 48.
onychina, experiments on its rate of
growth, 2 S. iii. 103.
palmata, 2 S. ii. 285.
princeps, iv. 258.
quadrangularis, iii. 99, 100; v. 104;
vii. 96. cultivation of, iv.
$60 ;$ vi. 388.
racemosa, iv. 258,268 ; vii. 96.
serratifolia, vii. 392.
stipularis, 2 S. iii. 130.
Passion Flower, i. 23.

- vegetation of earlier in seedling plants than in roots imported from Virginia, i. 23.
account of a Hybrid, iv. 258.
- Milne's five-lobed Hybrid.
v. 70.
three-lobed Hybrid,
v. 71.

Onyx, experiments on its rate

of growth, 2 S. iii. 103.
ies, account Purple-fruited and other spe-
cies, account of, in. 99.
Pastinaca sativa, vi. 302.

Patterson, R., Esq., 2 S. i. 544.
Patersonia sericea, i. 311.
Patience, 2 S. iii. 62.
Patlindjam Melktem, vi. 53.
Pavon, Don José, v. 250.
Pavonazza, v. 19.
Paytherus, Thomas, Esq., his method of destroying insects, v. 484.
Paxton, Mr. Joseph, vii. 142 ; 2 S. ii. 177, 455.

Payen, M., 2 S.ii. 302, 307.
Payne, John Robinson, Esq., v. 415.
Peas, vi. 497.
-_ on obtaining early crops of, 2 S. i. 79.

- for autumnal crops, ii. 87.
- method of obtaining early crops of, after severe winters, v. 341.
- experiments with, 2 S. iii. 85, 193.
- experiments with, in steeping the seeds, 2 S. iii. 205.
——mildew on, ii. 87 .
i. 340 .
on transplanting, for early crops, v. 436.
- variation in colour, occasioned by cross impregnation, v. 234 ; figured, v. 237.
- on the variation of their colour from cross impregnation, v. 379.
Pea, account of its varieties, 2 S. i. 374.
- Alberjas, 2 S. i. 381.
- American Crown, 2 S. i. 380.
- d'Auvergne, 2 S. i. 376, 387 ; 2 S. iii. 60. Baron, 2 S. i. 376.
Batt's Early Dwarf Nimble, 2 S. i. 376.
- Bean, 2 S. i. 386.
- Best Early, 2 S. i. 376.
——Bishop's Dwarf, 2 S. i. 374.
- Black-spotted, 2 S. i. 386.
- Blue Prussian, 2 S. i. 383, 387 ; 2 S. iii. 60 .

Blue Union, 2 S. i. 383.
-_Brest, très Nain de, 2 S. i. 375.
-Bretagne, très Nain de, 2 S. i. 375.

- Broadsword, 2 S. i. 380.
- Carolina, Large, 2 S. i. 378.

Tall, 2 S. i. 378.
__ Carré Vert, 2 S. i. 383.
Gros, 2 S. i. 383.
Norman, 2 S. i. 383.

- Charlton, Early, 2 S. i. 376.

Golden, 2 S. i. 376.

- Clive, 2 S. i. 378.
-Curonné, 2 S. i. 380.
Crown, 2 S. i. 380, 387.
- American, 2 S. i. 380.
- Dominé, 2 S. i. 376.

Donn's New, 2 S. i. 379.

Pea, Double-blossomed, Early, 2 S. i. 376.

- Double Dwarf Frame, 2 S. i. 376.
-Dutch, 2 S. i. 385.
- Dwarf Albany, 2 S. i. 376. Blue Prolific, 2 S. i. 383.
———Prussian, 2 S. i. 383.
——Bog, 2 S. i. 375.
Brittany, 2 S. i. 375.
Dutch, 2 S. i. 382.
Green Marrow, 2 S. i. 378.
Knight's, 2 S. i. 377.
Imperial, 2 S. i. 383, 387.
Sugar de Grace, 2 S. i. 382.
Early Charlton, 2 S. i. 376 , 387 ; 2 S. iii. 60 .

Dutch, 2 S. 381.
Dwarf, 2 S. 375.
de Grace, 2 S. i. 382.
Green, 2 S. i. 378.
Frame, 2 S. i. 376, 387.
Perkins's, 2 S. i. 376.
French, 2 S. i. 376.
Green, 2 S. i. 378.
New, 2 S. i. 378.

- Nana, 2 S. i. 376.
- Nicholas, 2 S. i. 376.

One-eyed, 2 S. i. 376.
Sugar Frame, 2 S. i. 376.
Wilson, 2 S. i. 376.
Eastern Shore, 2 S. i. 377.
——Egg, 2 S. i. 379.
Large, or Bean, 2 S. i. 379.
-_ Essex Reading, 2 S. i. 376.

- En Eventail, 2 S. i. 375.
- Fan, 2 S. i. 375.
-_ Fine Long-podded Dwarf, 2 S. i. 383.
Frame, 2 S. i. 376.
Early Dwarf, 2 S. i. 376.
Single, 2 S. i. 376. Tall, 2 S. i. 377.
_- Funnel's Black-spotted, 2 S. i. 386.
-Garden, very fine late, 2 S. i. 376.
-Giant, 2 S. i. 385.
-Glory of England, 2 S. i. 377.
- Golden Charlton, 2 S. i. 376.
-Grey, Large, 2 S. i. 385.

$$
\text { Late, } 2 \text { S. i. } 385 .
$$

Maple, 2 S. i. 386.
Tall, 2 S. i. 385.
Green, Imperial, 2 S. i. 379.
New Large, 2 S. i. 379.
Prussian, 2 S. i. 383.
Tall, 2 S. i. 379.

- Groom's Superb Dwarf Blue, 2 S. i. 384,

387.

-Gros Nain Sucré, 2 S. i. 382.

Pea, Gros Vert de Prusse, 2 S. i. 383.
_- de Guiverigny, 2 S. i. 380.
_ Hâtif à la Moelle d'Angleterre, 2 S. i. 377.
377.
_- le plus Hâtif, 2 S. i. 376.

- Hotspur, 2 S. i. 376.

Double Dwarf, 2 S. i. 376.
Early, 2 S. i. 376.
Nicholas, 2 S. i. 376.
Golden, 2 S. i. 376.
Wrench's, 2 S. i. 376.

- Imperial, 2 S. i. 383.
- Blue, 2 S. i. 383.
—— Dwarf, 2 S. i. 383, 387.
Dwarf Green, 2 S. i. 383.
Green, 2 S. i. 379.
New Dwarf, 2 S. i. 383.
Improved, 2 S. i. 383.

283. Dwarf, 2 S. i.
284.

New Long-podded, 2 S. i. 383.
New Tall, 2 S. i. 383.
Tall, 2 S. i. 383. Blue, 2 S. i. 383. Green, 2 S. i. 383.
——Knight's Dwarf, 2 S. i. 377.
386 ; 2 S. iii. 60.
—— Late, 2 S. i. 378.
————
New Dwarf, 2 S. i. 377.
Tall Marrow, 2 S. i. 378, 386 ;
2 S. iii. 60.
——Knox's Dwarf, 2 S. i. 375.
——Late Dwarf, 2 S. i. 376.

- Laurent, 2 S. i. 376.
——Ledman's Dwarf, 2 S. i. 382.
-Maage-tout, 2 S. i. 380.
- Maple Grey, 2 S. i. 386.
- Marlborough, 2 S. i. 386.
- De Marly, 2 S. i. 378.
—Marotta, Spanish, 2 S. i. 386.
- Tall Black-spotted, 2 S. i. 386.
-_Marrow, Branching, 2 S. i. 379, 387.
Dwarf Green, 2 S. i. 378. White, 2 S. i. 377.
——Knight's Dwarf, 2 S. i. 377, 386. Tall, 2 S. i. 378, 386.
L Large Imperial, 2 S. i. 378.
New Extra Green, 2 S. i. 378.
Royal Dwarf, 2 S. i. 378.
Tall Green, 2 S. i. 379, 387. White, 2 S. i. 378.
Michaux, 2 S. i. 376.
de Hollande, 2 S. i. 376.
à Eil Noir, 2 S. i. 386.

Pea, Michaux Ordinaire, 2 S. i. 376.
——Précoce, 2 S. i. 376.
-_ Marrowfat, Holloway, 2 S. i. 378.

- Mason's Double-blossomed, 2 S. i. 376.
__ Nain Hâtif, 2 S. i. 375, 387. de Hollande, 2 S. i. 382.
—__ de Hollande, 2 S. i. 382.
-_ à la Moelle d'Espagne, 2 S. i. 381.
—— Royal, 2 S. i. 383.
—— Vert Gros, 2 S. i. 383. Impériale, 2 S. i. 383. Petit, 2 S. i. 383.
- New, 2 S. i. 380.
———Green, 2 S. i. 378.
—— Nimble Taylor, 2 S. i. 376.
—— Nonpareil, 2 S. i. 379.
—_——Green, 2 S. i. 383. New Green, 2 S. i. 378.
- Nonsuch, 2 S. i. 379.
—— Norman, New Dwárf, 2 S. i. 384.
——à Eil Noir, 2 S. i. 386.
- Paddington, 2 S. i. 376.
- Partridge, Gray, 2 S. i. 386.
- Patagonian, 2 S. i. 379.
- Pearl, or Nunsuch, 2 S. i. 379.
- Poor Man's Profit, 2 S. i. 384.
- Princesse, 2 S. i. 378.
- Prolific, 2 S. i. 384.
- Isle of France, 2 S. i. 379.
_—— Prussian, Dwarf White, 2 S. i. 384. Prolific, 2 S. i. 383. Tall, 2 S. i. 383, 384.
—— White, 2 S. i. 384, 387.
——Red-flowered Sugar, 2 S. i. 385.
Ridé, 2 S. i. 378.
Hâtif, 2 S. i. 378.
Tardif, 2 S. i. 378.
- Rose, 2 S. i. 380 .
__ Rouncival, Green, 2 S. i. 378.
Grey, 2 S. i. 385.
White, 2 S. i. 378.
——Royal Dwarf, 2 S. i. 384.
Marrow, 2 S. i. 378.
——Royal Prolific, 2 S. i. 384 .
——_Prussian Blue, 2 S. i. 383.
de Ruelle, 2 S. i. 376.
Russell's Early-blossomed, 2 S. i. 376. Fine Early, 2 S. i. 376.
- Sabre, 2 S. i. 383. Blue, 2 S. i. 383. Dwarf, 2 S. i. 383. New, 2 S. i. 383.
Sans Parchemin Blanc à Grandes cosses, 2S. i. 380. a Fleurs Rouges, 2 S.i. 385.

Pea, Sans Parchemin Vert, 2 S. i. 383.
Sanspareil, 2 S. i. 377.
Scymitar, Blue, 2 S. i. 383.
——Single-blossomed, Early, 2 S. i. 376.
——Spanish Dwarf, 2 S. i. 375.
Common, 2 S. i. 375.
Large, 2 S. i. 375.
New Early, 2 S. i. 375.
Early, 2 S. i. 380.
Marotta, 2 S. i. 386.
Patriot, 2 S. i, 383.
——Stowe, 2 S. i. 384.
-_Sugar, 2 S. i. 380.
\longrightarrow Dwarf, 2 S. i. 382. Crooked, 2 S. i. 382. Dutch, 2 S. i. 381.

—— Early, 2 S. i. 381.

Early May, 2 S. i. 381, 387.
Fishamend's, 2 S. i. 385.
——Large Crooked, 2 S. i. 380.
White, 2 S. i. 382.
Wyker, 2 S. i. 382.
——Red-flowered, 2 S. i. 385.
—— Vilmorin's, 2 S. i. 381, 387.
-_Suisse, 2 S. i. 378.
Sumatra, 2 S. i. 383.
——Superfine Early, 2 S. i. 376.
-Tall Frame, 2 S. i. 377.
Imperial, 2 S. i. 383.
White Marrow, 2 S. i. 378.
——Tamarind, 2 S. í. 381.
New, 2 S. i. 387.
——Temple, New Tall, 2 S. i. 378.
-Turc, 2 S. i. 380.

- à Fleurs Blanches, 2 S. i. 380.
- Twesley Dwarf, 2 S. i. 376, 384.
——Vert Gros Normand, 2 S. i. 378.
——Hâtif à la Moelle, 2 S. i. 378.
Wà à Rames de Mont Julienne, 2 S.i. 376.
-Wabash, 2 S. i. 377.
—— Waterloo, 2 S. i. 379.
-Wellington, 2 S. i. 378.
—— White Prussian, 2 S. i. 384, 387.
——Wootten, 2 S. i. 378,
- Young's Very Early, 2 S. i. 376.

Peaches, 2 S. i. 465 ; iii. 139.

- may have been derived from the almond, iii. 87.
___ experiments by Mr. Knight for raising new varieties of, i. 37.
- experiments for raising new varieties, i. 38, 165.
fr the almond recommended as a stock for, ii. 90 .
ii. 202 remark on the apricot as a stock for, ii. 202.

Peaches, on its own stock, ii. 203.
—— how to obviate the paleness of those grown under glass, i. 149.

- mildew on, ii. 88.
- on their culture on espalier trees, ii. 219.
observations on forcing, ii. $108 ; 2 \mathrm{~S}$. ii. 37.
on the house management of, v. 57.
advantage of a span-roofed house for forcing, iv. 562.
notice of a second crop in the same season, grown in pots, iii. 367.
- on a method of forcing, principally by dung-heat, v. 218.
account of the method of forcing them in Denmark and Holland, v. 320.
—— effect of climate on the flesh of, ii. 61.
varieties of, known to the Romans, i.149.
Peach-houses, Roman, remarks on, i. 149.
\longrightarrow plan of one, i. 199.
- observations on the best method of constructing, i. 199.
ventilation of, ii. 227. elevation, section, and plan of one used in Denmark, v. 320. origin of, in Holland, v. 323.
Peaches and nectarines produced on the same branch, i. 103 ; ii. 59 ; figured, i. 103.
leaves of, without glands, figured, v. 529 ; with reniform glands, figured, $i b . ;$ with globose glands, figured, $i t$. classification of, v. 525. tion, with observations on the disorders incident or peculiar to each class, iii. 380.
iii. 386 ; v. 532.

Peach and nectarine trees may be propagated by layering, v. 291.
Peach-pit, Dutch, section and plan of, v. 324.
Peach-stocks, v. 290.
Peach-trees, observations on the origin of, iii. 2.
\longrightarrow to raise from stones, v. 290.
\longrightarrow produced from the seed of an almond-tree, iii. 1 ; fruit of, figured, ib.
——on apricot stocks, ii. 370.

- transplantation of their blossombuds, ii. 7.
——on the budding of, i. App. 5.
on inarching leafless branches of,
ii. 35.
may be made to bear when three years of age, i. 161.
i. 194,195 .

INDEX.

Peach-trees, experiments on, with liquid manure, ii. 128.
trained, advantages which they derive from their roots being allowed to penetrate the border on the north side of the wall, iv. 95.
preservation of their early foliage, 2 S. ii. 180.

App. 6. 179.
— gumming of, v. 180.
upon the causes of the diseases and deformity of their leaves, 2 S . ii. 27.
mode of pruning, in cold and late situations, ii. 364 .
\longrightarrow Mr. Knight's method of training, i. 80 . on forcing, 2 S. ii. 357.
management of, in an early peachhouse, vii. 209.
particulars of one in the garden at Cockfield Hall, iii. 17.
account of the produce of those at
Wortley Hall, iv. 79; and their management, iv. 80.
produce of, at Wortley Hall, corrected, iv. 82.
seedling, produced fruit when only
sixteen months old, in New South Wales, ii. 70 . on the early puberty of, ii. 70. borders for, iv. 81.
Peach, Abricotée, v. 547.

- Acton Scót, ii. 140, 215, 218 ; v. 552 ; figured, ii. 142.
- Admirable, v. 545.

Early, v. 545.
Jaune, v. 547.
Late, v. 542, 545.
Scarlet, v. 540.
Tardive, v. 542.
Yellow, v. 547.
———Albemarle, v. 552.
—_ Alberge, v. 552.
Jaune, v. 546, 551.
Ehret's painting of
two varieties of that fruit growing on one branch, i. 104.

Purple, v. 546.
Red, v. 546.
Yellow, v. 546.
——Almond, iv. 20, 370 ; v. 541.
——Allen's Royal, v. 552.
—— Anne, v. 539.
——_ Early, v. 539.

Peach, Apricot, vi. 411.

- Aster's Seedling, vi. 414.
——Aunt Sarah's, vi. 410.
-_ Avant Blanche, v. 540.
———Early Purple, v. 553.
—— Pêche Blanche, v. 540.
——Jaune, v. 545.
—_ de Troyes, v. 547.
———Rouge, v. 547.
——Barrington, v. 543.
——Bear’s Early, v. 542.
Belle Beauté, v. 543.
Bauce, v. 543.
Bausse, v. 543.
———Chevreuse, i. 104; v. 549
$—$ Bellegarde, v. 545.
Belle de Paris, v. 539.
de Vitry, v. 542, 545.
- Bellis, v. 542.

Betterave, v. 540.
Blood Clingstone, vi. 411.
Bloody, v. 540.
Boudin, v. 545.

- Boudine, v. 545.
- Bordeaux, v. 552.

Bourdin, v. 545.
Bourdine, v. 545.
Braddick's American, ii. 205 ; figured, ib. ; г. 553.

New York, iv. 209.
North American, v. 553.
Brevoort's Seedling, vi. 414. Pound, vi. 412.
———Burdock, v. 552.
Cambray, v. 553.
Cardinal, v. 538.
Cardinale, La, v. 538.
de Furstemberg, v. 538.
Carlisle, v. 553.
Catherine, v. 549.
Chancellière, v. 549. variety, v. 550. Véritable à Grandes
Fleurs, v. 549.
Chancellor, v. 550.
Chevreuse, v. 549.

$$
\text { Early, v. } 549 .
$$

Late, v. 550.
Hâtive, v. 549.
Tardive, v. 550.
of China, v. 121.
Claret Clingstone, vi. 411.
d'Ispahan, v. 539.
Double-blossomed, v. 547.
Flower, v. 547.
v. 327.

INDEX.

Peach, Double Swalch, v. 550.
de Troyes, v. 550.
———Downton Early, ii. 214, 217 ; v. 553.
———Dragon, v. 540.
-_Druselle, v. 540.
——Du Vin, v. 544.
Dwarf Orleans, v. 540.
Early Anne, v. 539.
Downton, ii. 214, 217 ; v. 553.
Purple, v. 542, 544. Neal's, v. 544. of Kew, v. 542. True, v. 544. Padley's, v. 544.
Sweetwater, vi. 412.
Vineyard, v. 543.
———Eaton, v. 553.
___ Emperor of Russia, vi. 412.
___ Fairscot's, v. 553.
Flat, of China, v. 149, 271 ; figured, iv. 512.
—— Ford's Seedling, v. 539.
——Galande, v. 545.
Early, v. 543.
Ronalds's Early, v. 543.
Stewart's Late, v. 550.
——George the Fourth, vi. 413.
Dr. Graham's Freestone, vi. 412.
Grosse Galande, vi. 411.
Jaune, v. 547.
Pêche Jaune Tardive, v. 547.
—— Hemskirk, v. 539 .
-_ Hoffman's, vi. 410.

- Hoyte's Lemon Clingstone, vi. 414.
—— Incomparable, v. 549.
—— Italian, v. 539.
—— Java, iv. 513; v. 271, 549.

553.

- Kennedy's Lemon Clingstone, vi. 409.
_Lady Anne Stewart's, vi. 414.
-Late Admirable, 2 S. iii. 63.
Purple, v. 550.
Lisle, v. 553.
Lockyer's, v. 542.
Low's Large Melting, v. 553.
Madeleine, Blanche, v. 540. de Courson, v. 539.
Rouge, v. 539.
Tardive, v. 542.
——Magdaleine à Moyennes Fleurs, v. 541.
——_à Petites Fleurs, v. 541.
—— Rouge Tardive, v. 541.
——Magdalen, French, v. 553.
—— Red, v. 542.
White, v. 540.

Peach, Mallacoton, Early Yellow, vi. 411.
———_Red, vi. 414.

- Malta, v. 539.
-_Mammoth, vi. 410.
Marlborough, v. 543.
Mélecoton, v. 538.
Gros, v. 546.
Jaune, v. 549.
Mellish's Favourite, v. 539.
Merlicoton, v. 538.
Mignon, Early, v. 550. French, v. 543. Large, v. 543. Small, v. 550.
Mignonne, v. 543.
Buckingham, v. 543.
—__ Lord Fauconberg's, v. 542
French, v. 543.
v. 553.

Frisée, v. 544.
Grosse, v. 544.
Grosse, v. 543.
Hâtive, v. 544.
Large French, v. 543.
Lockyer's, v. 542.
Millet's, v. 542.
Petite, v. 550.
Royal George, v. 542.
Yellow, v. 551.
Mignonette, v. 550.
Montauban, v. 539.
Montagne, v. 539.
Blanche, v. 540.
Double, v. 539.
Morris's Red Freestone, vi. 410.
White Freestone, vi. 410.
Morrisania Pound, vi. 410.
Mountaineer, v. 553.
raised between a peach
and a nectarine, iv. 210.
Myrecoton, v. 538.
Jaune, Grand, v. 549.
Nain (Pêcher), v. 540.
d'Orléans (Pêcher), v. 540.
Narbonne, v. 545.
of the Negroes, v. 442.
Newington, v. 538. Early, v. 538.
Old, v. 538.
Smith's, v. 538.
Willow-leaved, Late, v.

554.

New York Clingstone, vi. 410. Early Lemon Clingstone,
vi. 413.
——Nivette, v. 546.

INDEX.

Peach, Nivette Veloutée, v. 546.
-_ Noblesse, ii. 142 ; v. 539.
—— Noire de Montreuil, v. 545.
—— Nutmeg, Brown, v. 547.
\longrightarrow Red, v. 547.
——Old Royal Charlotte, v. 540.
George, v. 544.
———Orange, i. 155 ; v. 547.
Freestone, vi. 411.
——_de Pau, ii. 62.
——— Pavies, v. 535.
—— Pavie Admirable, v. 553.
Alberge, v. 549.
Blanc, v. 538.
Camu, v. 546.
—— Jaune, v. 549, 550.
——Monstrueux, v. 546.
de Pomponne, v. 546.
of Pomponne, Monstrous, v. 546.
Rouge, v. 546.
de Pomponne, v. 546.
Tardif, v. 550.
Pêche d'Abricot, v. 547.
de Burai, v. 547.
d'Italie, v. 553.
Jaune, v. 546, 551.
de Malte, v. 539.
d'Orange, v. 547.
de Pau, v. 553.
de Troyes, v. 550.
Pêcher à Feuilles de Saule, v. 545.
à Fleurs Doubles, v. 547.
Semidoubles, v. 547.
Nain à Fleurs Doubles, v. 547. de Persé, v. 539.
Persais d'Angoumois, v. 549.
Persèque, v. 550. allongé, v. 550.
Gros, v. 550.
à Gros Fruit Blanc, v. 538.
Jaune, v. 549.
Rouge, Gros, v. 546.
Philadelphia Freestone, vi. 411.
Pine-Apple Clingstone, vi. 414.
Portugal, v. 553.
Pourprée, La, v. 550, 553.
Hâtive, v. 547. Véritable, v. 544.
Tardive, v. 550.
Queen Charlotte, v. 553.
Rambouillet, v. 553.
Red Magdalen, v. 176, 177.
Red Nutmeg, ii. 141, 142.
Rossanna, v. 551.
Rosanne, iv. 513 ; v. 551. xcvii

Peach, Rouge Paysanne, v. 539.

- Roussanne, Petite, v. 551.
——Royal, v. 545.
———Charlotte, v. 540, 542.

$$
\text { Old, v. } 540 .
$$

George, i. 104 ; v. 542 ; 2 S . iii. 63.
——Grimwood's, v. 543.
543.

Old, v. 544.
Smooth-leaved, v. 544.
Kensington, v. 544.
v. 553.

Pavy, v. 553.
—— Rumbullion, v. 553.

- Saartye Mout, vi. 410.
- St. Laurent Jaune, v. 551.
- Sandalie hermaphrodite, v. 547.

Sanguinole, v. 540.
—— Saw-leaved, v. 540.

- Serrated, vi. 412.
- Sion, v. 540.
——Spring Grove, ii. 215, 218; v. 553.
—— Persian, v. 399, 553.
-Sulhamstead, iv. 513 ; v. 553.
——Superb Royal, v. 544.
—— Swalch, Double, v. 550.
——_ or Dutch, v. 550.
——Swalze, v. 550.
——Sweet-water, Early, vi. 412.
———Teindou, v. 554.
Tein-doux, v. 554.
Téton de Vénus, v. 546.
—— Téton de Venus,
Twyford, vi. 393.
Unique, vi. 412.
Vanguard, v. 540.
Veloutée, v. 543.
de Merlet, v. 543.
Tardive, v. 546.
de Vigne, used by the French for budding upon, i. App. 5.

Vineuse, v. 543, 547.
—— de Fromentin, v. 544.
—— Violet Hâtive, v. 546.
-Washington, vi. 409.
White-blossomed, v. 554.
Yellow Mignonne, iv. 210.
Pears, vi. 496 ; 2 S. i. 465.
raising new varieties of, an object for which the Horticultural Society proposed to offer premiums, i. App. 2. ii. 196.
(in. varieties known to the Romans, i. 153.

INDEX.

Pears, remarks on a new variety of, i. 178.
——on medlar stocks, vi. 546.
__medlar employed as a stock for, vi. 117. advantages of grafting on the quince, vii. 213.

- on the cultivation of an early and a late variety on the same tree, vi. 367 .
account of a collection of, from the
Luxembourg Garden at Paris, v. 126.
_—_from ringed trees, iv. 126.
——method of keeping, ii. 399.
—_account of some new seedlings raised by Mr. Knight, vi. 446.
- on gathering early, vii. 94 .

Pear-stocks, soil for, vii. 215.
Pear-trees, observations on grafts from, i. 60.
——— reverse grafted, v. 396 ; figured; $i b$.
_ transplantation of their blossombuds, ii. 8 .
—_ on the culture of, ii. 78.
on promoting the early fruitfulness
of those raised from seed, ii. 333.
observations on their treatment, iii.
150.
on fertilizing their blossoms, v. 208. thinning their blossoms, v. 209.
destruction of insects on, v. 77. canker, v. 183.
on two species of insects injurious to, 2 S. ii. 104.
remarks on the pruning and training of, i. 236.
.ii. 153 mode of pruning, iii. 152 ; figured, iii. 153.
how trained by the French, i. App. 8.
the time it requires to attain ma-
turity, i. 39.
account of one subjected to the ope-
ration of ringing, ii. 269.
_ advantages of root-pruning, 2 S.ii. 471.
branches showing the effects of root-
pruning, figured, 2 S. ii. 473.
Dwarf Standard, upon pruning and managing them, vii. 291.
Pear, Achan, iii. 120.
Black, figured, vii. 328.
Green, figured, vii. 329.
Grey, figured, vii. 321.
Michaelmas, figured, vii. 305.

- d'Amande, v. App. 7.
- Amber, ii. 47.
- Ambrette d'Hiver, v. App. 4.
- Amiré Roux, v. App. 4.
- d'Ananas, iv. 276.
- Ananas, v. App. 4.
- Angélique de Bourdeaux, v. App. 4.
- Angel's Pyre, v. App. 4.

Pear, Apple, figured, vii. 305.

- Archiduc d'Eté, v. App. 4.
- d'Argent, v. App. 7.
- Aston Town, ii. 80, 81.
experiment with, i. 181.
-_d'Auch, ii. 104, 161, 194 ; iii. 118.
- d'Austrassie, v. App. 7.
- Autumn Bergamot, ii. 210.
- of Bambriech, Yellow, figured, vii. 311.
-Barland, 2 S. i. 215.
- Bayomont Condrosienne, v. App. 4.
- Beau Présent, v. App. 4.
—— St. Bernard, v. App. 4.
——Beauty of Monorgan, figured, vii. 318.
- Belle et Longue, v. App. 4.
- Bellissime, v. App. 4.

Ber d'Hiver, 2 S. i. 331.
-Belmont, 2 S. i. 106.
de Bel Eil, v. App. 7.
Benvie, vii. 300.
——_Autumn, vii. 301; figured, vii. 318. Early Yellow, vii. 301; the tree
figured, vii. 331.
Winter, figured, vii. 319.
Wellow, figured, vii. 319 . 311.
——Bequêne Musqué, 2 S. i. 329 ; figured, 328.
Bergamot, crossed with the St. Germain, i. 180 .

Easter, v. 130.
Gansel's, v. 397.
March, 2 S. ii. 62.
Oakley Park, 2 S. ii. 64.
Orange, v. 397.
Ormskirk, v. 397.
Scotch, figured, vii. 308.
Swan's-egg, v. 266.
Winter (of the Clydesdale
orchards), figured, vii. 323.
York, v. 397.
-_Bergamotte d'Automne, ii. 43 ; figured, 42; v. 129.

INDEX.

Pear, Bergamotte de Pâques, v. 130, App. 5.

- Paysans, v. App. 5.

Quercy, v. App. 5.
Ronville, v. App. 5.
Rosea, ii. 47 ; figured, 42.
Silvange, v. App. 5. de Soulers, v. 130, App. 5. Suisse, ii. 55 ; figured, 42 ;
v. App. 5. Tardive, v. 134.
__ des Bergers, v. App. 7.

- Beurré, experiment with, i. 181.
- d'Afflighem, v. App. 5.
d'Angleterre, v. App. 5.
d'Aremberg, v. 406, App. 5;
figured, vii. 178 ; 2 S . iii. 63.
Blanc, v. App. 5.
d'Automne, v. 135.
Bosc, v. App. 5.
de Caen, v. App. 5.
de Caissoy, v. App. 5.
de Capiaumont, v. 406, App. 5.
de Chassery, v. App. 5.
Coloma, v. App. 5.
Crappaux, v. App. 5.
Diel, v. 410, App. 5 ; 2 S. iii. 63.
Doré, dit d'Ausson, v. App. 5.
Duquesne, v. App. 5.
Duval, v. App. 5.
Easter, 2 S. iii. 63.
Extra, v. App. 5.
Gris, v. App. 5.
Doré, v. App. 5.
d'Hiver, v. 133.
Rance, v. App. 5 ; figured, 129 ; described, 130.

Rouge, v. App. 5.
Vert, v. App. 5.

- Bezi de Chaumontel, v. 133, App. 5. d'Henri (Bezi d'Héri), ii. 42; figured, i.
d'Héri, 2 S. i. 329 ; figured, 328 ;
v. 131, App. 5.
- de Montigny, v. 131.
de la Motte, v. App. 5 ; figured, 129; described, 132.
——Vaet, v. 266, 407, App. 5.
_Black Bess of Castle Menzies, figured, vii. 328.

Black, of Bogmill, vii. 300 ; figared, vii. 324.

- Blanquet, Petit, v. App. 7.
-Bon Chrétien, ii. 104.
d'Angleterre, v. App. 5.
d'Auch, v. App. 5. d'Eté, v. App. 5.

Pear, Bon Chrétien d'Eté Doré, v. App. 5.

- d'Hiver, v. 132, App. 5.
——Summer, v. 396.
—__Turc, v. App. 5.
- Bonne-ente, v. 135.

La Bonne Malinoise, iv. 276; v. 408 ;
figured, v. 409.

- Bosch, v. App. 5.
- Bostonienne, v. App. 5.
- Bourdon Musqué, v. App. 5.
- Bourgmestre, v. App. 5.
- Briery Bush, figured, vii. 306.
- Brigton, figured, vii. 312.
__ Bringewood, 2 S. ii. 64.
——Broom Park, 2 S. ii. 65.
——Brougham, 2 S. ii. 64.
- Brown Beurré, ii. 104.
_-Bryan Edwards's, vi. 395.
——Bugi, v. 130.
——Busked Lady, vii. 300 ; figured, 304. tree figured, vii. 331.
-_Cadillac, v. 133.
Calebasse, v. App. 5.
d'Evêque, iii. 119.
d'Hollande, v. App. 5.
Calliot Rosat, ii. 48 ; figured, 42 ; v. 397, App. 5.
-Camerling d'Allemand, v. App. 5.
——Canivette, v. App. 5.
-Canning, v. App. 7.
-_ de Capucin, v. App. 7.
- Catharine Beurré, v. 265.
_Catillac, ii. 104; v. 133; 2 S. iii. 63.
- de Cent Couronnes, v. App. 7.
_Chaptal, v. App. 5; 2 S. i. 330 ; figured, 328.
- Chardig, ii. 404.

Charles d'Autriche, ii. 404 ; iii. 120 ; iv.
521 ; ₹. App. 5.
——Charlotte, v. App. 7.
-Charnock, vii. 299 ; figured, vii. 309.

- Le Chasserie, ii. 50 ; figured, 42.
- Chat Brulé, v. 133.

Chaumontel, ii. 104, 253 ; v. 133 ; 2 S.
iii. 52,63 .
——of China, v. 121.
Chinese, 2 S. iii. 241.
_Christie, vii. 299.
Late, vii. 327.
——Citron des Carmes, v. App. 5.
_Citronelle, v. App. 5.

- Clydesdale, figured, vii. 327.

Colmar, ii. $80,81,104,161$; iii. 118 ; v. 134, App. 5.
experiment for combining the qualities of that pear with the hardiness of the Swan's-egg, i. 179.

Pear, Colmar Deschamps, v. 407.
Épineuse, v. 267.
Musqué, v. App. 5.
Le Petit, v. App. 5.

- Colmart, v. 134.

Comperette, v. App. 7.
Crassane, ii. 81, 104, 105 ; v. 134. experiment with, i. 181.
how it may be improved, i.
App. 8.
2 S. ii. 119.
Althorp, 2 S. i. 106 ; figured, Antoine, v. App. 6.
Winter, 2 S. i. 108.
——Cressann (Crassane), ii. 42 ; figured, $i b$.
Cramoisine, v. App. 5.
Crawford, vii. 299 ; figured, vii. 313.
Croft Castle, 2 S. ii. 66.
Crustuminum, of the Romans, v. 132.
Cuisse Madame, v. App. 4.
Délices d'Ardenpont, v. App. 6.
de Charles, v. App. 6.
Hardenpont, v. 267.
Denny and Dionier, varieties mentioned
by Worlidge, i. 230.

- Diana, i. 230.
- Diel, vii. 300.

Red, figured, vii. 305. of Gourdie Hill, figured, vii. 322.
Dillen, iii. 119.
Donville, v. 134.
Dorothée (la), v. App. 6.

- Double Fleur, v. 135.
de Guerre, 2S. i. 330 ; figured, 328. Krijg's, iv. 277.
Rousselet, v. App. 6.
Downton, figured, 2 S. i. 104.
Doyenné, v. 135.
Blanc, v. 135.
Gris, vii. 177; figured, v. 129 ; described, 136.
——Panaché, vii. 177.
- Drummond, vii. 299 ; figured, vii. 309.
-Duc d'Aremberg, v. 407.
- Duc de Berry, v. App. 6.
-_Duchesse d'Angoulême, 2 S. iii. 63 ; figured, vii. 176.
- Duchesse de Mars, v. App. 6.
-Duncan, vii. 300 ; figured, vii. 320.
- Dunmore, 2 S. ii. 66.
——Dupré, v. App. 6.
- Early Christie, figured, vii. 307.
- Eastnor Castle, 2 S. i. 107 ; figured, 104.
- Echasserie, ou Poire d'Euf, v. App. 6.

Elcho, vii. 300 ; figured, vii. 320 ; tree
figured, vii. 331.
Elton, account of, ii. 1 ; figured, ib.

Pear, Elton, always without seeds, ii. 1.

- Elshin Haft, figured, vii. 306.
_-Epine d'Hiver, v. App. 6; v. 137.
——_ Rouge, v. App. 6.
Verte d'Eté, v. 6.
-L'Espine de Hyver, ii. 57 ; figured, 42.
- Eyewood, 2 S. ii. 66.
—— Favourite (la), v. App. 6.
——Figue, iv. 518; v. App. 7.
- Flower of Monorgan, vii. 300 ; figured, vii. 318.
_- Fondante d'Havay, v. App. 6.
-_ Batave, v. App. 6.
—— de Brest, v. App. 6. de Panisel, v. 410. Pariselle, v. App. 6.
——Forelle, v. 408; figured, v. 409.
- Fourcroy, v. App. 6.
——Foxley, 2 S. i. 103.
- Franchipane, v. 137 ; App. 6.
_- Franc-réal d'Hiver, 2 S. i. 331.
- Frangipane, v. 137.
- Gansel's Bergamot, ii. 104.
- La Garde d'Ėcosse, v. 138.
-Garlick, of the West Indies, v. 100.
-_Garnon's, 2 S. i. 103.
_-Germain Baker, ii. 53.
Gilogille, v. 138.
Glout Morceau, iv. 276 ; v. 407 ; 2 S. ii.
105; 2 S. iii. 63; figured, vii. 178.
Gloutonne Dupuis, v. App. 6.
-Gloux Morceaux (Glout Morceau), v. App. 6.
-à Gobert, v. 138.
_-Gold, or Gowd, Knap, vii. 302.
figured, vii. 316. of Castle Huntley, gre,

Genuine, figured, vii. 308 ; tree figured, vii. 331. of Gourdie Hill,
figured, vii. 315.
vii. 316. Newbigging, figured,
vii. 315.

- Golden Globe, figured, vii. 317.
——Good King Harry, ii. 42; figured, ib.
- Goutte d'Or, v. App. 6.
- Governor Stuyvesant's, vi. 418.
_-Grande Bretagne, v. App. 6.
- Grannie, figured, vii. 329.
——Gratiole, v. App. 6.
- Green Cail Castock, figured, vii. 323. of Hill, figured, vii. 329. of Yair, iv. 214; figured, vii. 308.
-Grey Beurré, ii. 104.
Grey Good Wife, figured, vii. 307.

Pear, Grise de Cassiemari, v. App. 7.

- Gros Blanquet, v. App. 6.
——Cerceau, v. App. 6.
Monarque, v. App. 6.
Mouflin, v. App. 6.
Muscat, v. App. 6.
——Gros Palentin, v. App. 6.
—— Romain, v. App. 6.
_- Grosse Musk, ii. 42; figured, ib. Queue (la), v. App. 6.
- Hazel, figured, vii. 310.
- Ice, ii. 50.
- Incommunicable (l^{\prime}), v. App. 6.
- Inconneau, ii. 43; figured, 42.
—— Inconnue la Fare, v. 140.
- Iron, vii. 303.
-_Jargonelle, v. App. 6.
_- des Jesuites, v. App. 7.
——de Jesus, v. App. 7.
-Josephine, v. App. 6.
_Kilwinning, figured, vii. 327.
- Knevett's, iv. 518.
——Knight's, iii. 119.
-Krijg's Double, 2 S. i. 330.
-Kumelbirne, Französische, 2 S. i. 329.
- Lammas, figured, vii. 314.
- de Lemon, v. 135.
—— Lodge, figured, vii. 307.
- Longueville, vii. 299.

Louise Bonne, i. 227 ; ii. 43 ; figured,
42 ; v. App. 6.
_-de Louvain, v. App. 7.

- Madame Verte, v. App. 6.
- Mackray, figured, vii. 330.
- Magdeleine (la), v. App. 6.

Maiden, ii. 47. of Zantoigne, ii. 47.
Marie Louise, ii. 404; iii. 120 ; vii. 176; figured, iv. 519.
——Marquesse, ii. 42 ; figured, $i b$.
-Martin Sec, v. 138, App. 6. de Champagne, v. 138. de Provence, v. App. 6.
—— Marveille d'Hiver, ii. 51.

- Mary (la), v. App. 6.
- Merveille d'Hiver, v. App. 6. de la Nature, v. App. 6.
-Messire Jean, v. 138.
-Milanoise, v. App. 6.
Cuvelier, v. App. 6.
Moccas, 2 S. ii. 65.
Monarch, 2 S. i. 106 ; figured, 104. (Knight's), 2 S. ii. 68.
-Mon Dieu Rousselet, v. App. 7.
Monie Penny, figured, vii. 312 .
Monorgan Pheasant, figured, vii. 315.
Monsieur le Curé, 2 S. iii. 110.

Pear, Mouille Bouche, v. App. 6.

- Muirfowl Egg, figured, vii. 309.
—__ Galston, vii. 330.
—— Large, figured, vii. 319.
- Muscat, Allemande, v. App. 6. Robert, ii. 47 ; figured, 42 ; \mathbf{v}.
App. 6.
- Muscatel, v. 397.
—— Musked Summer Bon Chrétien, ii. 251.
- Napoléon, ii. 404 ; iv. 215, 520 ; v. App.

6; 2 S. iii. 63.

- Neige, v. 135.
- Neill, 2 S. iii. 63.
_- de Noirchair, v. App. 7.
- Nouvelle Doré, v. App. 6.
- Nuttie, figured, vii. 313.
- Euf de Cigne, v. App. 6.
- Onion, ii. 54 ; figared, 42.
- d Or, v. App. 7.
——Orange d'Eté, v. App. 6.
- d'Hiver, v. App. 6 ; figured, v. 129 ; described, v. 139. Nouvelle, v. App. 6. Verte, ii. 45 ; figured, 42.
Verte, ii. 45; figured
——Paddington, ii. 104 ; v. 130.
- Palentin, v. App. 6.
- Passa Tutti, v. App. 6.

Passe Colmar, v. 410 ; v. App. 6; 2 S ,
iii. 63 .

Gris de Precel, v. 410. dit Precel, v. App. 7.
Madeleine, spurs of, figured, 2 S .
ii. 473.

- Pastorale, v. App. 7.
- Peasmeal pock, figured, vii. 311.
- Peaux Grise, v. App. 7.
——Pêche, v. App. 7.
- Pengethley, 2 S. ii. 63.
- Pepin Sauvé, v. App. 7.
- Petit Krijg's, iv. 277.

Muscat, ii. 51; figared, 42.
Oin, ii. 51 ; figured, 42.

- Oin, i. 51 ; ${ }^{-}$Pigpin, figured, vii. 313.
- Pistolette, iv, 518.
- Pitfour, 2 S. i. 109.
- Poire-Manne, v. 134.
—— de Vin, v. App. 7.
- Pomegranate, ii. 54.
—— Portail du Poitou, v. App. 7.
- Poundie, or Pound, figured, vii. 323.

Pow Meg, vii. 300 ; figured, vii. 330 ; tree
figured, vii. 331.
—— de Prêtre, v. 139.
de Prince, ∇. App. 7.
Princesse d'Orange, iv. 277.
Pucelle, v. 133.
\longrightarrow de Saintonge, v. 133.

Pear, Queen, ii. 47.

- de Quinte, v. App. 7.
- Ramelier, v. App. 7.
- Red, of Busie, vii. 300; figured, vii. 314. Doyenné, account of, i. 230 ; figured, i. of the Leys, figured, vii. 316.
Reine Caroline, v. App. 7.
Riche Dépouille, v. 409.
Robine, v. App. 7.
- Rob Rind, figured, vii. 322.
- Roi de Rome, v. App. 7.
_- Rose Dorée, iv. 277.
_- Ross, 2 S. ii. 63.
- Rouse Lench, figured, 2 S. i. 104.
- Rousselet d'Hiver, v. App. 7.
——de Rheims, v. App. 7.
——Royale d'Eté (var. of the Robine), v. 7. d'Hiver, v. 140, App. 7.
Russelet de Rhine (Rousselet de Rheims),
ii. 43; figured, 42.

Spicer, ii. 48.
——St. Bernard d'Hiver, v. App. 7.
de St. Croix, v. App. 7.

- St. François, v. 140.
-St. Germain, i. 180, 181, 182, 226, 227 ;
ii. $78,81,161$; v. 140 , App. 7 .
——Uvedale's, 2 S. ii. 110.
——St. Ghislain, v. App. 7.
——St. Laurent, v. App. 7.
- St. Lézin, v. 141.
- St. Michel, v. 135.
—— Sabine d'Eté, iv. 275.
_- Sanguine d'Italie, v. App. 7.
- Sanguinole, v. App. 7.
——Sanspareille, v. App. 7.
——Sans Peau, ii. 53 ; figured, 42 ; v. App. 7.
———Pepin, v. App. 7.
———Sartière, v. App. 7.
——Satin Vert, v. App. 7.
Saquette (la), v. App. 7.
Scotch, var., account of, vii. 299.
Seckel, account of, iii. 256 ; iv. 520 ;
figured, iii. 258.
-_de Seigneur, v. 135, App. 7. d'Eté, iv. 276.
-Sept en Gueule, v. App. 7.
Sha Lee, or Sand, vi. 396.
Silvange, Early, v. 429.
Green, v. 429, 430.
Long, v. 429.
Yellow, v. 429.
——Somelier de Claizon, v. App. 7.
- Spice, vi. 418.
——Stewing kinds, figured, 2 S. i. 328.
- Strawberry, of the West Indies, v. 100.
—— de Sucré, v. App. 7.
cii

Pear, Sucré Rouge, v. App. 7.

- Sucré Verte, v. App. 7.
_- Sugar Loaf, Yellow, figured, vii. 317.
- Super Fondante, v. App. 7.

Swan's Egg, ii. 104, 161, 195, 210 ; vii. 94 .

$$
\text { experiment with, i. } 179 .
$$

Green, figured, vii. 326.
Red, figured, vii. 325.
St. John's, iv. 214.
Tindall's, vi. 396.

- Tarling, v. 130.
- Tarquin, v. 130.
——Terling, v. 130.
- Thrifty, figured, vii. 314.
—— Tillington, iv. 521.
—— Trout, v. 408.
- Urbaniste, v. 411, App. 7.
- Uvedale (Uvedale's St. Germain), ii. 53 ; figured, 42.
-_ Uvedale's St. Germain, ii. 104.
- Vallée Franche, Spurs of, figured, 2 S.
ii. 473.
- Van Mons, v. 266.
- Vermillon d'Eté, v. App. 7.
- Vert Longe, ii. 49 ; figured, 42.
——Verte Longe Pannachée, ii. 55.
- Virgoulé, v. 141.
- Virgouleuse, v. 141, App. 7.
-Virgolouze (Virgouleuse), ii. 48 ; figured, 42.
- Volmerange, v. App. 7.
- Volemum, of the Romans, v. 133.
——Wall Pole, vii. 306 ; figured, vii. 326.
——Whitfield, 2 S. i. 108.
- Whorle, figured, vii. 324.
——Williams's Bon Chrétien, ii. 250 ; figured, $i b$.
ing the age of the original tree, iii. 357.
——Windsor, iv. 518.
- Winter Musk, ii. 42 ; figured, ib.

473.

Nelis, spurs of, figured, 2 S. ii.
Orange, ii. 42.
Ricket, figured, vii. 325.

- Wormsley Grange, 2 S. i. 105.
- Worry, vii. 300; figured, 321.
-_Yutte, v. App. 7.
Pearl-ash, 2 S. iii. 96.
Pearson, Mr. John, vii. 470 ; 2 S. ii. 180.
Pease Earth-nuts, ii. 359.
Pêches lisses, v. 531.
-_Violettes, v. 535.
Pedda Caanrew (Telinga), v. 120.
Peganum Harmala, 2 S. ii. 241, 279.
Pedicularis canadensis, vi. 295.

INDEX.

Peiresc, i. 46.
Pelargoniums, vi. 438.
hybrid varieties of, iv. 46. mode of preserving, during winter, those planted out in the open borders, iv. 414.

Pelargonium ardens, iv. 46. citriodorum, iv. 46. flavum, 2 S. ii. 270.
fulgens, iv. 46.
ignescens, iv. 46. lanceolatum, iv. 46. lobatum, 2 S. ii. 270. tricolor, iv. 46. triste, 2 S. ii. 270. zonale, iv. 46. experimented on by the application of oxygen to the soil, i. 233.
Pé-leang-kin, vi. 485.
Pendergast, Captain James, iv. 341, 345, 346,347 ; vi. 470.
Penjuru, v. 115.
Penn, Mr. John, iv. 463.
Pentadesma butyracea, v. 457.
Pentland, J. H., Esq., plant received from, 2 S. ii. 419. Mr., 2 S. ii. 461.
Pentzia flabelliformis, 2 S. ii. 271.
Pentstemon imberbis, 2 S. iii. 120.
Peploe, Samuel, Esq., vi. 171.
Peppermint, 2 S. iii. 62.
Pepys, W. H., Esq., iv. 158 ; 2 S. iii. 35.
Peramium repens, i. 301.
Pergularia odoratissima, vii. 392.
P- sanguinolenta, vi. 72.
Perilla polystachya, vi. 276.
Perim-kara, v. 120.
Peristeria Barkeri, 2 S. iii. 136.
——elata, 2 S. iii. 161.
Periwinkle, 2 S. ii. 226, 232.
Perkins, Mr., 2 S. ii. 434.
P_Samuel G., Esq., vi. 394.
Pernettia mucronata, 2 S. ii. 285.
P-pilosa, 2 S. ii. 285.
Perrin, Mr. W., 2 S. ii. 178.
Perry, quantity afforded by one tree, 2 S . i. 215.

Persicaria orientalis, vii. 41.
Persoon, vi. 37 ; vii. 228.
Petamenes quadrangularis, i. 324.
Peters, Henry, Esq., v. 486.
Petersen, Mr. Jens Peter, on the cultivation of celeriac as practised in Denmark and Germany, vi. 419.
on the cultiva-
tion of horse radish, 2 S . i. 91.
Petiver, vii. 520.

Petre, Lord, vii. 529.
Petrocarya, v. 452.
Petroselinum depictum, 2 S. iii. 154.
Pettiward, Roger, Esq., ii. 336 ; vi. 139.
Pfeiffer, Dr., 2 S. ii. 470.
Phacelia tanacetifolia, 2 S. i. 479.
Phædranassa obtusa, 2 S. iii. 156.
Phaius grandifolius, i. 299.
Phalangium esculentum, iv. 445.
__nepalense, vi. 276, 277.
Phaseolus chonda, vi. 55.
-_ nanus, vi. 55.
Phaylopsis longifolia, vi. 81.
Phelps, Rev. William, description of an improved pit for raising cucumbers, melons, and other vegetables, by the use of steam instead of stable dung, v. 353.
tecting wall-trees from the effects of frost, vi. 109 .

Philadelphus mexicanus, 2 S. iii. 128.
Phillips, Mr. George, on the cultivation of the Bignonia venusta, 2 S. ii. 122.
——Mr. Henry, vi. 578. Mr., iv. Preface ; v. 316.
Phillyrea latifolia, 2 S. ii. 278.
\longrightarrow media, 2 S. ii. 244.
——obliqua, 2 S. ii. 244, 278.
——rosmarinifolia, 2 S. ii. 278.
Philogyne calathina, i. 356.
—— conspicua, i. 355.
heminalis, i. 356.
Phlomis fruticosa, 2 S. ii. 279.
——ferruginea, 2 S. ii. 279.
Phœnix dactylifera, vi. 44.
Phormium tenax, vii. 40 ; 2 S. ii. 244, 256.

Phosphate of ammonia, 2 S. iii. 58, 64, 66,79, $80,81,83,85,86,87,89,97,192,193$, 194, 195, 203, 204, 205, 206.
Phosphates, earthy, 2 S. iii. 54, 189.
Phosphate of lime, 2 S. iii. 70, 79, 80, 81, 82, $83,85,86,194,195$.
—— of soda, 2 S. iii. $37,38,89,192$.
Phosphoric acid, 2 S. iii. 36, 47, 50, 51.
Photinia arbutifolia, 2 S. ii. 244, 251.
serrulata, 2 S. ii. 244, 255.
Phrynium dichotomum, i. 276.
leptostachyum, 2 S. i. 466.
Phycella chloracra, 2 S. iii. 151. corusca, vii. 74.
Phylidrum lanuginosum, i. 270.
Phyllanthus emblica, v. 117.
Physianthus albens, 2 S. ii. 285.
Phytolacca decandra, iv. 444.
Pic du Midi, elevation of, and number of vegetable species found there, i. 18, 19.

Picridium, Garden, vi. 583.

- vulgare, vi. 583.

Piers of garden walls, iv. 269 ; figured, 270, 272, 273.
Pierard, M. Charles Francis, note on the pears called Silvanges, and particularly on the Silvange verte, v. 429.
Pigeons' dung, its use in the formation of liquid manure, iv. 412.
Pigeon plum, Yellow (Chrysobalanus luteus), v. 453.

Pinaioua, v. 101.
Pinaou, v. 101.
Pinguicula grandiflora, vi. 405.

- lúsitanica, vi. 405.

Pine, Cembra, a native of the Swiss Alps, i. App. 17.
Pine-apples, 2 S. iii. 128, 148, 157. iv. 534.
production of seeds in this climate,
description of a mode of cultivating, iv. 363.
cultivation of, iv. 543 ; v. 142, 393 ; vi. 235 ; vii. 409 ; 2 S. i. 388.
culture of, without bark or other hot-bed, iv. 72.

Mr. Dall's mode of culture, vii. 184.
method of growing by dung-heat in a vinery, vi. 118.
mode of treating the plants so as to make them fruit within the year, iv. 392.
grown in a frame with the heat of leaves alone, v. 486.
comparative effects of light in summer and winter on the plants to generate sap, v. 272.
compost for, ii. 407.
temperature, v. 228.
effects of high and of low temperature on, vii. 409.
conjectures on the time when they were first grown in England, i. 150.
raised in greater perfection in this than in their native country, i. 150.
pits for fruiting described, iv. 533 ; figured, iv. 555 ; v. 395.
iv. 555.
plants, mode of treating large,
supplying with fresh soil whilst the fruit is swelling, iv. 556 .
effects of steam employed as a means of bottom heat for, iv. 408.
classification of species and varieties, 2 S. i. 2.
civ

Pine-apple, Allen's Seedling, 2 S. i. 22.
—— Anson's, 2 S. i. 5, 15, 20, 22.
33.

Antigua, Black, 2 S. i. 5, 15, 26 ,
Brown, 2 S. i. 13, 26.
 Copper-coloured, 2 S. i.
16.

Green, 2 S. i. 4, 9, 17. Jagged-leaf Black, 2 S.
i. 26 .

Lemon, 2 S. i: 15. Lord Effingham's, 2 S. i.
31.

Smooth, 2 S. i. 8.
Smooth-leaved, 2 S. i. 8.
Green, 2
S. i. 9.

Bahama, Bird's-eye, 2 S. i. 23.
—— Barbadoes, Black, 2 S. i. 11.
i. 23. Copper-coloured, 2 S . Lemon-coloured, 2 S .

i. 19 .

White, 2 S. i. 19.
——Blood, 2 S. i. 5, 32.
——Blood-red, iv. 214 ; 2 S. i. 5, 32.
——Bogwarp, 2 S. i. 16.
Brazil, 2 S. i. 16.
Buck's Seedling, 2 S. i. 5, 24.
Cape Coast, 2 S. i. 16.
Caraile, Black, 2 S. i. 31.
Yellow, 2 S. i. 31.
—— Claret, 2 S. i. 32.
——Cochineal, 2 S. i. 16.
Cockscomb, 2 S. i. 17, 25. St. Vincent's, 2 S. i.

16.

Russian, 2S. i. 5, 29.
Copper, 2 S. i. 16.
Copper-coloured, 2 S. i. 11.
Crown, 2 S. i. 27.
Demerara, New, 2 S. i. 4, 14.
Dominica, 2 S. i. 22.
Enville, 2 S. i. 5, 25, 33.
New, 2 S. i. $5,25$. Old, 2 S. i. 25. Spring Grove, 2 S. i. 5,
25.

Sugar-loaf, 2 S. i. 25.
Fisherwick, Striped Globe, 2 S. i.
4, 7.
Globe, 2 S. i. 5, 19.
20.

Buck's Seedling, 2 S. i. 5,
English, 2 S. i. 13, 19.
Russian, 2 S. i. 5, 28.
Gold-striped, 2 S. i. 31.

Pine-apple, Green-leaved, with purple stripes and spines on the edges, 2 S. i. 23.

Havanna, 2 S. i. 4, 7, 8.
Brown, 2 S. i. 8.
Downton, 2 S. i. 4, 13. Green, 2 S. i. 9.
Smooth, 2 S. i. 4, 9. Green, 2 S. i. 9.
Hussar, 2 S. i. 17.
Indian Black, 2 S. i. 28.
Creole, 2 S. i. 16.
Jamaica, 2 S. i. 11.
13, 33.
Black, 2 S. i. 4, 11,
—— New, 2 S. i. 4, 13.
New Black, 2 S. i. 13.
Java, Broad-leaved, 2 S. i. 17.
Green, 2 S. i. 4, 11.
Narrow-leaved, i. 11.
King, 2 S. i. 4, 7.
Common, 2 S. i. $7,8$.
Grass-green, 2 S. i. 7.
Old, 2 S. i. 7, 8, 16.
Knights Seedling, 2 S. i. 13.
Lapete, 2 S. i. 8.
Lord Bagot's Seedling, 2 S. i.
5, 26.
Malacca, 2 S. i. 16.
Mocho, 2 S. i. 21.
Montserrat, 2 S. i. 5, 11, 13, 16, 28.
i. 28.

- New Providence, of large size, v. 264.

Olive, Green, 2 S. i. 18.
New Green, 2 S. i. 17.
Striped-leaved, 2 S. i. 31.
Orange, Blithfield, 2 S. i. 5, 26.
Otaheite, 2 S. i. 5, 20, 22.
Pitch Lake, 2 S. i. 24.
Prince of Wales's Island, 2 S. i. 14.
2 S. i. 14.
Striped,
. Providence, some particulars respecting those grown at Ragley, v. 206.

Providence, 2 S. i. 10.
18.
i. 10 .

Mealy-leaved, 2 S .
New, 2 S. i. 10. Prickly, 2 S. i. 27. Royal, 2 S. i. 17. Royal Green, 2 S.
i. 17 .

White, 2 S. i. 4, 10,
34.

Pine-apple, Providence, Wollaton, 2 S. i. 17. i. 17 .
-_ Queen, 2 S. i. 5, 29, 32. notice of one exhibited,
iv. 52 .

$$
\text { Anson's, } 2 \text { S. i. } 15 .
$$

Antigua, 2 S. i. 5, 31.
Barbadoes, 2 S. i. 19.
Broad-leaved, 2 S. i. 29.
Common, 2 S. i. 29.
Green, 2 S. i. 5, 30.
Lemon, 2 S. i. 5, $19,34$.
Moscow, 2 S. i. 5, 30, 33.
Narrow-leaved, 2 S. i. 29.
Old, 2 S. i. 29.
Purple-striped, 2 S. i. 23.
Ripley's, 2 S. i. 5, 30.

- New, 2 S. i. 19.

2 S. i. 30.
Silver-striped, 2 S. i. 5, 31.
Striped, 2 S. i. 5, 31.
Ribbon Grass, 2 S. i. 14.
———Ripley, 2 S. i. 5, 8, 28, 33.
—— New, 2 S. i. 16.
Old, 2 S. i. 28.
Red, 2 S. i. 16.
Ripley's, 2 S. i. 8.
5,30 .
Russian Globe, v. 265 ; 2 S. i.
5, 28.
St. Kitts, 2 S. i. 13, 16.
Thomas's, 2 S. i. 18.
Vincent's, Green, 2 S. i. 18. 2 S. i. 5, 18, 33. M•Rae's, 2 S. i. 13.
Scarlet, 2 S. i. 4, 6. Brazilian, 2 S. i. 6.
Sierra Leone, v. 461, 463. 2 S. i. 5, 15. Chevalier's, 2 S .
i. 16.

Silver-striped, 2 S. i. 14, 31.

- and Pink, 2 S. i.

14.

i. 14 .

Sumatra, 2 S. i. 16.
Striped-leaved, from Jamaica, 2 S .
i. 23.

Stubton Seedling, 2 S. i. 18.
Sugar-loaf, Antigua, 2 S. i. 21.
Bahama, 2 S. i. 18.

- Black, 2 S. i. 5, 23.
- Brown, 2 S. i. 5, 21,

22, 28, 33.

INDEX.

Pine-apple, Sugar-loaf, Brown-leaved, 2 S. i. 5, 21.

21, 23.
Brown-striped, 2 S. i.
21, 23.
Green-striped, 2 S. i.
23.

Green, 2 S. i. 22, 23.
Mealy-leaved, 2 S. i.
5, 22.
S. i. 22.
i. 23.
S. i. 4, 12 Prickly Striped, 2 S.
i 10
Smooth-leaved, 2 S.
St. Vincent's, 2 S.
i. 11, 13 .

Striped, 2 S. i. ${ }^{23 .}$ Striped-leaved, 2 S.
i. 5, 23.
2 Striped Smooth-leaved,

2 S. i. 4, 10.
White, 2 S. i. 22, 23. Surinam, 2 S. i. 5, 20.
\square Tawny, 2 Striped, 2 S. i. 4, 14. Tawny, 2 S. i. 11
Trinidad, 2 S. i. 5, 24.
Trooper's Helmet, 2 S. i. 5, 17. Waved-leaved, 2 S. i. 4, 6.
Welbeck Seedling, iv. $213 ; 2$ S.
i. 5,27 .

Wild, of Sierra Leone, 2 S. i. 15.
Wortley's West Indian, 2 S. i. 26.
Pine-houses, remarks on, i. 150.

- house and pits, description of, v. 499.
and melon pit, v. 233.
pit, description of one, vii. 87 ; figured,
vii. 88.

Scott's, v. 220 ; elevation, plan and
section of, v. 221, 222.

- pits, heated by leaves only, vi. 111.

2 S. i. 197 .
—_ in the Society's Garden, vi. 383.

- stove, improvement suggested in its con-
struction, v. 245.
- section of Mr. Jenkins's, iv. 364.

Pinchback, William, Esq., vi. 520.
Pinks, on their cultivation, iv. 451.
Pinus apulcensis, 2 S. iii. 124, 128.

- Ayacahuite, 2 S. iii. 128, 131, 135.
- Brutia, 2 S. ii. 279.
- canariensis, 2 S. ii. 244, 270.
cedrus, vi. 496.
Cembra, i. App. 17.
Clanbrasiliana, vi. 496.

Pinus Devoniana, 2 S. iii. 127.

- excelsa, 2 S. ii. 244, 265.
—— filifolia, 2 S. iii. 139.
——halepensis, 2 S. ii. 244, 279.
— Hartwegii, 2 S. iii. 123, 138, 145.
- insignis, 2 S. ii. 244, 251.
- Larix, iv. 416.
__ with red or pink flowers, iv. 416.
. 16 from the Tyrol, with white flowers,
iv. 416.
- Lambertiana, 2 S. ii. 244.
_- leiophylla, 2 S. ii. 262 ; iii. 122, 123, 126.
- Lemoniana, figured, 2 S. i. 512.
- Llaveana, 2 S. ii. 244, 251 ; iii. 124.
- longifolia, 2 S. ii. 244, 265.
- macrocarpa, 2 S. ii. 262.
- maritima, vi. 47.
- microcarpa, iv. 416.
- mitis, 2 S. ii. 262.
- oocarpoides, 2 S. iii. 139, 141.
- oocarpa, 2 S. iii. 122, 129.
- palustris, 2 S. ii. 244, 262.
- patula, 2 S. iii. 124.
—— Pinea, vi. 47 ; 2 S. ii. 244.
- ponderosa, 2 S. ii. 262.
- pseudostrobus, 2 S. iii. 122, 123.
- Russelliana, 2 S. iii. 127.
- Sabiniana, 2 S. ii. 244, 262.
- sinensis, 2 S. ii. 254.
- sylvestris, i. App. 17.
-Teocote, 2 S. ii. 399 ; 2 S. iii. 126, 127.
- tenuifolia, 2 S. iii. 141.

Pisang Dingen, v. 84.
——Gabba Gabba, v. 84.
———Swangi, v. 84.
——Tando, v. 84.
Pishamin, Sour, v. 456.

- Sweet, v. 455.

Pishanna (Telinga), v. 120.
Piso, v. 103 ; vi. 274.
Pistacia Lentiscus, vi. 40, 499; 2 S. ii. 279.
——narbonensis, 2 S. ii. 279.
——Terebinthus, vi. 39 ; 2 S. ii. 279.
vera, 2 S. ii. 279.
Pitaya, 2 S. iii. 119.
Pit, Atkinson's Melon, vi. 385.
Pitcairn, Dr., iv. 303.
Pitcairnia bracteata, β, i. 269.
——_staminea, vi. 82.
\square sulphurea, i. 269.
Pit, Baldwin's Pine, vi. 387.
——Buck's, vi. 384.

- for early cucumbers, figured, v. 493.
——forcing, iv. 220 ; figured, iv. 223.
__for fruiting Pines and Melons, described,
iv. 533 ; plan of, 555.

Pit and Stoves heated by fire and steam, vi. 440 ; figured, vi. 445.

- Mr. Knight's Melon and Pine, v. 223; section and plan of, v. 226.
-M‘Pbail's Melon, vi. 385.
- for plants, heated by dung in the Garden
of the Society, vi. 382.
Protecting, in the Garden of the Society, vi. 375.

Scott's, vi. 384.
steam, Count Zubow's at St. Petersburgh, iii. 430.
for Winter and early Spring Forcing, vi. 425; figured, 428.
Pittosporum Tobira, vii. 36; 2 S. ii. 244, 254.
Place, Francis, Esq., vi. 64, 82, 88, 93, 94, $96,98,273,283,291,295,296$; vii. 52 , 247, 249.
Plantago nivalis, 2 S. iii. 156.
Plantain, 2 S. iii. 128, 157; v. 83, 465.
Otaheite, 2 S. iii. 157.
—— Pacifico, 2 S. iii. 157.
Plants, remarks on manuring, i. 6 .
——their tendency to adapt themselves to the climate in which they are placed, i. 3.

- in pots, on the application of manure to them in a liquid form, ii. 127.
- preparation and management of during a voyage from India, 2 S. i. 140.
- transportation of, from China, iii. 421. -box for protecting them during sea voyages, figured, v. 199. tender, method of protecting, v. 365.
-Chinese, how to import them, vii. 396. packing of in foreign countries, v. 192. in pots, remarks on as regards exposure of the sides of the pots to the air, vii. 258. 121.
enumeration of some containing nitric acid, 2 S. iii. 52.
Plaster of old kitchens much esteemed as a manure by the Chinese, v. 52 .
Plat, Sir Hugh, 2 S. iii. 201.
Platanus cuneata, vi. 496.
- occidentalis, vi. 495. orientalis, vi. 496.
Plautus, vi. 55.
Platystemon californicum, 2 S. i. 405.
Platystigma lineare, 2 S. i. 407.
Platoff, General, iv. 213.
Platfair, Professor, vi. 433, 434.
Pleasance, Mr. Wilham, apple exhibited by, v. 269.
Pleroma heteromalla, vii. 392.
Pliny, ii. 139; iii. 2; App. 23, 25 ; iv. 453;
v. 63 ; vi. $32,34,35,36,37,39,42,45$, 49, 50, 52, 54.
Plinx, his character of the apricot, i. 152.
-_ his account of Tiberius's culture of the cucumber, i. 148.
Plough, Chinese, v. 50.
Plukenet, vi. 348.
Plum, vi. 496.
an object for which the Horticultural Society proposed to give premiums, i., App. 2.
- proposed method of raising new varieties of, i., App. 2.
-_ classification of its varieties, iv. 323.
-many varieties possessed by the Romans, i. 153.
-_ numerous varieties of derived from the sloe, i. 2, 26.
——on forcing, iv. 531.
—— description of a new seedling, iii. 214.
qualities of newly raised fruits exem-
plified in, vi. 529.
5 5en. seedlings raised by Mr. Knight, vi.
529 ; figured, vi. 530.
- account of a new variety, Knight's,

No. 6 (the Ickworth Impératrice), 2 S. i. 53 .
varieties preferred for forcing, iv. 531.
tree, dwarfed, much esteemed by the Chinese, iv. 231.
-Mr. Knight's experiments on, i. 248. pruning and training, iv, 426. the length of time it requires to attain maturity, i. 39.
Plum, Armenian (Apricot), iii. App. 24, 27.

- Black (Vitex umbrosa), v. 455.
——Caledonian, ii. 402.
——Carcassonne, i. 366.
- Chinese, vii. 239. S. i. 53.
account of, i. 182. of different colours on the same branch, vi. 393.
——Common, of the West Indies, v. 99.
- Country, v. 90.
-Damascena, a variety so named among the Romans, i. 153.
——Damascus (Apricot), iii. App. 24.
——Damson, Shropshire, iii. 363.
-_Dame Aubert, ii. 160.
- Downton Impératrice, v. 381.
-Dunmore, 2 S. ii. 68 .
-_Gingerbread (Parinarium macrophyl-
lum), v. 452.
-Goliath, iv. 207.
Green or Grass, i. 155.
Green Gage, i. App. 8; ii. 161, 285 ;
iii. 214.

Plum, Green Gage, origin of the name, i. App. 8.
said to be improved by grafting on an Apricot or Peach stock, i. App. 8.
probably derived from
the Sloe, iii. 87.
Isleworth, iii. 362.
——Hog, v. 90, 450, 451.
of the West Indies, v. 99.
Icaco (Chrysobalanus Icaco), v. 453.
Ickworth Impératrice, figured, 2 S . ii. 522.

- Imperial Diadem, iv. 208.

67.

- Nectarine, ii. 402 ; iv. 207 ; 2 S. iii. 63.

Pear, i. 155.
Red Magnum Bonum, ii. 161.

- Reine Claude, i. App. 8.
_ Rough-skinned, or Gray (Parinarium excelsum), v. 451.
——Small Pigeon (Chrysobalanus ellipticus), v. 453.

Spanish, of the West Indies, v. 99.
Sugar, of Sierra Leone, v. 454.
Wheat, i. 155.
Wilmot's New Early Orleans, figured, iii. 392.

Orleans, iii. 362.
-_Yellow Magnum Bonum, ii. 160.
(Spondias myrobalanus), v. 450.
Stock, height attained by a seedling in a single season, ii. 127.
Plumbago capensis, 2 S. ii. 271.
Plumier, Father, v. 95 ; 2 S. i. 42.
of the The account of tate
of the Tuberose, i. 46.
bre first discovered the Myrobroma fragrans, i. 295.
Pocock, Dr., account of a Fig-tree introduced by him, iii. 433.
Podalyria virginica, vii. 41.
Podanthus Mitigui, vii. 247.
Podocarpus macrophyllus, 2 S. ii. 255.
Pogonia pendula, vi. 294.
Pointer, Rev. Robert, vi. 160.
Poirée, iii. 272, 283.
—_ à Carde Blanche, iii. 284.
Jaune, iii. 284.
Rouge, iii. 284.
Grosse Blanche, iii. 285.
Poiret, v. 26, 27.
Poitead, M., iii. 384 ; v. 141 ; vii. 165, 166.
Synoptical table of Peaches and
Nectarines by, iii. 386.
and Turpin, i. 230; v. 136. cviii

Poiteau and Turpin, their magnificent work on Fruit-trees, i. 230.
Red their description of the Red Doyenné Pear, i. 231.
Poittevin's manure, 2 S. iii. 97, 99.

- disinfected manure, 2 S. iii. 97.
concentrated manure, 2 S. iii. 97.
Poke, iv. 444.
Pole, Cardinal, iii. 435.
said to have imported a Figtree growing in the archbishop's garden at Lambeth, i. 156.
Polianthes tuberosa, or Tuberose, cultivation, description, and figure of, i. 41, 42.
Pollen, observations respecting, i. 105, 106.
__ some remarks on its supposed influence in cross-breeding, v. 377.
- how distributed in cherry-houses, i. 151.

P_ retention of its fertilizing powers, iv. 27.
Pollock, Capt., 2 S. ii. 170.
Polo, Marco, v. 119, 122.
Polyanthus, Black, iv. 19.
Narcissus, i. 362.
Polygala grandiflora, 2 S. ii. 271.

- latifolia, 2 S. ii. 271. myrtifolia, 2 S. ii. 271.
- speciosa, 2 S. ii. 271.

Polygonum volcanicum, 2 S. iii. 135.
Polypodium aureum, iii. 341. crassifolium, iii. 341. decumanum, iii. 340, 341. effusum, iii. 341. giganteum, iii. 339, 341. pectinatum, iii. 341. phyllitidis, iii. 341.
Polyspora axillaris, vii. 531.
Polystachya luteola, 2 S. iii. 116.
——puberula, vi. 279.
Poma amoris, iii. 343.

- aurea, iii. 343.

Pomaderris elliptica, 2 S. ii. 240, 249.
Pomegranate, iii. 111; v. 123; 2 S. i. 465 ;
2 S. iii. 239.

- (of Sierra Leone), v. 459.

Pomet, vi. 37.
Pomi d'oro, iii. 344.
Pomme d'Adam (orange), iii. App. 15.
_ de Cannelle, v. 94.
de Liane, iii. 102.
Pomi del Peru, iii. 344.
Pommier Franc, iv. 566.
——Paradise, iv. 566.
-Sauvage, iv. 566.
Pomo d'Adamo, iii. App. 15.
Pontederia angustifolia, 2 S. ii. 262.
cordata, 2 S. ii. 262.

Ponthieva petiolata, vi. 85.
Pontey, Mr., 2 S. ii. 224.
Poolasang, v. 116.
Poole, Mr. Joseph, iv. 333.
Poore, Sir Edward, observations on the cultivation of stove plants, vii. 389.
Populus grandidentata, vi. 496.
Porlieria hygrometrica, 2 S. ii. 285.
Portland, Duke of, vii. 263.
Portakal Cavac, vi. 57.
Portogallo, iii. App. 16.
Potash, 2 S. iii. 36.
Potato, 2 S. ii. 238 ; 2 S. iii. 156 ; vi. 497.
___ its introduction to England, i. 8. to Ireland, i. 9.
on the time of its introduction, i. 8.
the raising new and early varieties of, an object for which the Horticultural Society proposed premiums, i. App. 1, 2.
_ names by which it was formerly known, i. 9,10 .
——observations on raising new and early varieties of, i. 57 .
———experiments on its culture, i. 153.
i. produce of a given portion of ground, i. 189 .
sets should be placed with their leading buds upwards, iv. 448.
_ observations on the culture of, i. 187. culture of in hot-beds, i. 192.

- remarks on some early varieties, and the best method of forcing them, i. 244, 245. - Mr. Knight's method of manuring for an early crop, i. $249,250$.
forced, account of a method of growing, i. 144.
cultivated for winter use in Cornwall, ii. 75.
beneficial results of planting those which have grown late in the preceding year, ii. 125.
- young, notice of modes of obtaining them, iii. 122, 123.
duce experiment to ascertain the relative produce when cultivated in single or double drills, or in beds, iii. 124.
- culture of, vii. 405 ; 2 S. i. 415.
young, modes of continuing a supply of through the year, iii. 48.
- cultivated in China, v. 50.

An highest range of cultivation on the Andes, 2 S. iii. 153.

- account of an economical method of obtaining very early crops, 2 S. i. 35.
vital union and community of circulating fluid between the old tuber and the plant which has sprung from it, iv. 449.

Potato, remarks on the origin and cure of a disease to which it is liable, i. 192.
—_Curl, a disease of, remarks on its origin and cure, i. 191, 192.
on its prevention, ii. 64.
Mr. Crozier's method of preventing, i. 192.
practice in Cornwall of obtaining fresh sets from a granite soil, ii. 75.
—_Mr. Sherbrooke's method of raising young potatoes in the winter months, i. 225.
——_great produce of per acre, 2 S. i. 93.
_- experiments in the Garden of the Society, with the view of ascertaining the relative productiveness from tubers and sets, 2 S. i. 445.
experiments respecting its culture, 2 S .
i. 524 ; 2 S. ii. 156.
-_ experiments with, 2 S. iii. 40.
-_ inorganic constituents of, 2 S. iii. 50.
——Ash-leaved Kidney, vii. 407.
-_ Asparagus, vi. 571.
———Bermuda, 2 S. iii. 60.
——Blood-red, ii. 400.
——Blue-red Marbled, 2 S. i. 155, 158.
Bread-fruit, 2 S. i. 451 ; 2 S. iii. 60.
Champion, 2 S. i. 449, 451, 453.
Chapman's, 2 S. iii. 60.
Cornichon Jaune dit la Parmentier, 2 S. i. 155, 158.
—La Dégénérée, 2 S. i. 155, 156, 158, 159.

La Divergente, 2 S. i. 155, 156, 158, 161, 451.

Downton Yam, 2 S. i. 157, 451.
Dunmore Kidney, 2 S. i. 452.
early, method of raising in the open ground, iv. 447. Flat White, 2 S. i. 155, 158. Manley, 2 S. i. 155, 158, 449, 450,453 ; 2 S. iii. 60. Kidney, 2 S. i. 155, 158. Walnut-leaved, 2 S. i. 155, 158.
à Feuilles de Haricot, 2 S. i. 155,
$158,451$.
Fox's Seedling, i. 213.
Golden, 2 S. i. 155, 158. of Peru, vi. 569. pied, 2 S. i. 155, 158.
-_Hâtive de Juin, 2 S. i. 155, 158.
Holland, 2 S. i. 155, 158.
de Hollande Jaune, 2 S. i. 155, 158.
Jaune Blanche, 2 S. i. 155, 158.
Kidney, Long Red, 2 S. i. 155, 156, 158, 159.
${ }^{157}$ Kidney, Salmon-coloured, 2 S. i. 155 ,
157, 158.

Potato, Kleine Mauschen, vi. 571.
Knight's, Nos. 2, 12, 17 ; 2 S. i. 451. Nos. 20, 21, 24 ; 2 S. i. 452.
———Knight's, Nos. 20, 2 , iii. 60
—— Lankman's, vii. 405.
451.
451.

- Mouse, vi. 571.

Old Apple, 2 S. i. 155, 158.
Onion, 2 S. i. 155, 158.
$-\quad$ Oxnoble, iii. $49 ; 2$ S. i. 157.
Philadelphia, 2 S. i. 155, 158.
Pied Golden, vi. 570.
Pine Apple, or Cone, vi. 572.
Pink-eyed Scotch, 2 S. i. 449, 450, 453.
Purple Kidney, 2S. i. 452 ; 2 S. iii. 60.
Red Apple, iii. 124.
453.

Salmon-coloured Kidney, 2 S. i. 451.
Schair, 2 S. i. 452.
of Shakspere, iii. 365.
Shaw, 2 S. i. 155, 158, 449, 450, 453.
Spanish Dwarf, vi. 573.
-Sweet, iii. 365 ; 2 S. iii. 245.

- introduced by Sir Francis Drake and Sir John Hawkins, i. 11.
- used in England prior to the introduction of the potato (Solanum tuberosum), i. 11.

$$
\text { virtues attributed to it, i, } 11 .
$$

method of planting, digging up,
and keeping it in France, i., App. 9.
Violette de M. Sageret, 2 S. i. 155, 158.
of Virginia, i. 10 ; v. 249.
Wellington, 2 S. i. 155, 157, 158.
Wild, on the native country of, v. 249 ; culture of in the Garden of the Society, v. 249.

Yellow, 2 S. i. 155, 158.
Patatas del Peru, v. 251.
Potentilla andicola, 2 S. iii. 157.
Poterium spinosum, vi. 46.
Потrigıv, vi. 46.
Pothos cordata, i. 267.

- fœetida, i. 267.

Pot for blanching Sea Kale, figured, i. 18.
Pots, advantage of using small in some cases, iii. 129 .
——Garden, observations upon the most advantageous form of, iii. 389 .
\longrightarrow forms of, figured, iii. 390.
Potts, Mr. John, iv. Pref.; v. 427; vi. 66, $69,80,263,264,268,323$; vii. $25,29,50$, $51,55,59,548$.

Potting, chips of wood employed in, ir. 441.
Po-tsy, 2 S. iii. 243.
Poulett, Earl, i. 177.
Powell, David, Esq., on a method of securing the scion when fitted to the stock in grafting, v. 284.
further notes on the utility of the grafting wax (p. 284), v. 376.
Powis, Earl of, vi. 543 ; vii. 254, 255 ; 2 S. ii. 170.
fruit of the Custard Apple sent by him to the Society, v. 402.
Poyntz, William Stephen, Esq., iv. 210. notice of a White Nectarine grown in his garden, iv. 210.
$\Pi_{\text {еахохıа, iv. }} 368$.
Præcocia, iv. 368.
Prasca, vii. 262.
Precel, M., v. 410.
Premiums proposed to be given by the Horticultural Society to persons producing new varieties of fruits, i. 45.
Prescotia plantaginea, vi. 84.
Preserving fruit in a fresh state, secret of possessed by the Chinese, v. 122.
Press, Mr., vii. 550.
Preston, Sir Robert, v. 393; vii. 532, 539 ; 2 S. ii. 49.
Prickly Pear, treatment of, ii. 238.
Priestly, Dr., 2 S. ii. 217.
Primo Citronier Grande, i. 362.
Primrose, iv. 19.
\longrightarrow minima, vi. 405.
Primula helvetica, iv. 19.
—— nivalis, iv. 19.

- pusilla, vi. 405.
-_ sinensis, vi. 80.
—— Swiss, iv. 19.
viscosa, iv. 19.
Prince, Mr. William, vii. 242 ; 2 S. i. 255.

415.

Prinos canadensis, 'vi. 496.

- verticillata, vi. 496.

Prockia crucis, vi. 268.
Pronville, M., observations by, on budding or grafting roses as standards, v. 492.
Propagation of trees by cuttings in summer, 2 S. ii. 216.
Prosopis siliquastrum, 2 S. ii. 285.
Protecting frame for asparagus, sea kale, \&c., 2 S. i. 165 ; figured, 165, 166, 167, 168.
for fruit trees on walls, vii. 76 ; figured, vii. 79.
Protecting pits for tender plants, v. 365.
Protectors, wicker, for tender plants, vii. 91.

Proyart, Abbé, v. 92.
Prune, supposed to be the same fruit as the Damascena of the Romans, i. 153.
Prunella vulgaris, 2 S. i. 466.
Pruning of dwarf standard apple and pear trees, vii. 291.
——of fruit trees, 2 S. ii. 511.
—— the Golden Pippin, vi. 540.

- of roses to make them flower in autumn, vi. 320.
—— of standard apple and pear trees, i. 236. of transplanted standard trees, iii. 157. remarks on, as regards the peach tree,
i. 81,82 .
- of the vine injudiciously, effects of, i. 102 .

Prunus Armeniaca, iv. 368.
-_ cerasus, vi. 43. Mahaleb, iv. 567. paniculata, vi. 90,91 . pseudo-cerasus, vi. 90,91 .
upon its culture, vii. 180.
—— salicifolia, 2 S. iii. 154.
—— salicina, vii. 239.
—— serrulata, vii. 238.
—— sibirica, iv. 368.
Psidium Cattleyanum, iv. 315 ; figured, 316 ; v. 125 ; 2 S. ii. 285.
—— phyllireoides, v. 105.
—— pomiferum, v. 87.
—— pyriferum, v. 86, 87, 449.
P_sericiflorum, 2 S. iii. 157.
Psoralea esculenta, iv. 445.
——glandulosa, 2 S. ii. 285.
P- pinnata, 2 S. ii. 271.
Pteris acrostichoides, iii. 339.

- argentea, iii. 341.
- atropurpurea, iii. 341.
- caudata, iii. 341.
- cretica, iii. 339, 341.
- grandifolia, iii. 341.
- hastata, iii. 341.
- lanuginosa, iii. 341.
- palmata, iii. 341.
- pedata, iii. 341.
- Plumierii, iii. 341.

P- serrulata, iii. 341.
Pterocarpus Marsupium, iv. 226.
Pterocarya caucasica, 2S. iii. 279.
Pterygodium volucre, i. 287.
Pumeloes, 2 S. iii. 245.
Punica Granatum, 2 S. ii. 244, 279.
——nana, 2 S. ii. 279.
Pursh, Mr., iii. 27, 203; vii. 245, 275 ; 2 S. i. 412; 2 S. ii. 266.

Purwutjuh Draxsha, or Mountain Grape, 2 S . ii. 174.

Pyrenees, valleys of, aspect of vegetation in, i. App. 15.
-at what elevation on these mountains vegetable life is suspended, i. App. 17.
Pyrethrum indicum, 2 S. iii. 245.
maculatum, vi. 405.
Pyrola rotundifolia, 2 S. iii. 128.
—umbellata, vi. 405.
Pyrus angustifolia, 2 S. ii. 262.
——arbutifolia, vii. 228.
—— β intermedia, vii. 229. γ serotina, vii. 229.

- Aria, vii. 234. acuminata, vii. 236.
——acutifolia, vii. 235.
—— angustifolia, vii. 235.
__ bullata, vii. 236.
——cretica, vii. 236.
——obtusifolia, vii. 234.
__ ovalis, vii. 234.
—— rotundifolia, vii. 236.
—— rugosa, vii. 235.
undulata, vii. 234.
_ capitata, vii. 232.
—— depressa, vii. 230.
_- floribunda, vii. 230.
-_ græca, vii. 236.
- grandifolia, vii. 233.
_ intermedia, vii. 237.
- melanocarpa, vii. 229, 231.
- Pennsylvanica, vii. 231.
_ prunifolia, vii. 231.
- pubens, vii. 232.
- sinensis, vi. 397.
- spectabilis, effect produced by ringing, iv. 128.
- variolosa, 2 S. ii. 244, 265.
_ vestita, 2 S. ii. 265.
Pythagorea Cochinchinensis, vi. 269.

Q.

Quadria heterophylla, 2 S. ii. 285.
Quamash, iv. 445.
Queening, Herefordshire, iii. '316.
Quelt, Nicholas Le, i. 352, 357.
Queltia ampla, i. 351.
——capax, i. 353.
capax, i. 353 . 352.
Quenouille, appellation of the form used by the French for training apple and pear trees, i. App. 8.

Quercus Agilops, vi. 47.
alba, 2 S. i. 338.
Benthamiana, 2S. iii. 155.

INDEX.

Quercus Cerris, 2 S. i. 338.
——coccifera, vi. 47 ; 2 S. ii. 226, 239, 279.
—— elastica, 2 S. i. 458.
—— Humboldtiana, 2 S. iii. 158.
—— Ilex, 2 S. ii. 226, $239,244$.
—— jalapensis, 2 S. iii. 115.
———pedunculata, 2 S. i. 336.
_—— Phellos, 2 S. ii. 226, 239, 279. petiolaris, 2 S. iii. 123.
pubescens, vi. 47.
Robur, 2 S. i. 336.
sessiliflora, 2 S. i. 336.
Skinneri, 2 S. iii. 136.
——Suber, 2 S. ii. 226, 239, 244.
——uirens, 2 S. ii. 226, 239, 244.
Queule, v. 104.
Quezaltenango, plants collected at, 2 S. iii. 137.
Quina, 2 S. iii. 149.
Quince, soil adapted for, vii. 215.
153.
213.
—— stock, iv. 566.
influence of, v. 287.
choice of, for stocks, vii. 215.
Quintinie, M. de la, ii. 43, 51,56 ; iii. 257 ; v. 130, 132, 134, 135, 139 ; 2 S. i. 324.

Quisqualis indica, vi. 264.

R.

Rabette, v. 31.
Rabioules, v. 27.
$\mathrm{P}_{\alpha \times 1}$, an ardent spirit distilled from grapeskins, vi. 41.
Racine d'Abondance, iii. 280.

- de Disette, iii. 280.

Radiation, vi. 7, 11.
Radice, v. 37.
Radis, v. 37.
d'Augsbourg, v. 39.
Blanc Hâtif d'Hollande, iii. 442.
Petit Hâtif, iii. 442.
Rond, iii. 442.
Ordinaire, iii. 442.
-Gris Oblong, iv. 13.
Rond, iv. 12.
Gros Blanc d'Augsbourg, iv. 12.
Noir d'Hiver, iv. 13.
Violet d'Hiver, iv. 13.
Jaune, iii. 445 ; iv. 12.
Noir, v. 38.
Petit Saumoné ou Violet, iii. 444. cxii

Radis, Raifort, iv. 13.

- Rose Rond, iii. 443.
- Rouge Rond, iii. 443.
- Rose Rond Hâtif, iii, 443.
- Violet Rond, iii. 444.

Radish, v. 36 ; 2 S. iii. 52, 61.
——notice of a new variety imported from Russia, iii. 115.

- account and description of autumn and winter varieties, iv. 10.
- method of rearing its seed in the East Indies, v. 516.
- distinctive characters of the seeds, iii. 446.
——Black, v. 38.
—_Black Spanish, iv. 11, 13.
——Crimson Turnip, iii. 443.
——Crooked, v. 37.
__ Early Salmon, vi. 580.
—— Scarlet Turnip, iii. 444.
—— Short-topped Salmon, vi. 580.
White Turnip, iii. 442.
——Gray, $\mathbf{v} \mathbf{v}$ 39:
—— Large Purple Winter, iv. 13.
Long, v. 37.
- Red Transparent, iii. 440.
-rooted, iii. 436.
Salmon, vi. 580.
White, iii. 438.
Naples, iii. 438.
Oblong Brown, iv. 13.
Oleiferous, v. 38.
Pink, iii. 443.
Purple, iii. 440.
Spanish, iv. 13. Turnip, iii. 444.
Queen, iii. 445.
Red or Purple, v. 37.
Turnip, iii. 444.
—— Rose-coloured, iii. 443.
or Pink, v. 37.
——— Round, v. 37.
——Brown, iv. 12.
- -rooted, iii. 443.
—— Salmon, iii. 440; vi. 580 .
——Scarlet, iii. 440,443 ; vi. 580.
- Transparent, iii. 440.
———Short-top, iii. 441.
——Small Round-rooted Naples, iii. 443.

436.

—— Turnip, iii. 437, 441 ; v. 37.
—— White, v. 37.
——— Italian, iii. 438.
Russian, iii. 438.
Spanish, iv. 11, 12 ; v. 39.
—— Spanish, iv. 11, 12; v. 39.

Radish, White Turnip, iii. 441.
——Yellow Turnip, iii. 445 ; iv. 12.
Raffles, Sir Stamford, vi. 269 ; vii. 59, 70 ; 2 S. i. 11.
information from, respecting Crinum superbum, iv. 425.
Rafters, for temporary Glass-houses, mode of fixing them figured, vi. 545.
Ragged Jack, ii. 316.
Raifort gris, v. 39.
—— gros blane, v. 39.
\longrightarrow noir, v. 38.
—— des Parisiens, v. 38.
Rain, heavy fall of, vii. 365,370 ; 2 S. i. 185, 361 ; 2 S. ii. 85 ; iii. 15, 227.
monthly quantity, unusually large, $2 \mathrm{~S} . \mathrm{i}$. $179,185,187,487,507$; 2 S. iii. 221.
195, 423; 2 S. ii 15 small, 2 S. i. 195,423 ; 2 S. ii. 15.
ii. 535,$537 ; 2$ S. iii. 171 .

- unequal fall of, 2 S. ii. 321.

Rainier, Captain Peter, vi. 153 ; vii. 83, 588.
on the treatment of the Banyan tree (Ficus indica) in the conservatory, v. 374. and cooking the Brinjall common egg-plant, vi. 116.
the Medlar as a stock for pears, vi. 117.
notice of a pear sent by him to the Society, vi. 395.
medlar stocks, vi. 546 .
Raiponce, iii. 19.
Raisin de Corance, i. 155.
Raleigh, Sir Walter, i. 8; v. 249.
Rambé, v. 110.
Ramatuelle, M., iv. 326, 327, 328, 336 ; vi. 350, 351.
Rambutan, v. 115.
Rampion, cultivation of, iii. 19.
-German, vi. 579.
Ransleben, Mr., on the destruction of the moths and caterpillars of the Phalæna brumata, iv. 135.
Ranunculus, cultivation of, iv. 374.
la mode of obtaining its flowers late, vii. 394.
— nubigenus, 2 S. iii. 156. peruvianus, 2 S. iii. 154. præmorsus, 2 S. iii. 156. Sibbaldioides, 2 S. iii. 156.
Rapa oblonga, v. 29.
Rape, v. 31.

Rape (Brassica Napus), on the cultivation of a variety of, i. 26.
Pxpavis of Theophrastus, v. 36.
Raphano oleifero cinese, v. 38.
Raphanus albus orbicularis, v. 39.
—— chinensis, v. 38.
—— communis, v. 36. niger, iv. 11 ; v. 38.

- orbiculatus, iii. 442 ; iv. 11.
——_ pyriformis sive radice nigro, iv. 11.
radiculâ tortili, v. 37.
rotundus, iii. 443.
sativus, iii. 436 ; v. 36, 42. oleiferus, v. 36.
radicula oblonga, v. 37. oleifera, v. 38.
rotunda, v. 37.
Raphiolepis indica, 2 S. ii. 259, 279.
Rapontika, vi. 580.
Rapunculus esculentus of Ray, iii. 19.
Rapunzel, vi. 580.
——Zellerie, vi. 580.
Rapuntium parvum of Gerard, iii. 19.
Raspberries, mode of obtaining a late crop of, vii. 93.

Raspberry, vi. 497.
—_ length of time it requires to attain maturity, i. 39 .

Early Red, iv. 205.
— Williams's Double-bearing Red, iv. 55.

Ratafia, 2 S. i. 291.
Rauch, Mr., fruit-trees received from, 2 S. ii. 415.

Rave, v. 26, 32, 36, 37.

- blanche, iii. 438. à Collet Rouge, iii. 441.
- de Corail, iii. 440.
- couleur de Rose, iii. 440.
- grosse, v. 27.
- longue rouge, iii. 441.
- petite hâtive, iii. 440.
- plate, v. 27.
-_rose, iii. 440 ; vi. 580.
- saumonée, iii. 440 ; vi. 580.
- tortillée du Mans, iii. 439; v. 37.

Ravette, v. 30, 32.
Rawes, Captain Richard, iv. 340 ; vi. 80, 325, 461,479 ; vii. $527,528,533,542,554$.
Rawson, Mrs., notice of specimens of an apple raised in her garden, v. 401.
Ray, iii. 19 ; v. 5 ; vii. 521.
Raymond, Sir Charles, iii. 335.
Rays, solar, reflected from glass, table of, i. 163, 164.
Read, Mr. John, description of his garden syringe, v. 488.

Read, Mr. John, his mode of glazing hot-bed lights and the roofs of forcing-houses, vi. 112.
Read, Mr. John, description of a newly invented instrument for effectually applying tobacco fumigation to plants, vi. 140.
Real del Monte, vegetation of, 2 S. iii. 123.
Réadmur, ii. 140, 151.
Red Bud, vi. 34.
——Sider, v. 240.
method of destroying, i. 297.
Redding, Mr. W., 2S. i. 534, 536, 540, 542, 543, 544, 545.
Redouté, i. 47 ; vii. 435, 453, 498.
Reeves, John, Esq., iii. 183, 425 ; iv. 334 ; vi. $80,90,324,484$; vii. $180,238,239$, 555 ; 2 S. ii. 424.

2 S. ii. 417, 419.
Regnier, M., iv. 368 ; 2 S. i. 72.
-_ translation of his treatise on the native country of the apricot-tree, iii. App. 23.
Reid, Mr. Archibald, vi. 523.
Renanthera coccinea, vii. 499.
Renealmia calcarata, i. 281.
-_ exaltata, i. 280. mutica, i. 280.
nutans, i. 279, 280.
Report upon the new or rare plants which flowered in the Society's garden from its first formation to March, 1824, vi. 62.

- upon the new or rare plants which flowered in the Society's garden from March, 1824, to March, 1825, vi. 261.
-upon the effect produced on certain plants in the garden of the Society by the frost which occurred during the night of April 29th, 1826, vi. 493.
on new or remarkable vegetables cultivated in the garden of the Society during the year terminating on the 31st March, 1826, vi. 563.
Reps, v. 31.
-öhl, v. 34.
- Summer, v. 33.
- Winter, v. 31.

Reseda odorata, iii. 178.
Reynolds, Thomas Forbes, Esq., v. 485 ; vi. 169 .

$$
\text { exhibited by, iii. } 313
$$

Rhamnus, 2 S. i. 465.
——Alaternus, 2 S. ii. 244.
batearicus, 2 S. ii. 279.
compactus, 2 S. iii. 61.
Lotus, v. 88.
Paliurus, vi. 37.
Zizyphus, vi. 37.

Rheede, iv. 335 ; v. 84, 85, 87.
Rheum crispum, 2 S. iii. 52, 61.
———Emodi, 2 S. ii. 267; 2 S. iii. 61.
—— hybridum, iii. 143 ; 2 S. iii. 61.
—— Rhaponticum, iii. 143.
—— rubrum, 2 S. iii. 61.
—— tataricum, 2 S. iii. 61.

- undulatum, vii. 193 ; 2 S. iii. 61.

Rhododendrons, iv. 21. remarks on hybrid, iv. 45. Acklandi, 2 S. ii. 236, 266. altaclerense, 2 S. ii. 267. anthopogon, 2 S. ii. 267. arborescens, 2 S. ii. 266. arboreum, 2 S. i. 461, 465 ;
2 S. ii. 236, $245,265,266,267$. album, 2 S. ii. 265. white, 2 S. ii. 236. azaleoides, iv. 24 . campanulatum, 2 S. ii. 282. cataybiense, iv. 24 ; 2 S . ii.
260.
ponticum, 2 S. ii.
266.
caucasicum, 2 S. ii. 266.
davuricum, 2 S. ii. 267.
ferrugineum, i., App. 17.
Haylocki, 2 S. ii. 266. hybrid, 2 S. ii. 245.
hybridum, iv. 500. enneandron, iv. 45.
——— Knightii, 2 S. ii. 266.
Lindsayi, 2 S. ii. 266.
maximum, 2 S. ii. 267.
S. ii. 266.

Nobleanum, 2 S. ii. 266.
ponticum, 2 S. ii. 245.
Smithii, 2 S. ii. 265, 266.
Rhubarb, vi. 497.
. .i. Garden, on the advantages of blanching, ii. 258.
. 111 methods of forcing, iin. 143 ; iv. 64 ;
vi. 111 ; vii. 190.
——Buck's, vii. 193.
in pots, iii. 154.

- Scarlet, vii. 89.

Myatt's Victoria, 2 S. iii. 61.
Rhus Cotinus, vi. 495.

- juglandifolium, 2 S. ii. 267.
__radicans, vi. 495.
_ succedaneum, 2 S. ii. 259.
Riach, Dr., on the Tobacco of Sheeraz, 2 S. i. 205.

Ribes alpinum, var. pumilum, vii. 244.

- aureum, vii. 240, 242.
$\longrightarrow \propto$ precox, vii. 240, 242.

INDEX.

Ribes aureum, γ sanguineum, vii. 241, 242.
— β serotinum, vii. 240, 242.

- cereum, vii. 512.
- divaricatum, vii. 515.
_— echinatum, vii. 517.
flavum, vii. 242.
frigidum, 2 S . iii. 156.
glaciale, 2 S. ii. 267.
glutinosum, 2 S. i. 476 ; 2 S. ii. 244, 251.
Hudsonianum, vii. 514.
irriguum, vii. 516.
leptostachyum, 2 S. iii. 158.
malvaceum, 2 S. i. $476 ; 2$ S. ii. $244,251$. petiolare, vii. 514.
punctatum, 2 S. ii. 244.
sanguineum, vii. 508 ; figured, vii. 509. setosum, vii. 243.
speciosum, 2 S. ii. 244, 251.
tenuiflorum, vii. 242.
viscosissimum, vii. 511.
Richardia africana, 2 S. ii. 270.
Richardson, Mr. Alexander, notice of specimens of a seedling Apricot raised by him, vi. 393.

Dr., i. 103, 277, 335, 338, 344, 356.

Hemerocallis graminea raised by him, i. 335 .

Mr., gardener to Lord Tankerville, iii. 103 ; 2 S. i. 540.
Ricinus communis, vi. 45.
Riceetts, Mr., iv. 72.
George Robert Goodin, seedling
Peach sent by him to the Society, vi. 393.
Riddel, Ralph, Esq., iv. 143.'
Ridge, C. G., Esq., 2 S. i. 546.
Rigidella flammea, 2 S. iii. 122.

- immaculata, 2 S. iii. 139.

Ring, maturation, iv. 557.
Ringing, physiological observations upon its effects, iv. 159.

- effects of analogous to those produced by the quince stock, v. 287.

417.

employed for producing new wood, vii. 417.
effects of, iv. 561.
production, iv. 557.
notice of its effects on three sorts of apples, iii. 367.

- the bark of trees, effects of, iv. 564.
the branches of trees, iv. 121.
of fruit trees, ii. 382, App. I.
improper for stone fruits, iv. 127.
Rishon, Mr., iii. 179.
account of the method of raising
mignonette in pots, in succession through the
year, ii. 372.

Rivers, Mr. Thomas, 2 S. i. 535, 541, 542, 544, 546.
of upon the advantages of root pruning, 2 S. ii. 471.
Robertson, Mr. Charles John, iv. 519; v. 261 ; vi. 76, 392 ; 2 S. ii. 235 , 249.
(John, vii. 260; 2 S. ï. 235. peaches and nectarines, with observations on the disorders incident or peculiar to each class, iii. 380.
descriptions of some of the best varieties of Irish apples, iii. 452.
aich on the advantages which trained peach trees derive from their roots being allowed to penetrate the border on the north side of the wall, iv. 95.
on the classification of plums, iv. 323.

on planting the moist

 alluvial banks of rivers with fruit trees, vii. 135.account of the manner of training the vine upon open walls, at Thomery, near Fontainebleau, vii. 373.
on mildew, and some other diseases incident to fruit trees, v. 175.
Robinia, vi. 497.

- hispida, vi. 494.
- Pseudo-acacia, vi. 494.

Robins, George, Esq., 2 S. i. 546.
Robinson, Mr., ii. 167.
Poßıst, vi. 54.
Robson, Mr., apples exhibited by, iii. 314.
h his receipt for a wash for the destruction of insects on fruit trees, iv. 143.
Roche, M. de la, i. 322.
Rochea venusta, i. 322.
Rockingham, Marchioness of, i. 267, 340.
Rodney, Lord, 2 S. ii. 113.
Rodriguezia planifolia, vii. 67.
Rogers, John, Esq., 2 S. ii. 227, 230, 434, 464 ; 2 S. iii. 35.
_ on heating by hot water, 2 S. ii. 364.

Mr. Thomas, account of the caltivation of mushrooms, iv. 472.

William, vi. 304.
Rollisson, Messrs., 2 S. i. 540, 542, 543, 546; 2 S. ii. 102, 424.
Roman cement, suggested for stopping the bleeding of vines, iii. 337.
Ronalds, Mr. Huge, iii. 320 ; vi. 574 ; vii. 234; 2 S. i. 228, 256.
apples exhibited by, iii.
$313,315$.
description of the dif$q 2$
ferent varieties of broccoli, with an account of the method of cultivating them, iii. 161.

Ronalds, Mr. Hugh, notices of fruits exhibited by him, iv. 214, 216.
v. 26. apple exhibited by him,
v. 26.

John, 2 S. i. 534.
Rondeletia brevipes, 2 S. iii. 161.
——eriantha, 2 S. iii. 161.
_- reflexa, 2 S. iii. 161.
Roots, decay of the powers of life slower in, than in the bearing branches, 2 S. i. 149.
——upon the supposed absorbent powers of their spongioles, 2 S. ii. 117.
fibrous, of plants, their duration, v. 435.
of plants, remarks on their manner of growth, i. 218, 219.
how to facilitate the emission of them from layers, i. 256.
secrete fluids of an acid nature, iv. 397.
on their power of absorbing coloured infusions, 2 S. ii. 41.
Root-pruning of pear trees, 2 S. ii. 471.
-_ of Scarcity, iii. 280.
Rosa, 2 S. i. 465.
-_ alpina; garden variety, speciosa, vii. 227. arvensis, iv. 458,465 ; 2 S. ii. 255.
Banksiæ, iv. 170 ; 2 S. ii. 245, 254.
garden variety, flava, vii. 226.

- berberifolia, vi. 553.

Biebersteinii, vi. 89.
Blairii, 2 S. ii. 254.
Bourbon, 2 S. ii. 245, 255.

- bracteata, 2 S. ii. 254.
- capreolata, iv. 458.
- China, White, 2 S. ii. 254.
- Yellow, 2 S. ii. 254.

Dicksoni, vii. 224.
Doniana, iv. 305.
ferox, vi. 89.
gemella, vi. 287, 288.
Hamon, 2 S. ii. 254.
indica, 2 S. ii. 226, 245, 254, 255.

- hybrids of, 2 S. ii. 245 .
- involucrata, 2 S. ii. 255.
- involuta, iv. 305.
- Isle de Bourbon var., 2 S. ii. 255.
- lucida, vi. 288.
- Macartney, 2 S. ii. 254.
- moschata, hybrids of, 2 S. ii. 245.
- multiflora, 2 S. ii. 254.
-myriacantha, vi. 90.
- Noisette var., 2 S. ii. 255.
- pimpinellifolia, iv. $281,282$. exvi

Rosa repens, iv. 461.

- Ruga, 2 S. ii. 255.
- Sabiniana, iv. 305.
- scotica, iv. 282.
- sempervirens, iv. 458, 465.
- setigera, vi. 287.
- sinica, 2 S. ii. 255.
- spinosissima, iv. 281, 282; $\beta 303$. bicolor, iv. 299. sulphurea, iv. 290.
Rose, sweet-scented hybrid, 2 S. ii. 254.
- tea-scented var., 2 S. ii. 255 ; vi. 497.
- trees, transplantation of their blossombuds, ii. 7.
- the colours of affected by budding or
grafting on different stocks, v. 492.
- to flower in autumn, vi. 319.
cultivation of the yellow, and the tender
Chinese, v. 369.
- apple, i. App. 11, 12.
- Ayrshire, iv. 456; its description, 458.
——Banksian, 2 S. ii. 245, 254.
- Belladonna, ii. 242.
- Burnet, iv. 281.
__ leaved, iv. 282.
China, conjecture respecting its being employed as a stock, ii. 187; 2 S. ii. 226, 245, 254, 255.
- Dog, ii. 242 ; vi. 317.
——Drummond's Thornless, vii. 228.
-Double Scotch, description and account of the varieties of, iv. 281.
- yellow, successful result of budding it on the common China, v. 370; spring preferred for the operation, 371.
- Dwarf Burnet-leaved Scotch, iv. 282.
- Evergreen, iv. 460.
- Garden, notes on grafting, budding, and cultivating, vi. 317.
- Maiden's Blush, ii. 242.
- Moss de Meaux, account of, ii. 241.
- Orangefield, iv. 457.
- True Scotch, iv. 282.
- water Jambu, v. 111.
- yellow, ii. 187.

Rosemary, 2 S. iii. 62.
Rosier Pimprenelle blanc à fleurs doubles, iv. 289. rouge à fleurs doubles, iv.
293.

Rosmarinus officinalis, 2 S. ii. 245.
Ross, Mr., Newington, ii. 402.

- Robert, 2 S. ii. 455.

Willian, account of his method of forcing Asparagus, ii. 361.

Black Damascus Grape
exhibited by, the blossoms of which had been
fertilized by the pollen of the Royal Muscadine, with particulars of the process, vi. 119. Roтн, iv. 491.
Rough-skinned or Grey Plum (of Sierra Leone), v. 451.

Rous, Right Hon. Lord, particulars of a Peachtree in the garden at Cockfield Hall, iii. 17.
Rowley, Sir William, vi. 195.
Roxburgh, Dr., iii. 189, 193 ; iv. 31, 422, 423, 424 ; v. 116, 118, 119 ; vi. 73.
his description of Crinum augustum, iv. 424.
Royal Society, specimens of plants presented to the, by the Apothecaries' Company, iv. 330.
Royle, Dr., 2 S. ii. 239.
upon the climate of Mussooree, and upon Benthamia fragifera, 2 S. i. 457.

- on behalf of the East India Company, plants received from, 2 S. ii. 416, 417, 419.

Rofer, Professor Van, iii. 178.
Rozier, iii. 257.
Rubus glabratus, 2 S. iii. 154.
——glaucus, 2 S. iii. 154.
—— parvifolius, vii. 246.
—— pichinchensis, 2 S. iii. 154.
——rosæfolius, vii. 41.
\longrightarrow stipularis, 2 S. iii. 155.
_- trilobus, 2 S. iii. 127.
Rue, 2 S. iii. 62.
Ruiz, v. 250.

- and Pavon, iii. 353 ; v. 104 ; vi. 77.

Rukam, v. 117.
Rumbold, Lady, iv. 509 ; vi. 173.
Rumex Patientia, 2 S. iii. 62.
Rumford, Count, vii. 583.
Rumph, his opinion respecting the native place of the tuberose, i. 46.
Rumphius, iii. 350 ; iv. 335 ; v. $106,108,111$, $112,115,116$; vii. $70 ; 2$ S. i. 42 .
Ruscus aculeatus, 2 S. ii. 225, 226, 245.
—— androgynus, 2 S. ii. 279.
——racemosus, vi. 48 ; 2 S. ii. 279.
Russet on apples, probable cause of, vii. 505.
Russia, effects of its climate on vegetation, i. 32 .
Ruta-baga, v. 24.

- graveolens, 2 S. ii. 279.

Ruttead, M., v. 404, 406 ; vii. 179.
Rye, experiments with in steeping the seeds, 2 S. iii. 205.

S.

Sabine, Capt., iv. Preface.

- Joseph, Esq., ii. 267, 269, 336 ; iii. $89,272,312$; iv. $161,275,417$; v. 100 , 103,126 ; vi. 76,287 ; vi. $16,24,25,56$,
$141,151,160,225,534,546,557$; 2 S. i. 233 ; 2 S. ii. 375.
Sabine, Joseph, Esq., description and account of the cultivation of a variety of gourd called vegetable marrow, ii. 255.
observations on three new peaches, ii. 217. cherry, ii. 229.
trees, ii. 267.
double herbaceous account of seven double herbaceous pæonies cultivated in England, ii. 273. of George Anderson, Esq., ii. 281.
- on the Elton, Black Eagle, and Waterloo cherries, ii. 301.
- account of a method of forcing asparagus, practised by Mr. W. Ross, ii. 361 .
of the roseberry strawberry, ii. 378 .
- account of a method of cultivating the Lobelia fulgens, as practised by Mr. William Hedges, ii. 396.
description of a stove used for tropical plants in the garden of Sir Abraham Hume, Bart., ii. ; App. 4.
account of a method of conveying water to plants in houses, iii. 14. an on celeriac, with directions for its cultivation, iii. 71.
- note on two varieties of currant, iii. 89.
_ some account of the purple-fruited passion-flower and other species which bear edible fruit, with observations on the Passiflora incarnata of Linnæus, and on the first plant of the genus which was introduced into Europe, iii. 99.
observations on, and account of, the cultivation of the tree mignonette, iii. 178.

> notes on, and description of, varieties of the Magnolia glauca, iii. 201. observations on, and account of, the species and varieties of the genus Dahlia, with instructions for their cultivation and treatment, iii. 217.
and treatment, observations on the formation of a select collection of apple trees, iii. 263 .
account and deseription of four seedling varieties of dessert apples, iii. 267.

Sabine, Joskph, Esq., note on the mespilus japonica, iii. 301.

312, 316.
apples exhibited by, iii. on the love apple or tomato, and an account of its cultivation; with a description of several varieties, and some observations on the different species of the genus Lycopersicum, iii. 342.
observations on the classification of peaches and nectarines, iii. 384.
account and description of the Downton strawberry, iii. 396.
on the cultivation of figs on the back walls of vineries, iii. 409.

Iris, iii. 414.
note on specimens of pareil apple, iii. 457.
note on the Martin noning of hot-house, \&c., iv. 84.
observations on, and details of, some experiments in ringing the bark of fruit and other trees and plants, iv. 121.

Banksiæ, iv. 170. strawberry, iv. 199.
note on the Pitmaston orange nectarine, iv. 233.
-account of a hybrid passiflora, iv. 258.
of description and account of the varieties of double Scotch roses cultivated in the gardens of England, iv. 281.
account and description of Chinese Chrysanthemums cultivated in England, iv. 326.
iv. 456.
on the Ayrshire rose, iv. 456.
note on cranberries raised on dry beds, iv. 487 ; note on Amaryllids, iv. 501.
fig-trees, iv. 504.
ponicum, iv. 554.
account of some standard
note on the Lilium ja-- observations on the accidental intermixture of character in certain fruits, v. 68.
additional account of new hybrid Passifloras, v. 70.
note on Pine-Apples grown by Mr. Knight, v. 144.
further account of Chinese Chrysanthemums, with descriptions of several new varieties, v. 149.

Sabine, Joseph, Esq., description of a method of training standard apple trees, v. 186.
on the native country of the Wild Potato, with an account of its culture in the garden of the Horticultural Society, and observations on the importance of obtaining improved varieties of the cultivated plant, v. 249.
note on Mr. Hogan's method of growing mushrooms, v. 308.
I_ note on the Downton Imperatrice plum, v. 383.
of five Chinese Chrysanthemums ; with some observations on the treatment of all the kinds cultivated at the time in England, and on other circumstances relating to the varieties generally, v. 412.
some account edible fruits of Sierra Leone, v. 439.
on fig-trees, and an account of their cultivation in a fig-house at Ashridge, v. 479.

> account of several Chi- nese and Indian Chrysanthemums, with additional observations on the species and varieties, and on the management of the plants in gardens, vi. 322.
forg account of a method of forcing figs practised in the garden of the Earl of Harewood, at Harewood House, vi. 365.
note on a mode of growing different varieties of the pear on the same tree, vi. 368.
or Tree Pany on the Pronia Moutan, or Tree Pæony, and its varieties, vi. 456.

$$
460
$$

on Glycine Sinensis, vi.
account of two varieties of the mango fruit which ripened in the garden of the Earl Powis, vi. 550.
aceount of some remarkable holly hedges and trees in Scotland, vii. 194. account and description of the species and most remarkable varieties of spring crocuses cultivated in the garden of the Horticultural Society, vii. 419.
Safu, v. 91.
Sage, green, 2 S. iii. 52, 62.
purple, 2 S. iii. 62.
Sageret, M., v. 17, 25, 39.
Sagittaria, iv. 446.
lancifolia, i. 268.
St. John's Bread, vi. 35.
Saku Jaku, vi. 487.

INDEX.

Sal Ammoniac, 2 S. iii. 43, 48, 50, 51.
Salad, Indian, iv. 445.
Shawanese, iv. 445.
Salicornia herbacea, ii. 232.
Salisburia adiantifolia, vi. 495 ; 2 S. ii. 259.
Salisbury, Marquess of, iii. 281.
R. A., Esq., i. Pref., 134; ii. 336 ; iii. $218,220,229$; iv. 368 ; v. 235,236 ; vii. $428,444,448,449,450$.
the Poli the Tub Polianthes Tuberosa, with its botanical description and figure, i. 41. observations on the different species of Dahlia, and the best method of cultivating them, i. 84.
a short account of nectarines and peaches naturally produced on the same branch, i. 103.
account of the Red Doyenné (Doyenné Gris) Pear, i. 230.
on the cultivation of rare plants, i. 261. his abridged translation of M. Thouin's account of the cultivation of the Jamrosade, i. App. 11; of M. Ramond's paper on the vegetation of high mountains, i. App. 15 ; and of M. Thouin's description of a bank for Alpine plants, i. App. 24.
on the cultivation of the Monopsis conspicua, ii. 37.

- account of the Chiogenes serpyllifolia, or Snowberry, ii. 94.

Melidora pellucida, ii. 156.
some account and description of Ord's Apple, ii. 285.
translation of a trea-
tise by M. L. Regnier on the country where the apricot tree grows wild, iii. App. 23.
Salix babylonica, 2 S. ii. 280.
— Humboldtiana, 2 S. ii. 285.
-pentandra, experiments on its rate of growth, $2 \mathrm{~S} . \mathrm{iii} 103$.
Salm Dyck, Prince, 2 S. ii. 410, 470.
ii. 413 .

Salmon, W. W., Esq., 2 S. i. 199.
Salsafy, 2 S. iii. 61 .
Salt, common, 2 S. iii. $67,68,79,80,81,83$, $85,86,87,89,191,192,193,194,195,203$, 204, 205, 206.
_- its effect applied as a manure, vi. 541.
-an effectual preservative of the sea-kale against the ravages of worms, i. 20.
Salt Cake, 2 S. iii. 41, 42, 43, 48, 50, 51, 52.
Salter, Mr., Hammersmith, 2 S. i. 540 . cxix

Salter, Mr. Jonathan, Bath, vi. 188.
Salts, Alkaline, in orchids, 2 S. iii. 54.
—— of Ammonia, z S. iii. 57.
Salvia aurea, 2 S. ii. 271.

- grandiflora, 2 S. ii. 223.
- officinalis, 2 S. ii. 280.
—— patens, figured, 2S. ii. 222.
- rubescens, 2 S. iii. 154.
- Sclarea, 2 S. iii. 52, 61.
- spectabilis, 2 S. ii. 223.

Salitin, William Thomas, Esq., on the cultivation of the vine upon the open wall, at Croxdale, 2 S. i. 51.
Salvinia natans, iv. 398, 399.
Sambucus chinensis, vi. 297.
Samphire, the True, on the cultivation of, ii. 232.
——Marsh, ii. 232.

- Rock, ii. 232.

Sandal Malam, the East Indian appellation of the Tuberose, i. 48.
Sandoricum indicum, v. 116.
San Luis Potosi, vegetation of, 2 S. iii. 121.
Sanseviera carnea, vii. 40.
Santa Fé, 2 S. iii. 115.
Santolina Chamæ-cyparissus, 2 S. ii. 288.
Sap, causes and effects of the stagnation of, i. 82 .
-becomes saccharine by the absorption of oxygen, i. 234.
__remarks on its various conditions, i. i. 131.
——attracted by the fruit, though generated in distant foliage, v. 241.

- on the beneficial effects of the accumulation of, in annual plants, 2 S. i. 323.
- how generated and reserved in bulbonsrooted plants, i. 157, 187, 188, 191. of trees, remarks concerning, i. 79, 82 ; iv. 159. theory of its descent maintained by Mr. Knight, i. 109, 255.
S. i. 88.
- of the Sugar Maple, ii. 131.
- of vines, effect of interrupting, ii. 222.
force of its ascent in the vine, v. 202.
Sapota Plum, v. 82.
Sappodilla Plum, v. 96.
Sarcocephalus, v. 90.
esculentus, 463 ; vii. 56 ;
figured, v. 442.
Sarracenia purpurea, iii. 359 ; vi. 405.
Sartorius, Mr., 2S. ii. 380.
Sassafras, Swamp, iii. 201.
Satyrium bracteale, i. 290.
cornutum, i. 288.
cucullatum, i. 287.
elatum, i. 291.

Satyrium repens, i. 301.

- spatulatum, i. 288.

Saunders, Mr., fruit trees received from, 2 S. ii. 415.
Saussure, ii. 224.
Savory, Summer, 2 S. iii. 52, 62.
——Winter, 2 S. iii. 62.
Yellow, ii. 307.
Savoy, 2 S. ii. 61 ; ii. 307, 318 ; v. 13.
_ analysis of, 2 S. iii. 37, 38.

- Dwarf, ii. 307.

Green, ii. 307.
Sawfer, Mr. Samuel, v. 308.
fig-trees in the open air, v. 346.
Saxe Weimar, Grand Duke of, vi. 571.
Casuarina sent by him, iv. 58.
dels presented to the Society by him, iv. 51.
Saxifraga andicola, 2 S. iii. 154.
Sazuri, iv. 552.
Scallion, iii. 379, 417.
Scandix odorata, 2 S. iii. 52.
Scarlet Runner, 2 S. iii. 52, 59.
observations on its rate of
growth at different periods of the day, 2 S . iii. 247.

Scaroles, vi. 134.

- blonde, vi. 135. courte, vi. 135.
- à Feuille de Laitue, vi. 135, 136.
grande, vi. 135.
de Hollande, vi. 135.
petite, vi. 135.
ronde, vi. 135.
Scheree, 2 S. ii. 217.
Schell, Chevalier, iv. 397, 398.
Schertzer and Sons, Messrs., iv. 385 ; vi. 138. Schiede, Dr., 2 S. ii. 396.
$\Sigma_{\text {Xivos, vi. }} 40$.
Schinus Molle, 2 S. iii. 149.
Schizandra coccinea, 2 S. ii. 262.
Schizanthns pinnatus, vi. 93.
porrigens, vi. 93.
Schizopetalon Walkeri, vi. 93.
Schneevooght, vii. 530; 2 S. i. 295.
Schobal, Abté, ii. 222.
Scholl, Mr. George, vii. 17.
Schollia carnosa, vii. 19, 20.
- crassifolia, vii. 19, 22.

Schott, Mr. Henry, iv. 407.
Schouw, Dr., 2 S. ii. 410.
Schrank, vii. 20.

- the Chevalier Francis de Padla,
account of a successful method of managing
Aquatic and Bog plants, iv. 395.
cxx

Schrader, Dr., Orobus atropurpureus received from, 2 S. ii. 413.
Schultes, v. 33.
Schultz, Professor, 2 S. ii. 307.
Scilla esculenta, iv. 445.

- umbellata, i. App. 21.

Scions, superior healthfulness of those taken from the trunks of trees, iii. 387.
Scolopendrium vulgare, iii. 340, 341.
Scolymus aculeatus, vii. 9.
Scopoli, iv. 461, 462, 491.
Scott, Mr., vi. 383, 384.

- Mr. Thomas, description of a pine pit, v. 220.

Mr. William, on the cultivation of alströmerias, 2 S. ii. 124.
Screen for wall trees, forked bats for fixing the rafters of, figured, vii. 223.
Sea Kale, 2 S. iii. 61.
—— description and cultivation of, i. 13. places where it grows wild, i. 14.
plan for forcing, iv. 63; figured, iv. 64.
observations respecting it, 2 S . ii. 349.

Sea-side grape, v. 99.
Seasons, progress of in England, i. 32.
Sebright, Sir John, 2 S. iii. 35.
Seckle, Mr., iii. 256.
Secretions of the roots of plants, iv. 397.
Sedum quitense, 2 S. iii. 154.
Seed, description of the parts of one, i. 217.
Seeds of vegetables, method of rearing in the East Indies, v. 516.
_- account of a method of ripening in a wet season, iii. 183.
—— their fertilization, iv. 28.
notice of a plan for bringing them from distant countries, iv. 57.
of Nelumbium, retention of their vegetating principle, vi. 537.
Seedlings, soil most suitable for, i. 65.
Seed-steeping, 2 S. iii. 197.
Seed-vessel, how adapted for its office, i. 221.
Seidel, M., apples exhibited by him, iii. 317.

Sello, 2 S. i. 259.
Selwood, Mr., ii. 42, 53, 55, 57.
Sempervivum tectorum, vi. 313.
Senecio Antisanæ, 2 S. iii. 156.
-_ ilicifolius, vii. 38.
—— lanceus, vii. 38.

- lingua, i. 289.
——pimpinellifolius, 2 S. iii. 156.
Serapias cordigera, i. 290.
_ lingua, i. 289.
Seringe, M., vi. 288.

INDEX.

Services, kinds known to the Romans, i. 153.
Sestini, vi. 40.
Seton, Alexander, Esq., v. 236, 380 ; vi. 158 ; vii. 288.
description of a method of numbering marks or tallies for plants, ii. 347.
peculiar mode of training vines under glass in a house, and its advantages, iii. 9.
___ note on Sir Oswald Mosley's paper on the Aphis lanigera, iii. 62. cucumber frames, iii. 296.
account of Mr. Walker's improved construction of hot-house flues, iv. 237.
remarks upon the effect of soil on stocks, vii. 215.
Sexes of plants, i. 105.
Shaddock, Capt., first brought the shaddock from the East Indies, iii. App. 17.
Shaddock fruit, iii. App. 6, 17; iv. 20.
Shailer, Mr. Henry, notice of a singular flower from an apple tree in his garden, iv. 136; and of specimens of Moss Roses, iv. 137.

Shakespere, iii. 365.
Shallot, 2 S. iii. 61.
\longrightarrow on the culture of, ii. 97 ; vii. 93 ; 2 S. iii. 52.

Shaw, vi. 37.
Shawe, Richard, Esq., ii. 320.
Shea, Mr. Thomas, particulars of the treatment of orange and lemon trees in Tuscany, vi. 543.

Shepherd, Mr. Henry, iii. 338, 340. ferns from seeds, iii. 338 .
Mr. John, iv. 501, 502, 503.
Sherard, Dr. James, his garden at Eltham, i. 347 .

Sherbrook, A., Esq., on a mode of raising young potatoes in the winter months, i. 255 .
Sherrard, i. 345, 347, 352 ; vi. 48.
Dr. William, i. $355,364,366$.
Shiells, Mr. George, on the cultivation of grapes on flued walls, 2 S. ii. 525.
Seiplex, Miss, 2 S. i. 65.
Shoolbred, Mr., 2 S. iii. 117.
Shoots, luxuriant, of wall-trees, i. 83.
Stbthorp, Dr. John, i. 289, 345 ; iii. 434 ; vi. 35.

Sickler, Dr., iii. 43 ; iii. App. 1, App. 16 ; 2 S. i. 263, 274.
observation by, on the growth of
lemons and oranges at Rome, iii. 43 .

Sickler, translation of his work on the genus Citrus, iii. App. 1.
Sida phyllanthos, 2 S. iii. 152.

- pichinchensis, 2 S. iii. 154.

Sideroxylon lycioides, 2 S. ii. 262.
Sidney, Viscount, iii. 123, 313.
Siebold, Dr., 2 S. ii. 410.
Sikaduduk, v. 117.
Silica, 2 S. iii. 36.
Silicate of Potash, 2 S. iii. 66, 67, 68, 69, 70, $71,72,73,74,75,76,77,79,80,81$.
Siliceous matter in orchids, 2 S. iii. 54 .
Siliqua prædulcis, vi. 34.
Silk Rose, vi. 39.
Silverlock, Mr. Henry, account and description of a hollow wall, erected in the garden of the Earl of Arran, iv. 244.
Simon, St., his work on hyacinths, iv. 163.
Simpson, Rev. Join, his account of the Burrknot apple, i. 120.
_ first exhibited fruit of the purple-fruited passion-flower, iii. 103.

- Mrs. Ann, ii. 285.

Sims, Dr., i. 98 ; ii. 157,280 ; iv. 457,458 , 461 ; vi. $60,96,356,468,470,474$; vii. $20,450,476,520,531$.

- his remarks on the Hermione ambigena noticed, i. 361.
Sinapis alba, v. 35.
——pekinensis, v. 54.
_- tuberosa, v. 27.
Sinclair, Mr. George, on the Woburn perennial kale, v. 297.
— Sir John, iii. 327.
Sinningia Helleri, vii. 63.
Siphocampylus asper, 2 S. iii. 160.
columne, 2 S. iii. 158.
cordifolius, 2 S. iii. 158.
hispidus, 2 S. iii. 160.
lanatus, 2 S . iii. 158.
Sisymbrium Nasturtium, iv. 538.
Sisyrinchium bermudianum, i. 310 .
\longrightarrow collinum, i. 307.
——uridioides, i. 310
—_ latifolium, i. 310
\longrightarrow majus, i. 304.
palmifolium, i. 310.
sertifolium, i. 309.
spicatum, i. 309.
striatum, i. 309.
Skinner, G. U., Esq., 2 S. ii. 400, 402.
Suade, Mr. John, apples sent by, iv. 528, 529.

Slate employed in the construction of melonbeds, vi. 456.

- trough, notice of one exhibited, vi. 543.

Slater, John, Esq., i. 298 ; vii. 532, 535.

Sloane, Sir Hans, ii. "Preliminary observations;" v. 96, 97, 98, 99, 330.
Sloe, the common parent of numerous varieties of the plum, i. $2,26$.
Slugs, on destroying them in gardens, ii. 19.
Smallage, vii. 43.
Small Pigeon Plum (of Sierra Leone), v. 453.
Smart, Mr., plants received from, 2 S. ii. 418, 478.

Smilax aspera, vi. 41 ; vii. 41.

- excelsa, vi. 41.

Smith, Mr., Dalston, ii. 164 ; iii. 174.
. gardener to the Earl of Liverpool, 2 S. i. 531.
——Dr., i. 15, 283, 336.
Mr. George, Islington, 2 S. i. 530.
George, Esq., 2 S. i. 546.

- Sir J. E., iii. 108 ; iv. 281 $265,266,310,469$; vii. 16, 19, 20,438 , 498, 520, 521, 557.
directions for raising ferns from seed, iii. 338.
- Mr. James, of Duckenfield Nursery, near Manchester, notice of a seedling plum exhibited by him, iv. 208.

430 ; vii. 191.
Hopetoun House, iv. 429, his me-
thod of forcing rhubarb, vi. 111.
respecting the strawberries cultivated for the market in Scotland, vi. 512.
notice of his communication to the Caledonian Horticultural Society on the cultivation of figs, iv. 429.
gardener to James Hammond, Esq., Potter's Bar, near Barnet, directions for growing onions so as to produce bulbs in clusters at an early season, vi. 115.
account of the growth of some cedars of Lebanon in the gardens at Hopetoun House, vi. 429.

Grove, iv. 463.
nurseryman, Monkwood
\qquad Camberwell, Surrey, upon the cultivation of fuchsias, vi. 520 .

- Mr. Joun, gardener at Spring Grove, i. 54 ; ii. $163,165,166$.
at Hylands vii account of a cherry orchard at Hylands, vii. 400.
on the cultivation of the vine, 2 S. i. 332.

Professor, v. 453, 460.
Col. Robert, vi. 172.
Messrs. R. and Co., 2 S. ii. 403.
Mr. Thomas, on the use of charcoalexxii
dust as a top-dressing for onions, and as a cure for the clubbing in cabbages, vi. 29.
Smith, Mr. William, on dahlias, vii. 141.
notice of certain vineries at various places in Scotland with arched hanging trellises, vi. 522.
of Manchester, vi. 198.
Smythe, Col., iv. 509.
Snail, garden-shell, ii. 151.
Snails, on their destruction, 2 S. i. 77.
Snow on the summits of mountains, state of vegetation amidst, i. App. 19.
——early in autumn, 2 S. i. 191.

- storm, heavy, 2 S. ii. 153.

Snow, Mr. J., 2 S. i. 535.

- Mr. Seward, 2 S. i. 534, 536, 540, 541, 542, 544.
Snowberry, ii. 94.
Soap plant, 2 S. iii. 117.
Sobralia macrantha, 2 S. iii. 140, 149.
Soda, 2 S. iii. 36.
Soil, temperature of, in spring, ii. 110.
- citation from Virgil respecting, iv. 453.
- hygrometric powers of, 2 S. iii. 90.

Soils, on their exhaustion, 2 S. iii. 189.
Solander, Dr., ii. 38; 2 S. i. 519.
Solandra grandiflora, 2 S. iii. 136.
Solanum Commersonii, v. 251; figured, 252.
—— crispum, 2 S. ii. 285.
—— dealbatum, vii. 53.

- ægyptiacum, vi. 52.
esculentum, vii. 82.
var. α, and β, vii. 85.
Lycopersicum, iii. 342.
Melongena, vi. 52.
pomiferum, iii. 343.
fructu oblongo, vii. 85. recurvo, vii. 85.
pseudo-capsicum, i. 176.
saponaceum, vii. 54.
Seaforthianum, vii. 392.
sodomeum, vi. 52.
tuberosum, v. 249.
237, 255.
Sole, Mr., i. 345.
Soleil d'Or, i. 362.
Solly, Edward, Esq., experiments on the inorganic constituents of plants, 2 S. iii. 35.
soils, 2 S iii 189 on the exhaustion of soins, 2 S. iii. 189.
iii. 197.
——R. H., Esq., 2 S. iii. 35.
- Samuel, Esq., 2 S. iii. 35.

Sollya heterophylla, 2S. ii. 245, 249.
Solomon's Seal, 2 S. iii. 52, 62.

Sonnerat, v. 125.
Soot, 2 S. iii. 94, 99.
Sophora japonica, vi. 495 ; 2 S. ii. 259.
Sorbus, 2 S. i. 458.

- scandica, vii. 237.

Sorrel, 2 S. iii. 62.
——Blistered-leaved, vi. 584.
———French, 2 S. iii. 62.
-_Green Mountain, vi. 585. Mountain, vi. 585.
Sour Pishamin, v. 456.
Soursop, v. 95 ; 2 S. iii. 133.
Southernwood, 2 S. iii. 62.
Southwell, Sir Robert, i. 9.
his statement to the
Royal Society respecting the introduction of the potato, i. 9.
Sodza, Sir Miguel de, 2 S. ii. 174.
Sowerby, James, Esq., notice on the effect of watering fruit trees early in the spring, ii. 271.
Spanish Plum of the West Indies, v. 99.
Sparaxis grandiflora, i. $319, \beta$ ib.

- pendula, 2 S. ii. 268.

Sparmannia africana, 2 S. ii. 271.
Spartium acutifolium, 2 S. ii. 28.
— ætrense, 2 S. ii. 237, 280. - infestum, 2 S. ii. 280.

- junceum, 2 S. ii. 245, 280 .
-_ patens, 2 S. ii. 280.
- radiatum, 2 S. ii. 225, 280.

Spearmint, 2 S. iii. 62.
Species, its definition, iv. 21.
Specularia, i. 148.
Specularius, or Glazier among the Romans, i. 149.

Speechiy, Mr., i. 174 ; iv. 202 ; vii. 263, 264, $265,266,267,268,269,270,271 ; 2$ S.i. 8 , 22, 27, 31 .
Spence, William, Esq., on an insect which is occasionally very injurious to fruit trees, ii. 25. on some vulgar errors among gardeners respecting insects being destroyed by cold, ii. 148.

- Mr., 2 S. i. 546.

Spencer, Earl, vi. 163.
Sphacele campanulata, 2 S. ii. 285.
Spina Christi, vi. 37.
Spigelia Brownei, 2 S. iii. 161.

- hamelioides, 2 S. iii. 161.

Spinach pedunculata, 2 S. iii. 158.
Spinach, 2 S. iii. 243.

- Bordeaux, vii. 131.

Flanders, vi. $576 ; 2$ S. iii. 52, 61.
French, vii. 131.
Lettuce-leaved, 2 S. iii. 52, 61. exxiii

Spinach, Mountain, vii. 131.
 Round-leaved, 2 S. iii. 61. Summer, 2 S. iii. 52.
—— White French, vii. 131.
Spiranthes pudica, vi. 85.
Spiræa, 2 S. i. 465.

- argentea, 2 S. ii. 267 ; 2 S. iii. 159.
—— parvifolia, 2 S . iii. 123.
Spondias, v. 90, 102; 2 S. iii. 139. cytherea, v. 125.
- lutea, г. 99. Mombin, v. 99. Myrobalanus, v. 450. purpurea, v. 99.
Spong, Mr., 2 S. i. 546.
Spongioles, on their supposed absorbent powers, 2 S. ii. 117.
Sprekelia glauca, 2S. iii. 118.
Sprengel, Professor, vii. 520, 531.
Spring Grove, cranberry successfully cultivated at, i. 75.
- account of strawberries cultivated in the garden there, i. 75.
Srip'hala, v. 118.
Ssibu kaki, v. 124.
Stachys coccinea, vii. 42.
Stachytarpheta mutabilis, vii, 391.
Stafford, Lord, 2 S. ii. 37.
Stair, $_{\text {Th., letter from, respecting the age of }}$ the original tree of Williams's Bon Chrétien Pear, iii. 357.
Stallforth and Co., Messrs., 2 S. iii. 115.
Stamford and Warrington, Earl of, 2 S. i. 25.

Stanhope, Earl, vi. 419.

- account of the cultivation of Celeriac in the neighbourhood of Dresden, iii. 72 .

Charles Spencer, Esq., 2 S. i. 169.

Stanhopea Bucephalus, 2 S. iii. 149.
saccata, 2 S. iii. 141.
Stanley, Mr., 2 S. iii. 117.
Stapelia chinensis, vii. 20.

- cochinchinensis, vii. 20, 21, 28.

Staples, R. P., Esq., 2 S. ii. 377.
Star Apple, v. 98.
Lar Aple, Long-leaved, v. 458, 463.
Obovate-leaved, v. 458.
Staunton, Sir George Thomas, vi. 454 ; vii. 522, 523.
Steam apparatus, iv. 434 ; figured, 437.
— plan of Mr. Brown's, ii. 321.
2S. i. 203.
plan of Mr. Knight's, ii. 324.

Steam, application of, for bottom heat, successful, iv. 408 ; unsuccessful, ib. application of, to forcing, ii. 320.
heating by, description of various modes of, 2 S. i. 197.

- employed for heating hot-houses and melon-frames, i. 151.
pits in the Imperial Gardens of Taurida, at St. Petersburg, plans of, iv. 469. _ _ for melons, \&c., figured, v. 357.
- in tubes, allusion to the employment of, for heating plant-houses, i. 151.
Stedman, v. 101.
Stelis ciliaris, 2 S. iii. 116.
Stems of plants, on the means of giving strength to those growing under glass, iv. 1 .
Stenomesson aurantiacum, 2 S. iii. 149.
Hartwegi, 2 S. iii. 156.
Sterculia acuminata, v. 459, 460.
Steudel, vii. 19, 20.
Stevia compacta, 2 S. iii. 160.
Stewart, Mr. Alex., Valleyfield, v. 393.
on the cultivation of the
Nelumbium speciosum, vi. 422.
description of a pit for winter and early spring forcing, vi. 425.
description of a greenhouse at Valleyfield, vi. 225.
_Mr., of Blackheath, invented copper lap glazing, iv. 89.
\longrightarrow Sir James, vii. 199.
Capt. John, iv. 333.
Stickney, Mr., ii. 149.
Stock, having the leaves of the wallfower, i . 106.

Stocks, Doucin, iv. 411, 566.
——Free, iv. 566.
Mahaleb, iv. 566.
St. Julien, iv. 566.
on the effects of different kinds in graft-
ing, ii. 199.
adapted for different soils, iv. 566.
almond, iv. 566.
the almond recommended for peaches
and nectarines, ii. 90.
__ apple, iii. 293.
—_ for apple trees, iv. 411.
—_medlar, for pears, vi. 117, 546.
proper for the Moorpark apricot, ii. 19.

- plum, iv. 566.
aprinfluence of upon the Moorpark apricot, v. 287.
- pommier franc, iv. 411.
paradis, iv. 411.
quince, iv. 566.
remarks upon the comparative
advantages of grafting pears on them, vii. 213. exxiv

Stocks, Siberian crab, 2 S. ii. 109 ; vi. 540.

- wild cherry, iv. 566.

Stodhart, Mr., ii. 321.
Stoe, Henry, Esq., notice of fruit exhibited by him, iv. 217.
Stoffels, M., iv. 518 ; v. 404, 408 ; 2 S. i. 331.
apples sent by, iii. 316 .
notice of a mode of training peach trees on an inclined wall, iv. 140.
apples and pears received from him, iv. 274.
इтoußn, vi. 46.
इтoixas, vi. 47.
Stothard, Mr. William, observations on forcing garden rhubarb, vii. 190.
Stothert, Mr. Henry, description of various modes of heating by steam, for horticultural purposes, 2 S. i. 197.
Stoves denominated specularia by the Romans, i. 148 .

Stove and pit heated by fire and steam, vi. 440 ; figured, vi. 445.

- for bulbs, mode of heating by steam, 2 S .
i. 198 ; figured, 197.
for the growth of melons and cucumbers, vi. 505 ; figured, vi. 509.
for plants, improvements in the construction of, by which bottom heat is imparted without the use of \tan, ii. 387.
plan of Mr. Kent's, ii. 388.
-.. for tropical plants, on the management of, iii. 287.
description and plan of one for tropical plants in the garden of Sir Abraham Hume, ii. App. 4.
plants, observations on the cultivation of, vii. 389.

Strachan, Mr. Charles, account and description of the different varieties of the onion, iii. 369 .
account and description of the varieties of spring radishes, ini. 436.

Strange, Mr., 2 S. i. 544.
Strangways, Hon. W. F., 2 S. ii. 227, 378, 393 ; plants received from, 2 S. ii. 417, 418, 419.

Stranvæsia glaucescens, 2 S. ii. 245, 267.
Strateuma grandis, i. 290.

- militaris, i. 290.

Stratiotes alismoides, i. 269.
Straw employed for strawberry beds, i. 54, 55.
Strawberry, vi. $496 ; 2$ S. ii. 225.
remarks on the, i. 40.
remarks on the name, i. 54; to keep
their fruit clean, i. 56.

Strawberry, on the revival of an obsolete mode of managing them, i. 54.
account of the beds of in Spring Grove Garden, i. 55.
proper season and place for sowing, i. App. 10.
on the preparation of plants for early forcing, v. 432.
cultivation of, ii. 390 ; vi. 101, 120 , 255 ; vii. 90,342 ; 2 S. i. 84 ; 2 S. ii. 175.
observations on their cultivation, with remarks on the rapid formation of their blossoms and fruit, iv. 479.
-_ notices respecting those cultivated for the market in Scotland, vi. 512.
_for forcing, and on their cultivation in forcing houses, ii. 374.
forced, on their bearing a second crop, ii. 93.
207.
varieties raised by Mr. Knight, iii.
account and description of the different varieties cultivated and examined in the Society's garden, vi. 145.
selection of kinds, vi. 217.
Aberdeen, vi. 156.
Alpine, ii. 374,395 ; vi. 105, 149 ; vii. 343.
its cultivation, i. 159, 160 ; v. 247.

American, black, vi. 167.
Bath, white, vi. 205.
Beattie's seedling, vi. 188.
Barham Down, vi. 196.
Black, vi. 148, 182.
Beacon, vi. 182.
Canterbury, vi. 182.
Gibbs's seedling, vi. 184.
Isleworth, vi. 202.
late Pitmaston, vi. 183.
Pitmaston, vi. 183.
Prince, vi. 203.
Blood Pine, vi. 196.
Bostock, iv. 508, 509 ; vi. 187, 515.
Bullock's-blood, vi. 199.
Byram, vi. 188.
Caledonian, vi. 188.
Caperonier, i. App. 10.
Carmine Roseberry, vi. 158.
Carolina, iv. 17; vi. 196, 205.
Black, vi. 196.
Dwarf White, vi. 206.
Large, vi. 196.
Old, vi. 196.
Round White, vi. 205, 515.

Strawberry, Carolina, White, vi. 205.

- Cherokee, vi. 204.
——Chili, iv. 17 ; vi. 205.
Large Flesh-coloured, vi. 205.
Pale, vi. 205.
Red, vi. 192, 193.
True, vi. 206.
White, vi. 205.
Chinese, vi. 190, 193, 515.
—— Cockscomb Pine, iv. 205.
Cone, vi. 188.
—— Devonshire, vi. 190 . 18 ; vownton, iv. 197 ; vi. 185 ; vi. 342.
figured, iii. 396.
—— Dutch, vi. 195.

178.

Glazed Pine, vi. 515.
Golden Drop, vi. 190.
Green, vi. 149.
Greenwell's, vi. 207.
French, vi. 207.
New Giant, vi. 207.
——Grove End Scarlet, v. 399.
-_Hautbois, ii. 393 ; vi. 149, 211, 515. or Musky, vi. 211. difficult to cross with other varieties, i. 40. plant, i. App. 10.
stated to be a polygamous

App. 10.
its French appellation, i.
App. 10. Bath, vi. 215.
Black, vi. 213.
Common, vi. 210.
Diœcious, vi. 211.
Double Bearing, vi. 214.
ing abundant autumnal crops from, 2 S. i. 399.

Dwarf, vi. 214.
Formosa, vi. 215.
Globe, vi. 212.
Hermaphrodite, vi. 214.
Hudson's Bay, vi. 214.
Large Flat, vi. 215.
Lowder's, vi. 215.
Musk, vi. 214.
Old, vi. 211.
Original, vi. 211.
Prolific or Conical, vi. 213.
Regent's, vi. 214.
Sacombe, vi. 214.
Salter's, vi. 215.
Sir Joseph Banks', vi. 214.

Strawberry, Scarlet, Long, vi. 154.
—_ Long-fruited, vi. 154.
Lewisham, vi. 163.
Methven, vi. 172.
Morrisania, vi. 162.
Nairn's, vi. 169.
Narrow-leaved, vi. 177.
New, vi. 161.
New Bath, vi. 190, 196.
North's Large, vi. 192.
Nova Scotia, vi. 160.
Oatlands, vi. 160.
Oblong, vi. 153.
Old, vi. 152.
Original, vi. 152.
Padley's Early, vi. 154.
Pitmaston Black, vi. 175.
155.

Princess Charlotte's, vi.
———Prolific, vi. 160.
Rostock, vi. 188.
Scone, vi. 170.
Scotch, vi. 156.
Sir Joseph Banks's, vi. 161.
Southampton, vi. 173.
Vernon's, vi. 174.
Virginian, vi. 152.
White's, vi. 174.
Wilmot's, vi. 181.
Coxcomb, v. 262.
Late, vi. 181.
New, vi. 181.
York River, vi. 168.
Superb, Wilmot's, vi. 208.
Surinam, vi. 193, 196, 204, 514 ; vii. 344.

Sutton's Large, vi. 193.
Sweet Cone, vi. 186.
True Chili, vi. 148.
Varnished, vi. 196.
Vernon's, iv. 508 ; vi. 188.
Virginian, Large, vi. 181.
Wellington, vi. 188.
White Chili, or White Carolina,
ii. 101.

Wilmot's Black Imperial, v. 398. Late Scarlet, iii. 115. Seedling, vi. 181. Superb, vi. 208; figured,
vi. 392.

Wood, ii. 394 ; vi. 149.
Yellow Chili, vi. 103, 209.
190.

Strawberry Pear (Cactus triangularis), \quad. 100.

Street, Mr. John, on the cultivation of plants in moss, vi. 437.

on acelimatizing plants at

Biel, in East Lothian, vii. 31.

- Samuel Spyvee, Esq., upon procuring new wood in old fruit-trees, vii. 417.
Strelitzia augusta, i. 273.
——_regalis, i. 273.
$\Sigma_{\text {tequ }}$ रrov of Diosc., vi. 52.
Struthiola erecta, 2 S. ii. 271.
Struthiola ovata, 2 S. ii. 271.
Strutt, E., Esq., 2 S. iii. 35.
- Mr. Joseph, iv. 567.

Strychnos Nux Vomica, parasite on its trunk, i. 298.

Strychnum of Pliny, vi. 52.
Stuartia marilandica, vi. 495.
Sturge, Mr., 2 S. i. 198, 199.
Stuyvesant, Governor, vi. 418.
Styrax grandifolium, 2 S. ii. 263.
Succory, on its cultivation, iii. 138.
Sudlow, John, Esq., ii. 206; v. 406. apples sent by, iii. 315 . notice of fruits exhibited by him, iv. 207, 217.
Suffield, Lady, iv. 66.
Sugar Cane, 2 S. iii. 128, 139, 148, 157.

- Maple, observation respecting its sap, ii. 131.
- Plum (of Sierra Leone), v. 454.

Sullivan, Sir C., 2 S. i. 542.

- Lawrence, Esq., 2 S. i. 546.

Sulphate of Ammonia, 2 S. iii. 58, 69, 74, 79, $80,81,84,85,86,89,97,191,192,193$, 194, 195.

Copper, 2 S. iii. 95.
——_Iron, 2 S. iii. $37,38,43,44,46$, 48, 50, 51, 94, 95, 99.
Lime, 2 S. iii. 73, 78, 79, 80, 81, $82,84,85,86,193,194,195$.

- Magnesia, 2 S. iii. 37, 38, 42, 75, $79,80,81,84,85,86,88,89,191,192,193$, 194, 195, 203, 204, 205, 206. - Potash, 2 S. iii. 75, 76, 78, 79, 80 , $81,82,84,85,86,87,89,191,192,193$, 194, 195.
———Soda, 2 S. iii. 41, 42, 66, 67, 79, $80,81,82,83,85,86,88,89,94,97,99$, 191, 192, 193, 194, 195.
Sulphur, 2 S. iii. $37,38,46,48,50,51$.
Sulphuret of Potash, 2 S. iii. 96 .
Sulphuric Acid, 2 S. iii. 36, 45, 46, 47, 48, 50, $51,95,97,99,100$.
Superphosphate of Lime, 2 S. iii. 88, 89, 91 , 191, 192.
Surrey, Earl of, vii. 1; 2S. i. 536 ; 2 S. ii. 227, 232.

Sutton, John, Esq., iii. 321, 322, 329.
Swainson, Isaac, Esq., i. 63, 334.
varieties of the apple
cultivated in his garden, i. 66.
—— William, Esq., iii. 340.
Swamp Laurel, iii. 201.
Swartz, i. 282; vi. 282; vii. 28.
Swayne, Rev. George, notice of his cultivation of the Vicia sylvatica, and of a seedling apple raised by him, iv. 141.
Swayne, Rev. George, on the management of the fig-tree in the open air, iv. 428. figs, the produce of his trees, exhibited, iv. 564.
soms of pear-trees, v. 208.
the female blossoms of filberts, v. 310.
his mode of protecting
the branches of fig-trees during winter, vi. 108.
on the management of hot-house flues so as to keep up a nearly equal temperature during the night, vi. 247.
Sweet, Mr. John, vi. 573 ; 2 S. i. 412 ; vii. 457 ; 2 S. i. 412.
on the proper treatment of the Gloriosa superba, iii. 21.
on the destruction of cater-
pillars on fruit-trees, v. 76.
Sweet Pishamin, v. 455.
Sweet Sop, v. 94.
Swertia plantaginea, 2 S. iii. 160.
-_umbellata, 2 S. iii. 154.
Swerties, vii. 423.
Swinburne, Sir John, Bart., ii. 121. letter from on a suc-
cessful method of raising onions, and pre-
venting the depredations of mice on seeds, ii. 121 .

Swinton, ii. 167.
Switzer, 2 S. i. 59, 62, 70, 277.
Sykes, Sir Christopher, i. 121.
——Colonel, 2 S. ii. 429.

- on varieties of the vine from Dukhun, 2 S. ii. 170.
Symplocarpus fotidus, i. 267.
Symplocos Alstonia, 2 S. iii. 160.
Syringe, Read's garden, figured, v. 489.

T.

Tabernæmontana gratissima, vii. 55.
Tabernemontande, ii. 274.
Tablas, 2 S. iii. 136.
cxxviii

Tacsonia quitensis, 2 S. iii. 155.
Tagetes lucida, vii. 42.

- Zypaguirensis, 2 S. iii. 160.

Taille d'Eté of the French, i. App. 5.
Talbot, C. R. M., Esq., 2 S. ii. 234, 277.
Talk or talc used for glazing by the Romans, i. 148.

Tallies or Marks for Plants, description of a method of numbering them, ii. 347; figured, ib. - method of marking numbers on, vii. 288.

Talinum ciliatum, vi. 291.
Tamaratonga, 2 S. ii. 30.
Tamarind, v. 83, 465.
——Brown, v. 461.
—— Velvet, v. 460, 461. White, v. 464.
Tamarindus indicus, v. 465.
Tamarix afra, 2 S. ii. 280.

- gallica, 2 S. ii. 245, 280.
—— libanotis, 2 S. ii. 280.
Tamotte bontal, iii. 351.
- tayris, iii. 350.

Tamr el berr, v. 89.
Tankerville, Countess of, vi. 393.
Earl of, i. 331 ; 2 S. i. 540.
Tanner, Mr. Thomas, apples exhibited by, iii. 313.

Tansy, curled, 2 S. iii. 62.
Tapaculæ, v. 100.
Tarabresan Curmasi, vi. 36.
Taratoufli, one of the early names of the potato, i. 9.

- also a name for truffles, i. 10.

Tar water prevents the gooseberry-fly from settling on the plants, iv. 568.
Taxodium distichum, 2 S. iii. 132, 134.
— sinense, 2 S. ii. 256.
Taxus baccata, 2 S. i. 225.
Taylor, Sir Herbert, iv. 511 ; 2 S. i. 247. Mr. John, communications respecting the glazing of hot-houses, iv. $84,86,87$, 88.

Tcha-Yeoa, vii. 524.
Tchaw, vii. 557.
Te, Chinese name for the Diospyrus Kaki, 2 S . iii. 245.

Tea, Bohea, vii. 559.
-Green, vii. 558.
trees, vii. 562.
Tebsche, vi. 45.
Teucrium flavum, vii. 37.

- fruticans, vii. 41. fruticosum, vii. 33. Marum, vii. 33.
Temperature, high, 2 S. ii. $87,89,143$; 2 S. iii. 179 .

Temperature, high, sustained by Sir Joseph Banks and Sir Charles Blagden, ii. 134.
effects of very high, on some species of plants, iii. 459. low, 2 S. i. 299. in June, 2 S. i. 183. of England compared with those parts of Russia in a parallel latitude, i. 32.

130.

effects of, on the sap of plants, ii.
——at night in forcing-houses, ii. 130. instance of great difference between that of day and night, 2 S. ii. 537 .
difference between that of valleys and adjoining elevations, i. 96.
——— of the soil in spring, ii. 110.
Tenore, Dr., vii. 422, 424, 456.
Tephrosia? chinensis, vii. 58.
Terre Glandes, ii. 359.
Tetragonia cornuta, iv. 489, 490.
expansa, vi. 577.

- account of, iv. 488, 491. on its cultivation, v. 282. halimifolia, iv. 490, 491.
Teucrium fruticans, 2 S. ii. 270. heterophyllum, i. 106.
Thalia dealbata, i. 275.
Thea, the species described, vii. 519.
- Bohea, 2 S. ii. 256 ; vii. 559.
- β laxa, vii. 560. stricta, vii. 559.
cantoniensis, vii. 560 .
chinensis, vii. 529. var. Bohea, vii. 560. viridis, vii. 559.
cochinchinensis, vii. 561.
euryoides, vii. 560 .
oleosa, vii. 522, 561.
viridis, vii. 558, 559.
Thenard, v. 34.
Theochitus, i. 365.
Theophrastus, iii. App. 24, 25, 26, 27 ; v. 36, 63 ; vi. $31,36,37,39,40,42$.
Thermopsis laburnifolia, vii. 245.
Tupalensis, vii. 245.
Thibaud, Dr., i. 87.
Thibaudia acuminata, 2 S. iii. 154.
——floribunda, 2 S. iii. 159.
hirtiflora, 2 S. iii. 158.
—— parvifolia, 2 S. iii. 158.
- pendula, 2 S. iii. 158.
pubescens, 2 S. iii. 158.
Thlaspi arvensis, 2 S. i. 466.
$\overline{\text { Teren }}$ bursa pastoris, iv. 444.
Thelluson, Hon. Frbderick, plant received from, 2 S. ii. 420. cxxix

Thelysia grandiflora, i. 303.
Thompson, Mr., Mile End, iii. 204, 205. 2 S. i. 531.
John, his method of preserving grapes till late in the season, iv. 131 .

Josern, review of the fifty kinds of Grapes described by Speechly in his "Treatise on the Vine," vii. 263.

Robert, 2 S. ii. 228, 427, 435, 437, 455 ; 2 S. iii. 63 .
report upon the varieties of apricot cultivated in the garden of the Society, 2 S. i. 56.
purple Guigne cherry, account of the early purple Guigne cherry, 2 S. i. 144.
gooseberries, 2 S. i. 218.
Cote on the Black Corinth Grape, 2 S. i. 246.
report upon the principal varieties of the cherry cultivated in the garden of the Society, 2 S. i. 248.
journal of meteorological observations made at the garden of the Society in 1830, 2 S. i. 297 ; 1831, 2 S. i. $343 ; 1832,2$ S. i. $419 ; 1833,2$ S. i. 483 ; 1834, 2 S. ii. $1 ; 1835$, 2 S. ii. $73 ; 1836,2$ S. ii. $129 ; 1837,2$ S. ii. $189 ; 1838$, 2 S. ii. 317 ; 1839,2 S. ii. 481 ; 1840 , 2 S. ii. 529 ; 1841, 2 S. iii. 1 ; 1842, 2 S. iii. 163 ; 1843, 2 S. iii. 211.
notice of some varieties of fruits sent to the Society between 1831 and 1835, 2 S. ii. 108.
observations on the Althorp Crassane Pear, 2 S. ii. 119. account of some further experiments relative to the cultivation of potatoes, $2 \mathrm{~S} . \mathrm{ii} .156$. worth Imperatrice Plum, 2 S. ii. 522.
on the cultivation of the Oxalis Deppei, 2 S. iii. 29.
Thoroton, Rev. Sir John, notice of a seedling golden pippin raised in his garden, iv. 218.

Thouin, M. André, i. 88, 93, 355; iii. 382, 383,384 ; iii. $218,220,224,225$; iii. App. 20.

account of the Calville

Rouge de Micond Apple, vi. 242.
Cons his description of a bank for alpine plants, i. 24. on the cultivation of the Jamrosade, i. App. 11.

- his description of three species of dahlia, i. 86, 87.

Thouin, M. André, cited respecting the ringing of fruit trees, ii. 383.
M. Jean, substance of a memoir by, on the uses of scorix of the forge in horticulture, iii. App. 20.
Thoy 9 , Mrs., seedling peach exhibited by, iv. 513.

Thunberg, i. 89 ; iii. 301, 302, 448 ; iv. 176, $332,491,552$; vi. 74,487 ; vii. 180,239 , 523.

Thunder with hail, 2 S. ii. 143.

- in December, 2 S. i. 135. storm in January, 2 S. iii. 3.
Thyme, 2 S. ii. 225 ; 2 S. iii. 62.
Thymus Serpyllum, 2 S. i. 458.
Tiberius, i. 148.
Tide, remarkably high, 2 S. iii. 21.
Tigridia grandiflora, i. 309.
Pavonia, directions for its management during the winter months, vi. 106.

2 S. ii. 251.
Tilia mexicana, 2 S. iii. 126, 128.
Tillandsia calamifolia, i. 270.

- usneoides, used for packing plants, 2 S. ii. 379.
Tindall, Mesers. George and William, notice of a pear sent by them to the Society, vi. 396 .

Tobacco, 2 S. iii. 52. cultivation of, for garden purposes, 2 S. i. 208.

- experiments with, and constituents of, 2 S. iii. 39.

Broad-leaved Virginian, 2 S. iii. 62.
liquor, preparation of, for the destruction of insects, vi. 533.

Sheeraz, on its cultivation, 2 S. i. 205.

Virginian, 2 S. i. 209.
Tocte, 2 S. iii. 151.
Tola, v. 460, 464.
Tomate, iii. 344, 350.
Tomato, iii. 342; 2 S. iii. 52.
-_ varieties of, iii. 347.
Large Red, 2 S. iii. 61.
Tomberong, \mathbf{v}. 88.
Tomi-tomi, v. 116.
Tomrinson, Francis, Esq., iv. 509; vi. 187.

Tonsella africana, v. 459.
pyriformis, v. 459.
Torbron, Mr. Thomas, v. 481, 482 ; vi. 567.
ing cherries, iv. 109. instructions for forcvating figs, 481. exxx

Torbron, Mr. Thomas, remarks upon the comparative advantages of grafting pears upon quince stocks, vii. 213.
Torymenes officinalis, i. 283, 284.
Tournefort, iii. 344, 349, 350, 351 ; vi. 37 , 43, 60 ; vii. 424.
Tovar, Simon de, of Seville, an early cultivator of the Tuberose, i. 46, 47.
Towera, Mr. G. John, on the propagation of the Balsam by cuttings, 2 S. i. 151 .
upon the cultivation of the Melon, 2 S. i. 468.
on on the power possessed by plants of absorbing coloured infusions by their roots, 2 S. ii. 41.
Townsend, Mr. Wililam, on Orache, its varieties, and cultivation, vii. 130.
Townson, Dr., i. 264.
Tradescant, John, i. 94, 272, 352 ; vii. 9 ; 2 S. i. 255.
Tradescantia axillaris, i. 271.
-_ crassifolia, i. 297.
Traill, Mr. James, 2 S. ii. 409, 455 ; on the species of Hoya, vii. 16.
Trained trees, figured, i. 79.
Training, balloon, v. 186.
. 79. of fruit-trees, observations respecting, i. 79,171 . of gooseberry-trees, iv. 194.

- horizontal espalier, observations on, v. 44 ; figured, $i 6.46,47$.
- the peach on an inclined wall, iv. 140.
—— pendulous, vii. 94 ; figured, 95. standard apple-trees, v. 186.
of vines on flued walls, figured, 2 S . ii. 527.

Trammel, for cutting circular glass for hothouses and conservatories, figured, iii. 246.
Transplantation of plants with spindle-shaped roots, vi. 370.
—_ of blossom-buds, ii. 7. from seed, i. 39 .
avoided in the cultivation of vegetables, iv. 559.
Transportation of plants from India, 2 S. i. 140.

Trapa natans, iv. 563.
Traquhair, Earl of, v. App. 1.
Travers, Richard, Esq., iii. 324.
Trees, injured by the imjudicious use of manure, i. 6.

- reason why old are more disposed to bear fruit than young, i. 110.
_- transplanted standard, pruning and management of, iii. 154.

Tremayne, J. H. Esq., 2 S. i. 458.
Trevor, Misses, 2 S. ii. 122.
Trichonema caulescens, i. 316.
——collinum, i. 317. cruciatum, i. 316. hypoxidiflorum, i. 316.
longifolium, i. 316. roseum, iv. 154.
Trichopilia tortilis, 2 S. iii. 141.
Triglochin bulbosum, i. 268.
Trigonidium Egertonianum, 2 S. iii. 142.
Trimeza lurida, i. 308.
Triphora pendula, vi. 294.
Tristania laurifolia, 2 S. ii. 250.
Triteleia laxa, 2 S. i. 413 ; figured, 411.
Tritoma Burchelliana, 2 S. ii. 270.
——media, 2 S. ii. 269, 270.
Tritonia catenularis, i. 319.
——crocata, iv. 19.
- lineata, i. 319 ; vi. 292.

- longiflora, i. 319.
_- securigera, i. 319.
Tropæolum peltophorum, 2 S. iii. 150.
tuberosum, 2 S . iii. 153.
Troughs for aquatic and bog-plants, figured, iv. 402.

Truchsess, Baron, 2 S. i. 259, 289.
Tsha, vii. 557.
Tsing-chok-Lee, vii. 239.
Tsjetti-pu, iv. 335.
Tsura-na, iv. 491.
Tuberes of Pliny, iii. 3.
Tuberose, on its cultivation, i. 41 ; figured, i. 41 .

- botanical description of, i. 42. its history, i. 46.
misapplication of the name, i. 48.
Tuberous plants, remarks on the fluid or sap of, i. 187. effect of destroying the immature blossoms of, i. 188.
Tuckey, Capt., v. 91, 92, 440, 458.
Tugex, Mrs., iii. 109.
Tulipa Breyniana, i. 330.
- Clusiana, i. 334.

Trersica precox, i. 334.
Tung-kwa, 2 S. iii. 239.
Turk's turban, vi. 56.
Turner, Charles Hampden, Esq., iv. 559 ; vi. 461,464 ; vii. $21,533,546,548,553$.

Mr. Dawson, vii. 438.
Mr. John, his account of the Ipomœa tuberosa. i. 184.

John, account of the collections of apples exhibited at the meeting of the Society in 1818, with a list of approved sorts, iii. 310 .

Turner, John, substance of a memoir, by M. Jean Thouin, on the use of the scorix of the forge in horticulture, iii. App. 20. description of some varieties of pears and apples received from Mechlin, iv. 274.
observations on the accidental intermixture of character in certain fruits, v. 63.
acco of a col1821, from M. Hervy, Director of the Luxembourg Garden, v. 126.
pears, v. 404.

- Mr., notice respecting the mango in his journey to Thibet, iii. 463.

William (author of "Herbal"), i. 16.

Turnip, v. 26.

- 2 S. iii. 52.
method of rearing its seed in the East Indies, v. 516.
_- experiments with in steeping the seeds, 2 S. iii. 206.
—— hints for classification of the, v. 28.
Black, v. 28.
Cabbage, v. 17, 18.
Common, v. 18.
- Decanter, v. 28.
early Dutch, 2 S. iii. 61.
French, v. 32.
Green, v. 28.
Oleiferous, v. 29.
Red, v. 28.
Round, v. 27.
Swedish, v, 25.
Tankard, v. 28.
Teltow, notice of, vi. 113.
White, v. 28.
White Globe, 2 S. iii. 61.
Wild, v. 29.
Yellow, v. 28.
Tops, ii. 319.
Turpentine, Cyprus, vi. 40.
Tussac, M., i. 332 ; v. 85, 90, 96.
Tusser, Thomas, i. 23, 154; his list of fruits and plants cultivated in English gardens, i. 155.

Twamley, Josiah, Esq., iv. 124, 126 ; apples from ringed branches exhibited by him, iii. 367.

Twickenham, remark on the soil of, i. 65.
Tynningham, account of holly hedges at, vii. 195.

INDEX.

U.

Ulex europæus, double variety, vii. 237. double, 2 S. ii. 235. 2 S. ii. 225, 235, 245.

- nanus, 2 S. ii. 225, 245.
- strictus, 2 S. ii. 225, 235, 245.

Ulmus campestris, 2 S. ii. 217.
——glabra, 2 S. ii. 217.
——_suberosa, 2 S. ii. 217.
146.

Upright, Mr., 2 S. i. 546.
Urate, manure, 2 S. iii. 96.
Urine, putrid, 2 S. iii. 44, 48, 50, 51.
Uropetalon longifolium, vii. 74.
Uvedale, Dr., i. 347, 352, 366.
Uvularia chinensis, i. 331.

$$
\mathrm{V} .
$$

Vaccinium acuminatum, 2 S. iii. 158.
_ album, vi. 496.

280.

Arctostaphylos, vi. 60 ; 2 S. ii.
\qquad brachystachyum, 2 S. iii. 127.
densiflorum, 2 S. iii. 158. empetrifolium, 2 S. iii. 156. epacridifolium, 2 S. iii. 158.
hispidulum, ii. 94.
macrocarpum, i. 75 ; iv. 483.
Madeira, on its cultivation, vi. 59.
madeirense, 2 S. ii. 280.
Mortinia, 2 S. iii. 154. from Mount Caucasus, vi. 60. Myrtillus, iv. 485. ovatum, 2 S. ii. 262. padifolium, vi. 60. penæoides, 2 S. iii. 156.
Vacheli, Richard, Esq., propagated the Florence cherry, ii. 229, 231.
an a method of raising early cucumbers, iv. 455.
Vahl, vi. 70.
Valeriana bracteata, 2 S. iii. 158.
——hirtella, 2 S. iii. 154.
microphylla, 2 S. iii. 155. plantaginea, 2 S. iii. 156.
Valerianella eriocarpa, vi. 584.

- locusta, vi. 584.

Valleys, remarks on the climate and soil of, i. App. 16.

Valeet, published an excellent figure of the tuberose, i. 48.
Valonia, vi. 47.
Vallota purpurea, 2 S. ii. 221.

Vanda multiflora, vi. 280.
Vandes, Comtesse de, i. 205, 280, 332 ; vi. 75.
Vandesia edulis, i. 332.

- its treatment, i. 333.

Vanilla planifolia, i. 295; its cultivation, 296.

Van Houtte, M., 2 S. iii. 124.
Van Mons, Jean Baptiste, M.D., iv. 215, $274,519,521$; v. $266,404,407,408,410$; vii. 151 .
cultivation of Lobelia fulgens in Belgium, ii. 153. notice of
a box of pears sent by him to the Society, ii. 403.

notes on

 grafting, budding, and cultivating garden roses, vi. 317.cultivation and variation of Brussels sprouts, iii. 197.
received from, 2 S. ii. 415.
Vara de S. Josef, i. 48.
Variety, a permanent or local, its definition, iv. 21.
an accidental, its definition, iv. 22.
Vaupel, Mr., 2 S. ii. 170, 172.
Vieau, Francis Le, i. 352.
Vegetables, cross-bred, v. 377. App. 17.
esculent, used in China, v. 49.
used as esculents in North America, iv. 443.

- list of monographs on, vi. 563, 564.

Vegetable substances fittest for manure in a fresh state, i. 248.
i. 25r marrow, description and account of, ii. 255.

figured, ib.

(Laurus persea), v. 96.
Vegetation, process of, i. 217 .

- effects produced on, by the combination of heat and moisture at different periods of the year, vi. 432.
- aspect of, in mountainous districts,
i. App. 15.
comparative progress of, in Russia and England, i. 32.
promoted by oxygen, i. 233.
experiments for promoting, with oxygen, i. 234, 235.
Veitch, Mr. James, 2 S. i. 530.
Vela, or curtains used by the Romans, i. 148.
Vella pseudo-cytisus, vi. 499.

Veltheimia media, vii. 40.
Velvet Tamarind, v. 460.
Venables, Rev. James, on enriching the soil of gardens by fresh vegetable manure, ii. 189. on raising apple trees from pips, 2 S. i. 39.
Venier, M. Le, i. 363.
Ventenat, M., i. 304, 311.
his separation of the genus Homeria from Moræa, i. 307.
Ventilation, v. 228; vi. 380.
109.
improves the flavour of fruits, ii.
100.
of forcing-houses, ii. 224.
hot-houses, i. 151 ; vi. 24.
peach-houses, ii. 227.
Ventilator, self-regulating, for hot-houses, v. 502 ; figured, 503.
for hot-houses, self-acting one, figured, vi. 142.
Verangeane, vii. 83.
Veratrum frigidum, 2 S. iii. 123.
Verbascum Myconi, i. App. 21.
Verbena Melindres, 2 S. ii. 286. triphylla, i. 177; vii. 40.
Vere, James, Esq., i. 270 ; iii. 104; iv. $346 . ~_{\text {I }}$
Verleuwen, Mr., plants received from, 2 S . ii. 412, 414.
Vernon, Mr., iv. 508; vi. 174, 188.
Vernonia rubricaulis, 2 S. iii. 160.
Veronica decussata, vii. 41 ; 2 S. ii. 240, 250.
Verrell, Mr. James, notice relative to the management of the Crinum amabile, with some account of the plant so named, and observations on it, iv. 419.
Vestia lycioides, 2 S. ii. 285.
Viburnum, 2 S. i. 465.
-_ cassinoides, 2 S. ii. 263. cotinifolium, 2 S. ii. 268. discolor, 2 S. iii. 138. molle, 2 S. iii. 160. pichinchense, 2 S. iii. 155. Tinus, 2 S. ii. 226, 237, 245, 276.
triphyllum, 2 S. iii. 160.
Vicia atropurpurea, vi. 291.

- sylvatica, iv. 141.

Victor, M., 2 S. iii. 203.
Viedaze, vii. 83.
Vilanfagne, iv. 279.
Viliet, vi. 292.
Villa, Roman, Gloucester3hire, described by Mr. Lysons, i. 148.
Villarg, M., v. 30.
Vilmorin, M., iii. 180, 272, 278, 282, 437, 439, 442; iv. 12, 385, 387, 488; v. 3, 19,

38 ; vi. $135,138,306,583,584$; vii. 12 , 84 ; 2 S. i. 277,381 ; 2 S. ii. 410.
Vilmorin, M., communication of particulars relative to the varieties of the almond, iv. 408; and on some varieties of the onion, iv. 410. note from, respecting the Monsieur le Curé Pear, 2 S. ii. 111. ou the improvement of the wild carrot, 2 S. ii. 348.
fruit trees received from, 2 S . ii. 415.

Vinca major, 2 S. ii. 226, 232.
Vine, hopes entertained of making it yield its fruit without artificial aid, i. 3.

- two new varieties of, i. 37.
- the length of time it requires to attain maturity, i. 39 .
effects of injudicious pruning of, i. 102.
- composition to heal the wounds of, i. 102 .
- experiments for improving the maturation of its fruit, i. 108.
- new method of training, i. 143, 144, 171.
- methed of training in frames, i. 144.
- a remarkably fruitful one at ancient Rome, i. 153.
- much cultivated by the Romans, i. 153.
training of, figured, i. 171.
- instance of a single branch introduced into a stove, bearing grapes before the buds in the open air had pushed, i. App. 19.
Vines, on the cultivation of, in forcing-houses, ii. 108.
temperature of the soil conducive to their vegetation, ii. 110.
experiments on, with liquid manure, ii. 128.
- account of a method of forcing, ii. 245.
- description of a peculiar mode of training them under glass, iii. 9 .
observations on the training of, on the open wall, iii. 250 .
at Valentine's House, iii. 334.
description of a moveable frame for training them in a house to protect them from frost, and to facilitate the operation of pruning, iii. 335 .
- to stop their bleeding, iii. 337.

三- in potz, iii. 363 ; iv. 439,560 .

- improved method of planting them for forcing, iv. 4.
- compost for, iv. 4.
- effects of ringing them, iv. 127.
- account of a method of managing in a common grapery, iv. 246.
- mode of pruning, figured, iv. 247, 248 , 249, 252, 253.

INDEX.

Vines, excitability induced in, iv. 439.

- quantity of mould required relatively to the extent of foliage, iv. 440.
—— grafting, iv. 495 ; v. 201 ; 2 S. ii. 114.
- plan of exposing their branches, iv. 567 ; figured, $i b$.
- bleeding of, v. 201, 202.
- borders, composition for, v. 473.
varieties of, best adapted for late crops,
vii. 7.
training of, on open walls, at Thomery, near Fontainebleau, vii. 373 ; figured, 375.
- its cultivation upon the open wall, 2 S i. 51 .
cultivation of, 2 S. i. 332.
- its peculiar adaptation for training, 2 S . ii. 36 .
- training of, on flued walls, 2 S. ii. 525 ; figured, 527.
ii. experiments on their rate of growth, 2 S .
iii. 103.
- observations on their rate of growth at different periods of the day, 2 S . iii. 247 .
- Black Hamburgh, iii. 334.

Hampton Court, iii. 337.
Large, v. 471, 477 ; produce of, 477.
Red Hamburgh, iii. 334.
parent of the Hampton Court, iii. 334.
Vineries with arched hanging trellises, at various places in Scotland, vi. 522; at Castle Semple, figured, 526; at Hopetoun House, figured, 523 ; at Riccarton, figured, 525.
Vinery, description of one, i. 99.
——_sketch of one, i. 99.
remarks on, i. 199.
Early, figured, 'vii. 2.
plan of one at Elcot, heated by hot water, vii. 207.

- section of Mr. French's, ii. 247.
late, figured, vii. 6.
plan of one at Shobden Court, iv. 256. description of one at Scone, and mode of training practised in it, v. 495; figured, 497.

Vineyards of Italy, remark concerning, i. 110.
V. Memarks on, ib.

Vino Mescal, 2 S. iii. 119.
Viola, iv. 19.

- amona, iv. 19.
grandiflora, iv. 19.
lutea, iv. 19.
Violets, Neapolitan, treatment of, iv. 109.
- of Parma, iv. 109.

Virgil, i. 365 ; ii. 252 ; iv. 453 ; 2 S. iii. 197. ii. quotation from respecting the cherry, ii. 139 .

Virgilia sericea, vii. 245.
exxxiv

Viscum album, analysis of, 2 S. iii. 53.
——clavatum, 2 S. iii. 158.
Vit squamigerum, 2 S. iin. 158.
Vitex Agnus-castus, vi. 46.
Vitis cesia, v. 447.

- odoratissima, vi. 496.

Vivian, John Henry, Esq., 2 S. ii. 227, 235, 272.

Voanato, v. 92.
Voancrome, v. 93.
Vodinà Caván, vi. 58.
Volkameria inermis, 2 S. ii. 226.
Voutaca, v. 93.

W.

Wachendorfia brevifolia, i. 326.
Wainscot, Dutch, 2 S. i. 338.
Walcot, William, Esq., his description of wicker protectors for tender plants, vii. 91.
Whldstein, v. 33, 34.
Walker, Dr., vi. 429.
——John, Esq., vi. 94.
Joseph, Esq., 2 S. ii. 227, 235, 266.
Wallace, Judge, iii. 256.
Wallich, Dr., vii. Pref.; iv. 136; vi. 74, 276,298 ; vii. 24 ; 2 S. i. 46, 457, 465 ; ii. 409.
notice of seeds of a new cucumber, from Nipal, transmitted by him. with an account of the cucumber, iv. 136.
—_upon the preparation and management of plants during a voyage from India, 2 S. i. 140. 414.

Wall, Hollow, account, description, and plan of, iv. 244.
Walls, garden, observations on blacking them as it affects the ripening of fruits, iii. 330 .
on the construction of piers and copings of, iv. 269.
on blackening, vi. 452.
inclined, iv. 140.
Wall-flower, vi. 313.

- trees, remark on the defective training of, i. 5.
description of a screen for protecting, iv. 93 ; figured, 94.
mode of fastening, iv. 559.
protection of their blossoms, v. 404.
directions for protecting them from the effects of frost, vi. 109; mode of figured, 110.

Walmslex, Mr. John, account of a slatetrough made by him, vi. 543.

INDEX.

Walnut, propagation of its varieties by budding, iii. 133.

- capable of being induced to early fruitfulness, i. 5.
-_ two sorts of cultivated by the Romans, i. 154 .
- preservation of through the winter, i . 247.
trees, improvements in the culture of, i. 5.
i. 60 . advantages of grafting them, . account of one which bore at an early period from seed, ii. 3.
upon grafting it, 2 S. i. 214.
__ highflyer, iv. 517.
- leaves, efficacy of the infusion of in destroying worms, vi. 114.
Walsh, Robert, LL.D., observations on, and an account of, plants growing in the neighbourhood of Constantinople, vi. 32.
Wanibé, v. 451.
Ware, Mr., Tonbridge, vi. 394.
Warner, Mr., introduced the Hamburgh grape, iii. 117.
$\xrightarrow{\text { S., Esq., } 2 \text { S. i. } 546 . ~}$
Warre, James, Esq., iii. 371; v. 308 ; vi. 565. on the cultivation and the varieties of the Portugal onion, iii. 67.

268.

Waring, Richard, Esq., apple exhibited by, v. 401.

Warren, Mr. George, on the cultivation of the pine-apple, 2 S. i. 388.
Water, method of conveying to plants in houses, iii. 14.

- spring, at all times too hard for the nourishment of plants, iv. 395.
_ effects of supplying it at various temperatures to fruit-tree borders, 2 S. ii. 55.
\cdots experiment with in seed-steeping, 2 S . iii. 204, 205, 206.

Water-cress, cultivation of, iv. 537.
—— varieties of, iv. 537 ; 2 S. iii. 62.

- lemon, iii. 102.

W melon, vi. 57.
Waterer, Mr. M., 2 S. i. 531, 534, 540, 542.
Watson, Mr., plants received from, 2 S. ii. 420.
$—$ Sir William, i. 140. grafted chesnut-trees
sent by him to Spring Grove, i. 140.
Watsonia fulgens, iv. 39 .
fulgida, i. 323.
Mariana, iv. $154 ; 2$ S. ii. 268.

Watsonia rosea, iv. 155. viridifolia, β, i. 323.
Watta-Kaka-Codi, vii. 28.
Wax Palm, 2 S. iii. 150, 161.
Way-Way (Mango), v. 114.
Webb, Charles, Esq., 2 S. iii. 35.
Webster, James, Esq., account of his exhibition of currants in November, vii. 96.
Wedgwood, John, Esq., iii. 219 ; iv. 388 ; 2 S. iii. 35. the idea of establishing a society for the improvement of horticulture originated with, i. Pref.
the culture of the dahlia in the northern parts of Britain, i. 113.
menthod of destroying the Aphis lanigera, or American Blight, iii. 361 .
C, of the underground and some other onions, iii. 403 .
periment with Buda kale, iv. 570.
_ his mode of blanching Buda kale in the manner of sea-kale, vi. 112.
upon the cultivation of late celery, vii. 91. - Thomas, Esq., ii. 3.

Weeks, Mr. Edward, notice of a frame constructed by him, iii. 132.
Weimar, His Royal Highness Charles Augustus, Grand Duke of, account of a species of casuarina growing in the gardens at Belvidere, iii. 332.
Weinmann, Professor, plants received from, 2 S. ii. 412.
Weiss, Mr. Jacob, iii. 256.
Welbank, Capt. Robert, vi. 460 ; vii. 522, 533, 546, 553.
Welle, Dr., ii. 288 ; vi. 4, 10.

- Mr. Joseph, v. 149 ; vi. 358, 360, 362,363 ; vii. 146, 148.
on the cultivation of Chinese chrysanthemums, iv. 571.

William, Esq., vi. $324,326,336$; vii. 143 ; 2 S. i. 531 ; 2 S. ii. 227, 231, 426.
Welstead, Charles, Esq., account of the vines growing at his seat at Valentine's House, iii. 334. 475.

Wenman, Mr., iii. 245.
Wentworth, Godfrey, Esq., i. 336.
Werner, v. 151.
Werneria densa, 2 S. iii. 156.

Werneria disticha, 2 S. iii. 157.
-_ nubigena, 2 S. iii. 154.
West, Mr. John, notice of his mode of growing onions, iv. 138.
description of a forcing-pit, iv. 220.

Westenra, Hon. John, 2 S. i. 546.
Westringia rosmarinifolia, 2 S. ii. 250.
Whale, Mr. William, account of a plan of heating stoves by means of hot water, vii. 203.

Wharncliffe, Lord, 2 S. i. 75.
Whately, Mr., ii. 22.
Wheat brought by degrees to perfection in England, i. 22.

- how to adapt the seed to the soil, i. 23.
calculation of the average produce of, i. 189 .
- experiments with in steeping the seeds, 2 S. iii. 204.
_- bill, of India, account of, i. 8, 11.
from Guzerat, i. 22.
spring, from Guzerat, i. 22.
——Talavera spring, 2 S. iii. 64.
mildew on, ii. 85 .
Wheeler, Thomas, Esq., i. 232. Mr., ii. 250.
Whirlwind, 2 S. i. 499.
Whitbread, Samuel, Esq., vi. 160.
White, (Selborne,) 2 S. ii. 294.
—— Dr., iii. 433, 434.
- Mr. George, vi. 174.

Capt. Thomas, 2 S. i. 143.
Bean, vi. 55.
Whitfield, Thomas, Esq., 2 S. i. 15.
from, 2 S. ii. 420.
Whitehead, Mr., 2 S. ii. 400.
Whiting, Mr., 2 S. ii. 455.
Whitley, Mr., i. 183.
iv. 289; 2 S. i. 53.
of Fulham, vii. 22, 23.
and Brame, i. 106, 294.
Brame, and Milne, Messrs., iii. $204,231,278$; iv. $258,286,298$; vii. 231 , 441.

Whitshed, Lady, iii. 179, 181.
a successful grower of the
dwarf carnation, iv. 556.
Whortleberry, iv. 485.
Wickham, Right Hon. William, iii. 308 ; iv. 428.
memoranda
respecting the culture of fig trees in the open air in England, iii. 74.
Widnali, Mr. 2 S. i. 546
exxxvi

Wilbraham, Roger, Esq., ii. 140 ; iii. 320 , iv. 209 ; v. 273, 407.
potatoes exhibited
by him, ii. 400 .
account of two - notice of a peach raised by, iv. 209.
hibited by him, iv. 215.
iv. 519.

Nonpareil exhibited by, iv. 561.
Willdenow, i. 88, 131, 263 ; ii. 276 ; iii. 219 , 220,228 ; iv. 281, 282, 326, 461, 462 ; vi. $37,73,276,280,288$; vii. $235,236,420$, 421, 437, 559.
Wild Olive, vi. 36.
Wilkins, Mr. William, notice of apples from the Isle of Wight exhibited by him, ii. 406.
314.

Wilkinson, Rev. Thomas, ii. 173.
his observations on the form of hot-houses, i. 161, 199.
Williams, Rev. George, iii. 456.
John, Esq., ii. 200, 265, 266, 268, $327,329,377$; iii. $65,267,322$; iv. 127 ; v. 294 ; vi. $103,158,175,177,183,187$, $209,210,230$; vii. 194 ; 2 S. i. 233 ; 2 S. ii. $128,227,234,294$.

- an account of a method of hastening the maturation of grapes, i. 107.
on the culture of the mulberry, and on forced strawberries bearing a second crop, ii. 91.
remarks on the Verdelho grape of Madeira, ii. 106.
. on the cultivation of the vine in forcing-houses, with observations on forcing peaches, ii. 108.
on promoting the early fruitfulness of apple and pear trees, when raised from seed, ii. 333.
on the fences most eligible for gardens and orchards, ii. 354. hibited by him iii specimens of grapes exhibited by him, iii. 117.
account of the Pitmas-
ton white cluster grape, with some observations on the training of vines on an open wall, iii. 249.
of the Martin Nonpareil, iii. 456.

Williams, John, Esq., remarks on the Siberian crab as a stock for the golden pippin,
account of the Alexandrian Ciotat grape, iv. 8.

> notice of a raspberry raised by him from seed, iv. 55.
notice of a peach raised by him, iv. 210.
fruit-trees, iv. 123.
by him, iv. 214.
notice respecting the
Pitmaston orange nectarine, iv. 232.
on the cultivation of the
Alpine strawberry, v. 247.
notice of a seedling pear raised by him, v. 265. melons in the open air, v. 349. on the cultivation of the yellow rose and of the tender Chinese roses, by budding on the musk cluster rose, v. 369 . particulars of a mode of cultivating strawberries, vi. 120. acting ventilator for hot-houses, vi. 142. on the treatment of the golden pippin, vi. 539.
on the probable cause of the russet on apples, vii. 505 . communication respecting the Nice black cluster-grape, 2 S.ii. 112. - on the cultivation of melons in open frames, 2 S. ii. 161.

Mr. Richard, i. 135, 334 ; ii. 250 ; iii. 93 ; vi. 477 ; vii. $419,483,485$. notice of the Waterloo hyacinth exhibited by him, iv. 413.

> Esperione grape- vine grown in his nursery, iii. 93 .

529.

 apple sent by, iv. an account of an easy method of destroying caterpillars on gooseberry-bushes, vii. 403.Robert, Esq., i. 286.
Williamson, Rev. William, iii. 389 ; v. $313,315,316,317$.
tion of mushrooms in exhausted cucumber or melon beds, iii. 6 .
vation of the balsam, iii. 127.
on the culti-
of decay in fruit-trees particuly on the causes iii. 291.

Williamson, Rev. William, notice of a mode of destroying ants, iii. 359.
on the culture of the Amaryllis sarniensis, or Guernsey lily, iii. 447. vation of the filbert, describing the method of pruning as practised near Maidstone, in Kent, iv. 145.
vation of the ranunculus and anemone, iv. 374.
of preserving geraniums (pelargoniums) during the winter, iv. 414.
Willock, Sir Henry, vi. 553, 555, 559, 560.
S. ii. 416, 418.

Willow, 2 S. i. 465.
— sweet, experiments on its rate of growth, 2 S. iii. 103.

- observations on its rate of growth at different periods of the day, 2 S . iii. 247.

Willughbeia edulis, v. 118.
Wilmer, Mr., 2 S. i. 543, 544, 546.
Wilmot, Mr. John, i. 104 ; ii. 202 ; iii. 328, 345,392 ; iv. 523 ; vi. $180,181,203,208$; 2 S. i. $535,540,542,543,544$.

gardens, ii. 22.

. remarks on the mode of budding and grafting standard fruit-trees, i. 215.
313.
apples exhibited by, iii. sent by him to the specimens of a st toes, iii. 345. notice of two plums exhibited by him, iii. 362. advantages of fresh dung over decayed, iv. 55.
by him, iv. 205, 206, 207, 213, 214, 216. pear exhibited by, iv. 518 . apple exhibited by, iv. 523. strawberry exhibited by, v. 262,398 ; vi. 392.
grape exhibited by, v. 264.
Wilmott, Mr. John, of Lewisham, vi. 163.
Wilson, Capt. Henry, iv. 342.
John Peter, vi. 396.
Mr. John, upon the cultivation of tobacco for garden purposes, 2 S. i. 208.

Wilson, Mr. John S., 2 S. i. 536 ; 2 S. ii. 227, 266, 437, 455.

- Mr. Robert S., 2 S. ii. 227, 455 .

Mr., Clewer Lodge, 2 S. i. 542.
Wilts and General Horticultural Society, 2 S. ii. 445 .

Winchester Horticultural Society, 2 S. ii. 445.

Wine, on making from the leaves of the claret grape, ii. 123.

- of Madeira, ii. 329.

Maperior strength of those of La Mancha, ii. 109.
Winterana aromatica, i. 25.
Wise, Rev. H., 2 S. ii. 113.
Withering, v. 278.
Withers, Mrs., vi. 552 ; 2 S. i. 72,170 , 296.

Witsenia corymbosa, i. 311.
——maura, i. 312.
—— tomentosa, i. 312.
Witzthum, Mr., ii. 155.
Wood, analysis of oak, 2 S. iii. 55.
——_fir, 2 S. iii. 55.
——apple, v. 118.
W-ashes, 2 S. iii. 96.
Woodford, E. J. H., Esq., i. 268, 292, 294, $295,326,342$; iii. 225.
introduced the Pas-
siflora racemosa, iv. 260.
cies of the dahlia, i. 97.
i. 24.

Woodward, Mr., his description of the Crambe maritima, i. 16.
Worledge, i. 230.
Worms, to remove from the roots of plants grown in pots or tubs, vi. 114.
Wormwood, Common, 2 S. iii. 62.
Roman, 2 S. iii. 62.
Wortley, James Stuart, Esq., iii. 37; iv. 516 ; vi. 406.
mode of treating fruit trees practised in his garden, iii. 37.
to queries respecting the treatment of peach and nectarine trees in his garden, ii. 14.
Wrightia tinctoria, vii. 54.
Wurmbea bullata, i. 328.
$\overline{\text { Wurer purparea, i. } 330 .}$
Wurzelrapunze, vi. 580.
Wratt, James, Esq., i. 104.
Winn, Sir W. W., notice of the banana tree in his garden, iv. 137; v. 80. cxxxviii

X.

Xallé, vi. 38.
Xanthochymus dulcis, v. 116.
Ximeria, v. 91.
\longrightarrow ? lanceolata, vi. 69.
Xiphidium album, i. 326, 327.
$\overline{X i p}$ floribundum, i. 326.
Xiphium sordidum, i. 303.
Xuquilite, or Ink Plant, 2 S. iii. 129.
Xylophylla latifolia, vii. 392.
Xyris operculata, i. 326.

Y.

Yates, James, Esq., i. 236.
account of some exotics possessed by him, i. 242, 243.
account of some orange and lemon trees growing against a wall in his garden, iv. 142.
notice relative to the flowering of the American aloe in his garden, iv. 389 .

Yates and Cox, Messrs., notice of nails for fruit trees manufactured by, iv. 418.
Yeast, its use in bark beds, 2 S. i. 474.
Yellanga of the Telingas, v. 118.
Yellow Plum of Sierra Leone, v. 450.
$\overline{\text { Y_ }}$ of the West Indies, v. 99.
Yerba de San Pedro, 2 S. ii. 398.
Yew berries attractive to wasps, iii. 260.

- instance of their not attracting wasps, iv. 108.
Yew tree, 2 S. ii. 225, 226.
Y propagation of, iii. 261.
Yew kang, a Chinese fruit, 2 S. iii. 241.
York, Duke of, vi. 160.
Youlan, iv. 59.
Young, Arthur, Esq., his calculation of the average produce of an acre of wheat, i. 189 .

Mr., vii. 304 ; 2 S. i. 531.
Messrs., vii. 151, 153, 544.
Sir Samuel, iii. 322; vi. 215.
314.

Yucea filamentosa, 2 S. ii. 245.
gloriosa, 2 S. ii. 245, 263.
gracilis, 2 S. ii. 263 .
——recurva, 2 S. ii. 245, 263.
recurvifolia, i. 334.
Yung To, vi. 90.

INDEX.

Z.

Zacatecas, vegetation of, 2 S. iii. 120.
Zachary, Michael Mucklow, Esq., apples exhibited by, iii. 315 .
Zakkoum, v. 89.
Zamia horrida, mode of the development of young plants from the scales, figured, vi. 503.

Zamias, on their propagation, vi. 501.
Zaquapan, 2 S. iii. 115.
Zea Caragua, iv. 54.
Zea, Don Francisco, v. 250.
Zea Mays, experiments in its culture by the application of oxygen, i. 235.
Zederacht, vi. 38.
Zedoary of the shops, i. 285.
Zephyranthes candida, 2 S. ii. 286. cxxxix

Zephyranthes rosea, vi. 284. "
—— sessilis, 2 S. iii. 118.
Zerumbet speciosa, i. 279.
Zigadenus glaberrimus, i. 329.

- Volcanicus, 2 S. iii. 143.

Zingiber Casumunar, i. 284.
luridum, i. 284.
Zizania aquatica, grown in a pond at Spring Grove, i. 22.
experiments with the seeds of, i. 22.
Ziziphus Jujube, v. 123.
Zouk touk, a Chinese implement, 2 S. iii. 239.
Zubow, Count Demetrius, account of his steam pits at St. Petersburg, iii. 430.

Zurzack, v. 95.
Zygomenes axillaris, i. 271.

[^0]: * Notice sur l'Oxalide de Deppe. 8vo. Lyons, 1838.

[^1]: * The plant from which the accompanying figure was made was grown by this method. It would have doubtless been even finer had the summer been more congenial.

[^2]: * The Chemical Commitee of the Society is supported by voluntary subscriptions among the Fellows of the Society. The following are the present Members of the Committee and the amount of their Subscriptions: His Grace the Duke of Devonshire, 50l.; E. Barnard, Esq., 1l.; Major Buckley, 1l.; Jos. Blunt, Esq., 1l. 1s.; Thomas Farmer, Esq., 5l.; Dr. Henderson, 1l.; Sir C. Lemon, Bart., 5l.; Dr. Lindley, 5l.; Sir O. Mosley, Bart., 5l.; W. Murray, Esq., 2l.; W. Ogilby Esq., 1l.; E. W. Pendarves, Esq., 2l.; W. H. Pepys, Esq., 2l.; John Rogers, Esq., 5l.; R. Horsman Solly, Esq., 5l.; Sir J. Sebright, Bart., 5l. ; Samuel Solly, Esq., 51.; E. Strutt, Esq., 2l. ; C. Webb, Esq., 3l. ; J. Wedgwood, Esq., 11.

[^3]: * These numbers indicate the quantity of the manure used, cither 1 cwt. and 48 lbs ., or double that quantity, viz. 2 cwt , and 96 lbs. per acre.

[^4]: * The value of these substances, as manures, is every day becoming more evident. The Superphosphate of Lime in particular, is producing excellent effects. At the time when the above-described experiments on Mangel Wurzel were made at the Gardens, my friend, Mr. H. Aglionby, M.P. made others with green round Turnips, on very poor soil, on which the superphosphate produced a larger crop than any other manure. In these experiments, Sulphate of Ammonia, drilled in under the seed, failed entirely; on very chalky soil the whole crop was destroyed, and on clayey soil it was evidently greatly injured, though not to the same extent as on chalk. This salt appears to be decidedly best as a top dressing, either mixed with mould or road drift.

[^5]:

[^6]: * In the Tydschrift voor Natuurlyke Geschiedenis en Physiologie, by van Hoeven and de Vriese.
 + Botaniche Zeitung, Nov. 3, 1843.

[^7]: VOI. 1II. 2ND SERIES.

[^8]: * A large parcel of seeds which I transmitted to the Society having failed to grow, this gem of the Mexican highlands remains still to be imported.

[^9]: * The articles collected about Angangueo, consisting of seventeen sorts of seeds, seven kinds of bulbs and roots, and three species of Epiphytes never reached England.

[^10]: * A similar freak of Nature I observed in Guatemala with Sobralia macrantha which had its usual large crimson flowers on one stem, whilst on another of the same plant I observed the small and condensed flowers of the genus Evelyna. This plant I carefully removed and transmitted to the Society's Garden with the head of the Evelyna attached to it. It has since flowered, but only produced the flowers of Sobralia macrantha.

[^11]: * The box containing the above, as well as the seeds and dried specimens collected about Cuenca, were despatched viâ Guayaquil, but never reached England.

[^12]: ＊Like the Fig，too recently planted，dry weather setting in．

[^13]: ＊＊＊Broken in taking the measure，the shoot having become much curved at the extremity．

